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Abstract

Purpose: Almost 40 years ago, H. Cohen formulated a conjecture about the
modularity of a certain infinite family of functions involving the generating function of
the Hurwitz class numbers of binary quadratic forms.

Methods: We use techniques from the theory of modular, mock modular, and Jacobi
forms.

Result: In this paper, we prove a slight improvement of Cohen’s original conjecture.

Conclusions: From our main result, we derive so far unknown recurrence relations for
Hurwitz class numbers.
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Background
Since the days of C.F. Gauß, it has been an important problem in number theory to deter-
mine the class numbers of binary quadratic forms. One aspect of this, which is also of
interest regarding computational issues, is the so-called class number relations. These
express certain sums of class numbers in terms of more elementary arithmetic functions
which are easier to understand and computationally more feasible. The first examples of
these relations are due to Kronecker [1] and Hurwitz [2,3].
Let H(n) denote the Hurwitz class number of a non-negative integer n (cf. ‘Methods’

section for the definition). Then, we have the relation∑
s∈Z

H
(
4n − s2

)+ 2λ1(n) = 2σ1(n), (1)

where

λk(n) := 1
2
∑
d|n

min
(
d,

n
d

)k
(2)

and σk(n) :=∑d|n dk is the usual k-th power divisor sum.
This was further extended by Eichler in [4]. For odd n ∈ N, we have∑

s∈Z
H
(
n − s2

)+ λ1(n) = 1
3
σ1(n). (3)
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Other such examples of class number relations can be obtained, e.g., from the famous
Eichler-Selberg trace formula for cusp forms on SL2(Z).
In 1975, Cohen [5] generalized the Hurwitz class number using Dirichlet’s class number

formula (see e.g. [6]) to a number H(r, n) which is closely related to the value of a certain
Dirichlet L-series at (1 − r) and showed that for r ≥ 2 the generating function

Hr(τ ) :=
∞∑
n=0

H(r, n)qn, q = e2π iτ , Im(τ ) > 0

is a modular form of weight r+ 1
2 on�0(4) ([5], Theorem 3.1). This yields many interesting

relations in the shape of (1) and (3) for H(r, n).
The case r = 1, where H(1, n) = H(n), was treated around the same time by Zagier

([7], see Chapter 2 in [8]): He showed that the function H (τ ) = H1(τ ) is in fact not a
modular form but can be completed by a non-holomorphic term such that the completed
function transforms like a modular form of weight 3

2 on �0(4).
In more recent years, this phenomenon has been understood in a broader context: The

discovery of the theory behind Ramanujan’smock theta functions by Zwegers [9], Bruinier
and Funke [10], Bringmann and Ono [11] and many, many others has revealed that the
function H is an example of a weight 3

2 mock modular form, i.e., the holomorphic part
of a harmonic weak Maaß form (see ‘Methods’ section for a definition). Note that in
the literature, the spelling ‘Maass form’ is more common, although these functions are
named after the German mathematician Hans Maaß (1911 to 1992). Using this theory,
some quite unexpected connections to combinatorics occur, as for example in [12], where
class numbers were related to ranks of so-called overpartitions.
In [5], Cohen considered the formal power series

S14(τ ,X) :=
∞∑
n=0
nodd

⎡⎢⎢⎣∑
s∈Z
s2≤n

H
(
n − s2

)
1 − 2sX + nX2 +

∞∑
k=0

λ2k+1(n)X2k

⎤⎥⎥⎦ qn. (4)

From Zagier’s and his own results, as well as computer calculations, he conjectured that
the following should be true.

Conjecture 1 ([5]). The coefficient of X� in the formal power series in (4) is a (holomorphic)
modular form of weight � + 2 on �0(4).

The goal of this paper is to prove the following result.

Theorem 1. Conjecture 1 is true. Moreover, for � > 0, the coefficient of X� in (4) is a cusp
form.

This obviously implies new relations for Hurwitz class numbers which to the author’s
knowledge have not been proven so far. We give some of them explicitly in Corollary 2.
Themain idea of the proof of Theorem 1 is to relate both summands in the coefficient of

the above power series to objects which in accordance to the nomenclature in [13] should
be called quasi mixed mock modular forms, complete them, such that they transform like
modular forms and show that the completion terms cancel each other out. The same idea
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is also used in a recent paper by Bringmann and Kane [14] in which they also prove several
identities for sums of Hurwitz class numbers conjectured by Brown et al. in [15].
The outline of this paper is as follows: The preliminaries and notations are explained

in ‘Methods’ section. ‘Results and discussion’ section contains some useful identities and
other lemmas which will be used in ‘Conclusions’ section to prove Cohen’s conjecture.
Since many of the proofs involve rather long calculations, we omit some of them here.

More detailed proofs will be available in the author’s PhD thesis [16].

Methods
First, we fix some notation. For this entire paper, let τ be a variable from the complex
upper half planeH and denote x := Re(τ ) and y := Im(τ ). As usual, we set q := e2π iτ . The
letters u, v denote arbitrary complex variables. The differential operators with respect to
all these variables shall be renormalized by a factor of 1

2π i ; thus, we abbreviate

Dt := 1
2π i

d
dt

.

An element of SL2(Z) is always denoted by γ =
(

a b
c d

)
. For some natural number N ,

we set as usual

�0(N) =
{
γ =

(
a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod N)

}
.

There are two different theta series occuring in this paper. One is the theta series of the
lattice 2Z,

ϑ(τ) :=
∑
n∈Z

qn
2
, (5)

while the other is the classical Jacobi theta series


(v; τ) :=
∑

ν∈ 1
2+Z

qν2/2e2π iν(v+1/2). (6)

Note that, e.g., in [9], the letter ϑ stands for the Jacobi theta series.

Mockmodular forms

In this subsection, we give some basic definitions about harmonic Maaß forms and mock
modular forms (for details, cf. [10,17]). Therefore, we fix some k ∈ 1

2Z and define for a
smooth function f : H → C the following operators:

1. The weight k slash operator by

(
f |kγ

)
(τ ) =

⎧⎨⎩ (cτ + d)−k f
(
aτ+b
cτ+d

)
, if k ∈ Z( c

d
)
εd (cτ + d)−k f

(
aτ+b
cτ+d

)
, if k ∈ 1

2 + Z
,

where
(m
n
)
denotes the extended Legendre symbol in the sense of [18], τ 1/2

denotes the principal branch of the square root
(
i.e., −π

2 < arg
(
τ 1/2

) ≤ π
2
)
, and

εd :=
{
1 , if d ≡ 1 (mod 4)
i , if d ≡ 3 (mod 4).

We shall assume γ ∈ �0(4) if k �∈ Z.
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2. The weight k hyperbolic Laplacian by (τ = x + iy)

k := −y2
(

∂2

∂x2
+ ∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

Definition 1. Let f : H → C be a smooth function and k ∈ 1
2Z. We call f a harmonic

weak Maaß form of weight k on some subgroup � ≤ SL2(Z) (resp. �0(4) if k �∈ Z) of
finite index if the following conditions are met:

1.
(
f |kγ

)
(τ ) = f (τ ) for all γ ∈ � and τ ∈ H.

2.
(
k f

)
(τ ) = 0 for all τ ∈ H.

3. f grows at most linearly exponentially in all cusps of �.

Proposition 1 ([17], Lemma 7.2 and equation (7.8)). Let f be a harmonic Maaß form of
weight k with k > 0 and k �= 1. Then, there is canonical splitting

f (τ ) = f +(τ ) + f −(τ ),

where for some N ,M ∈ Z we have,

f +(τ ) =
∞∑

n=N
c+f (n)qn

and

f −(τ ) = c−f (0)
(4πy)−k+1

k − 1
+

∞∑
n=M
n�=0

c−f (−n)� (k − 1; 4πny) q−n.

Here,

�(α; x) =
∞∫
x

e−ttα−1dt

is the incomplete gamma function.

Definition 2. (i) The functions f + and f − in the above proposition are referred to
as the holomorphic and non-holomorphic part of the harmonic weak Maaß form f .

(ii) A mock modular form is the holomorphic part of a harmonic weak Maaß form.

There are several generalizations of mock modular forms, e.g., mixed mock modular
forms, which are essentially products of mock modular forms and usual holomorphic
modular forms. For details, we refer the reader to Section 7.3 in [13].

Class numbers

Let d be a non-negative integer with d ≡ 0, 3 (mod 4). Then, the class number for the
discriminant −d is the number of SL2(Z) equivalence classes of primitive binary integral
quadratic forms of discriminant −d,

h(−d) =
∣∣∣∣{Q =

(
2a b
b 2c

)
∈ Z

2×2 | detQ = d and gcd(a, b, c) = 1
}

/SL2(Z)

∣∣∣∣ ,
(7)

where of course SL2(Z) acts via (Q, γ ) 	→ γ trQγ .
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The Hurwitz class number is now a weighted sum of these class numbers: Define
w3 = 3, w4 = 2 and wd = 1 for d �= 3, 4. Then, the Hurwitz class number is given by

H(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

12 if n = 0,
0 if n ≡ 1, 2 (mod 4),∑
f 2|n

h(−n/f 2)
wn/f 2

otherwise.

The generating function of the Hurwitz class number shall be denoted by

H (τ ) =
∞∑
n=0

H(n)qn.

We have the following result concerning a modular completion of the function H

which was already mentioned in the introduction (cf. [8], Chapter 2 and Theorem 2).

Theorem 2. Let

R(τ ) = 1 + i
16π

i∞∫
−τ

ϑ(z)
(z + τ)3/2

dz.

Then, the function

G (τ ) = H (τ ) + R(τ )

transforms under �0(4) like a modular form of weight 3
2 .

The idea of the proof is to writeH as a linear combination of Eisenstein series of weight
3
2 , in analogy to the proof of Theorem 3.1 in [5]. These series diverge, but using an idea of
Hecke (cf. [19], § 2), who used it to derive the transformation law of the weight 2 Eisenstein
series E2, one finds the non-holomorphic completion term R.
It is easy to check that G is indeed a harmonic weak Maaß form of weight 3

2 . As a mock
modular form, the function H is rather peculiar since it is basically the only example of
such an object which is holomorphic at the cusps of �0(4) (cf. [13], Section 7).

Appell-Lerch sums

In this subsection, we are going to recall some general facts about Appell-Lerch sums. For
details, we refer the reader to [9,20].

Definition 3. Let τ ∈ H and u, v ∈ C \ (Zτ + Z). The Appell-Lerch sum of level 1 is
then the following expression:

A1(u, v) = A1(u, v; τ) := a1/2
∑
n∈Z

(−1)nqn(n+1)/2bn

1 − aqn

where a = e2π iu, b = e2π iv, and q = e2π iτ .
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In addition, we define the following real analytic functions.

R(u; τ) :=
∑

ν∈ 1
2+Z

{
sgn(ν) − E

((
ν + Imu

y

)√
2y
)}

(−1)ν−1/2q−ν2/2e−2π iνu, (8)

E(t) := 2
t∫

0

e−πu2du = sgn(t)
(
1 − β

(
t2
))
, (9)

β(x) :=
∞∫
x

u−1/2e−πudu, (10)

where for the second equality in (9) we refer to Lemma 1.7 in [9].
This function R has some nice properties, a few of which are collected in the following

propositions.

Proposition 2 ([9], Proposition 1.9). The function R fulfills the elliptic transformation
properties

(i) R(u + 1; τ) = −R(u; τ).
(ii) R(u; τ) + e−2π iu−π iτR(u + τ ; τ) = 2e−π iu−π iτ/4.
(iii) R(−u) = R(u).

The following proposition has already been mentioned in [21]. The proof is a straight-
forward computation.

Proposition 3. The function R lies in the kernel of the renormalized heat operator 2Dτ +
D2
u; hence,

D2
uR = −2DτR. (11)

We now define the non-holomorphic function

Â1(u, v; τ) = A1(u, v; τ) + i
2

(v; τ)R(u − v; τ)

which will henceforth be referred to as the completion of the Appell-Lerch sum A1.

Theorem 3 ([20], Theorem 2.2). The real analytic function Â1 transforms like a Jacobi

form of weight 1 and index
(−1 1

1 0

)
:

(S) Â1(−u,−v) = −Â1(u, v).
(E) Â1 (u + λ1τ + μ1, v + λ2τ + μ2) = (−1)(λ1+μ1)aλ1−λ2b−λ1qλ21/2−λ1λ2 Â1(u, v) for

λi,μi ∈ Z.
(M) Â1

(
u

cτ+d ,
v

cτ+d ;
aτ+b
cτ+d

)
= (cτ + d)eπ ic(−u2+2uv)/(cτ+d)Â1(u, v; τ)

for γ =
(
a b
c d

)
∈ SL2(Z).
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Results and discussion
As we mentioned in the introduction, we would like to relate the two summands for each
coefficient in the power series in Conjecture 1 to some sort of modular object. For that
purpose, we recall the definition of Rankin-Cohen brackets as given in p. 53 of [22], which
differs slightly (see below) from the original one in Theorem 7.1 of [5].

Definition 4. Let f , g be smooth functions defined on the upper half plane and k, � ∈
R>0, n ∈ N0. Then, we define the n-th Rankin-Cohen bracket of f and g as

[
f , g
]
n =

∑
r+s=n

(−1)r
(
k + n − 1

s

)(
� + n − 1

r

)
DrfDsg

where for non-integral entries we define(
m
s

)
:= �(m + 1)

�(s + 1)�(m − s + 1)
.

Here, the letter � denotes the usual gamma function.

It is well-known (cf. [5], Theorem 7.1) that if f , g transform like modular forms of weight
k and �, respectively, then

[
f , g
]
n transforms like a modular form of weight k + � + 2n

and that
[
f , g
]
0 = f · g. The interaction of the first Rankin-Cohen bracket, which itself

fulfills the Jacobi identity of Lie brackets, and the regular product of modular forms
give the graded algebra of modular forms the additional structure of a Poisson algebra
(cf. [22], p. 53).
Note that our definition of the Rankin-Cohen bracket differs from the one in Theorem

7.1 of [5], by a factor of n! (−2π i)n which guarantees that if f and g have integer Fourier
coefficients, so does

[
f , g
]
n.

Lemma 1. The coefficient of X2k in (4) is given by

ck
2

(
[H ,ϑ]k (τ ) − [H ,ϑ]k

(
τ + 1

2

))
+ �2k+1,odd(τ ), (12)

where ck = k!
√

π

�
(
k+ 1

2
) and

��,odd(τ ) :=
∞∑
n=0

λ�(2n + 1)q2n+1 (13)

with λ� as in (2). The coefficient of X2k+1 is identically 0.

Proof. As in Theorem 6.1 of [5], we define for a modular form f with f (τ ) = ∑∞
n=0

a(n)qn of weight k and an integer D �= 0 the series

S f
D(τ ;X) :=

∞∑
n=0

⎛⎜⎜⎝∑
s∈Z
s2≤n

a
(
n−s2
|D|
)

(
1 − 2sX + nX2)k− 1

2

⎞⎟⎟⎠ qn,
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where we assume a(n) = 0 if n /∈ N0. From p. 283 in [5], we immediately get the formula

S f
D(τ ;X) =

∞∑
n=0

√
π�
(
n + k − 1

2
)

�
(
n + 1

2
)
�
(
k − 1

2
) [g,ϑ]n (τ ),

where g(τ ) := f (|D|τ). This yields the assertion by plugging in f = H , k = 3
2 , and

D = 1.

Since in the Rankin-Cohen brackets that we consider here, we have linear combinations
of products of derivatives of a mock modular form and a regular modular form, one could
call an object like this a quasi mixed mock modular form.

Lemma 2. For odd k ∈ N, the function �k,odd can be written as a linear combination of
derivatives of Appell-Lerch sums. More precisely

�k,odd = 1
2

(
Dk
vA

odd
1

)(
0, τ + 1

2
; 2τ
)
,

where we define

Aodd
1 (u, v; τ) :=a1/2

∑
n∈Z
nodd

(−1)nqn(n+1)/2bn

1 − aqn

=1
2

(
A1(u, v; τ) − A1

(
u, v + 1

2
; τ
))

,

where again a = e2π iu and b = e2π iv.

Proof. First we remark that the right-hand side of the identity to be shown is actually
well-defined because as a function of u, A1(u, v; τ) has simple poles in Zτ + Z (cf. [9],
Proposition 1.4) which cancel out if the sum is only taken over odd integers. Thus, the
equation actually makes sense.
Then, we write �k,odd as a q-series

2�k,odd(τ ) =
∞∑

�=0

∞∑
m=0

min(2� + 1, 2m + 1)kq(2�+1)(2m+1)

=2
∞∑

�=0

(
(2� + 1)k

∞∑
r=1

q(2�+1)(2�+1+2r)
)

+
∞∑

�=0
(2� + 1)kq(2�+1)2

=2
∞∑

�=0
(2� + 1)kq(2�+1)2

(
1

1 − q2(2�+1) − 1
)

+
∞∑

�=0
(2� + 1)kq(2�+1)2

=
∞∑

�=0
(2� + 1)k

(
q(2�+1)2 + q(2�+1)2+2(2�+1)

1 − q2(2�+1)

)
.

This is easily seen to be the same as
(
Dk
vAodd

1
) (
0, τ + 1

2 ; 2τ
)
.

Remark 1. Now, we can write down completions for each summand in (12), and thus,
we see that the function

ck
2

(
[G ,ϑ]k (τ ) − [G ,ϑ]k

(
τ + 1

2

))
+
(
D2k+1
v Âodd

1

)(
0, τ + 1

2
; 2τ
)

(14)
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transforms like a modular form of weight 2k + 2. Because the Fourier coefficients of the
holomorphic parts grow polynomially, they are holomorphic at the cusps as well.
Thus, it remains to show that the non-holomorphic parts given by

ck
2

(
[R,ϑ]k (τ ) − [R,ϑ]k

(
τ + 1

2

))
(15)

and

i
4

⎛⎝2k+1∑
�=0

(
2k + 1

�

)
(−1)�(D�

uR)

(
−τ − 1

2
; 2τ
)(

D2k−�+1
v 


)(
τ + 1

2
; 2τ
)

−
2k+1∑
�=0

(
2k + 1

�

)
(−1)�(D�

uR) (−τ − 1; 2τ)
(
D2k−�+1
v 


)
(τ + 1; 2τ)

⎞⎠ (16)

are indeed equal up to sign and that the function in (14) is modular on �0(4).

This shows that we will need some specific information about the derivatives of the
Jacobi theta series and the R-function evaluated at the torsion point

(
τ + 1

2 , 2τ
)
.

A simple and straight forward calculation gives us the following result.

Lemma 3. For r ∈ N0, one has

(
Dr
v

) (

τ + 1
2
; 2τ
)

= −q−1/4
� r
2 �∑

s=0

(
r
2s

)(
−1
2

)r−2s (
Ds

τ ϑ
)
(τ ) (17)

and

(
Dr
v

)
(τ + 1; 2τ) = iq−1/4

� r
2 �∑

s=0

(
r
2s

)(
−1
2

)r−2s (
Ds

τ ϑ
) (

τ + 1
2

)
, (18)

with 
 as in (6) and ϑ as in (5).

Lemma 4. The following identities are true:

R
(

−τ − 1
2
; 2τ
)

= iq1/4 (19)

R(−τ − 1; 2τ) = −q1/4 (20)

(DuR)

(
−τ − 1

2
; 2τ
)

= −1 + i
4π

q1/4
i∞∫

−τ

ϑ(z)
(z + τ)3/2

dz − i
2
q1/4 (21)

(DuR) (−τ − 1; 2τ) = −1 + i
4π

q1/4
i∞∫

−τ

ϑ
(
z + 1

2
)

(z + τ)3/2
dz + 1

2
q1/4. (22)

Proof. The identities (19) and (20) follow directly by applying the transformation
properties (iii), (i), and (ii) of R in Proposition 2.
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We only show (21), since (22) then also follows from the obvious fact that R(u; τ + 1) =
e−π i/4R(u; τ). From the definition of R in (8) and (9), we see that

(DuR)

(
−τ − 1

2
; 2τ
)

= iq1/4
∑
n∈Z

(
1√
4yπ

e−4πn2y − sgn(n)

(
n + 1

2

)
β
(
4n2y

))
q−n2 ,

with β as in (10). Note that for convenience, we define sgn(0) := 1.
By partial integration, one gets for all x ∈ R≥0 that

β(x) = 1
π
x−1/2e−πx − 1

2
√

π
�

(
−1
2
;πx
)
,

where again, �(α; x) denotes the incomplete gamma function. Using the well-known fact
that for τ ∈ H and n ∈ N it holds that

i∞∫
−τ

e2π inz

(−i(z + τ))3/2
dz = i (2πn)1/2 q−n�

(
−1
2
; 4πny

)
,

we get the assertion by a straightforward calculation.

Now, we take a closer look at (16).

Lemma 5. For all k ∈ N0, it holds true that

2k+1∑
�=0

(−1)�
(
2k + 1

�

)(
D�
uR
)(

−τ − 1
2
; 2τ
)(

D2k−�+1
v 


) (
τ + 1

2 ; 2τ
)

= q−1/4
k∑

m=0

k−m∑
�=0

[
1
2

(
D2�
u R
)(

−τ − 1
2
; 2τ
)

+ 2(k−�−m)+1
2� + 1

(
D2�+1
u R

)(
−τ − 1

2
; 2τ
)]

× bk,�,m
(
1
2

)2(k−�−m) (
Dm

τ ϑ
)
(τ )

and

2k+1∑
�=0

(−1)�
(
2k + 1

�

)(
D�
uR
)

(−τ − 1; 2τ)
(
D2k−�+1
v 


)
(τ + 1; 2τ)

= −iq−1/4
k∑

m=0

k−m∑
�=0

[
1
2

(
D2�
u R
)

(−τ −1; 2τ) + 2(k−�− m) + 1
2� + 1

(
D2�+1
u R

)
(−τ − 1; 2τ)

]

× bk,�,m
(
1
2

)2(k−�−m) (
Dm

τ ϑ
) (

τ + 1
2

)
,

where

bk,�,m := (2k + 1)!
(2�)! (2m)! (2(k − � − m) + 1)!

=
(

2k + 1
2�, 2m, 2(k − � − m) + 1

)
.

Proof. Again, we only show the former equation, the latter follows from the transforma-
tion laws. For simplicity, we omit the arguments of the functions considered.
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We obtain

2k+1∑
�=0

(−1)�
(
2k + 1

�

)(
D�
uR
) (

D2k−�+1
v 


)

=
k∑

�=0

(
2k + 1
2�

)(
D2�
u R
) (

D2(k−�)+1
v 


)
−

k∑
�=0

(
2k + 1
2� + 1

)(
D2�+1
u R

) (
D2(k−�)
v 


)

(17)= −q−1/4

⎡⎢⎢⎢⎢⎢⎣
k∑

�=0

k−�∑
m=0

(
2k + 1
2�

)(
2(k − �) + 1

2m

)
︸ ︷︷ ︸

=bk,�,m

(
−1
2

)2(k−�−m)+1 (
D2�
u R
) (

Dm
τ ϑ
)

−
k∑

�=0

k−�∑
m=0

(
2k + 1
2� + 1

)(
2(k − �)

2m

)
︸ ︷︷ ︸

= 2(k−�−m)+1
2�+1 bk,�,m

(
−1
2

)2(k−�−m) (
D2�+1
u R

) (
Dm

τ ϑ
)
⎤⎥⎥⎥⎥⎥⎦

= q−1/4
k∑

�=0

k−�∑
m=0

[
1
2

(
D2�
u R
)

+ 2(k−�−m) + 1
2� + 1

(
D2�+1
u R

)]
bk,�,m

(
1
2

)2(k−�−m) (
Dm

τ ϑ
)
.

Interchanging the sums gives the desired result.

Corollary 1. Conjecture 1 is true if the identity

(
Dm

τ R
)
(τ ) = − i

4
q−1/4(−1)m

m∑
�=0

[
1
2

(
D2�
u R
)(

−τ − 1
2
; 2τ
)

+2(m − �) + 1
2� + 1

(
D2�+1
u R

)(
−τ − 1

2
; 2τ
)]

·
(
2m + 1

2�

)(
1
4

)m−�

(23)

holds true for all m ∈ N0 and the function in (14) is modular on �0(4).

Proof. Lemma 5 gives us that Conjecture 1 holds true if the identity

ck(−1)k−m
(
k + 1

2
m

)(
k − 1

2
k − m

)
Dk−m

τ R(τ )

= − i
4
q−1/4

k−m∑
�=0

[
1
2

(
D2�
u R
)(

−τ − 1
2
; 2τ
)

+ 2(k−�−m) + 1
2� + 1

(
D2�+1
u R

)(
−τ − 1

2
; 2τ
)]

× bk,�,m
(
1
2

)2(k−�−m)

(24)

does as well.
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We can simpify this a little further: We have

ck
(
k + 1

2
m

)(
k − 1

2
k − m

)
=
(
k
m

) √
π�
(
k + 3

2
)

�
(
k − m + 3

2
)
�
(
m + 1

2
) ,

and using Legendre’s duplication formula for the gamma function, we obtain after a little
calculation that( 1

2
)2(k−�−m) bk,�,m

ck
(k+ 1

2
m
)(k− 1

2
k−m

) =
(
2(k − m) + 1

2�

)(
1
4

)k−�−m

and hence the corollary.

Remark 2. Since(
1 − 1

2
0 1

)
�0(4)

(
1 1

2
0 1

)
= �0(4)

we see that for any (not necessarily holomorphic) modular form f of even weight k on

�0(4), the function g = f |k
(
1 1

2
0 1

)
is a modular form of the same weight on �0(4) as

well. In particular, this applies to [G ,ϑ]k for all k ∈ N0.

Lemma 6. The second summand in (14) transforms like a modular form on �0(4).

Proof. Looking at the (2� + 1)-st derivative of Âodd
1 (0, v; τ) with respect to v, one

immediately sees that this has the modular transformation properties of a Jacobi form
of weight 2� + 2 and index 0 on SL2(Z). By Theorem 1.3 in [23], it follows that
A(τ ) := (D2�+1

v Âodd
1
) (
0, τ

2 + 1
2 ; τ
)
transforms (up to some power of q) like a modular

form of weight � + 1 on the group

� :=
{
γ ∈ SL2(Z) | a − 1

2
+ c

2
∈ Z and

b
2

+ d − 1
2

∈ Z

}
.

We are interested in
(
D2�+1
v Âodd

1
) (
0, τ + 1

2 ; τ
) = 1

2�+1A|2�+2

(
2 0
0 1

)
, and since one

easily checks that(
2 0
0 1

)
�0(4)

(
1
2 0
0 1

)
≤ �,

the assertion follows.

Conclusions
We now prove Theorem 1 using Corollary 1. The proof is an induction on m. Since the
base case m = 0 gives an alternative proof of the class number relation (3) by Eichler, we
give this as a proof of an additional theorem.

Theorem 4 ([4]). For odd numbers n ∈ N, we have the class number relation∑
s∈Z

H
(
n − s2

)+ λ1(n) = 1
3
σ1(n).
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Proof. Let

F2(τ ) =
∞∑
n=0

σ1(2n + 1)q2n+1.

We recall that this function is a modular form of weight 2 on �0(4) (cf. e.g. [5],
Proposition 1.1).
Plugging inm = 0 into (23) gives us the equation

R(τ ) = − i
4
q−1/4

[
1
2
R
(

−τ − 1
2
; 2τ
)

+ (DuR)

(
−τ − 1

2
; 2τ
)]

.

This equality holds true by Lemma 4. Hence, we know by Corollary 1, Lemma 2,
Remark 2, and Lemma 6 that

1
2

(
H (τ )ϑ(τ) − H

(
τ + 1

2

)
ϑ

(
τ + 1

2

))
+ �1,odd(τ )

is indeed a holomorphic modular form of weight 2 on �0(4) as well.
Since the space of modular forms of weight 2 on �0(4) is two-dimensional, the asser-

tion follows by comparing the first two Fourier coefficients of the function above and
1
3F2(τ ).

The proof of this given in [4] involves topological arguments about the action of Hecke
operators on the Riemann surface associated to �0(2) on the one hand and arithmetic of
quaternion orders on the other hand.

Proof. The base case of our induction is treated above, thus suppose that (23) holds true
for onem ∈ N0.
For simplicity, we omit again the argument

(−τ − 1
2 ; 2τ

)
in the occuring R derivatives.

By the induction hypothesis we see that

Dm+1
τ R(τ ) = Dτ

(
Dm

τ R(τ )
)

= − i
4
q−1/4(−1)m

{
−1
4

m∑
�=0

[
1
2

(
D2�
u R
)
+ 2(m−�) + 1

2� + 1

(
D2�+1
u R

)]
·
(
2m+1
2�

)(
1
4

)m−�

+
m∑

�=0

[
1
2

(
DτD2�

u R
)

+ 2(m − �) + 1
2� + 1

(
DτD2�+1

u R
)]

·
(
2m + 1

2�

)(
1
4

)m−�
}
.

By Schwarz’ theorem (sometimes also attributed to Clairaut), the partial derivatives
interchange and thus the total differential Dτ is given by

Dτ

(
D�
uR
(

−τ − 1
2
; 2τ
))

= −
(
D�+1
u R

)(
−τ − 1

2
; 2τ
)

+ 2
(
DτD�

uR
)(

−τ − 1
2
; 2τ
)
.
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Now, Proposition 3 implies that the above equals

− i
4
q−1/4(−1)m+1

{ m∑
�=0

[
1
8

(
D2�
u R
)

+
(
1
4
2(m − �) + 1

2� + 1
+ 1

2

)(
D2�+1
u R

)
+
(
1
2

+ 2(m−�)+1
2� + 1

)(
D2�+2
u R

)
+ 2(m − �) + 1

2� + 1

(
D2�+3
u R

)]
·
(
2m+1
2�

)(
1
4

)m−�
}

= − i
4
q−1/4(−1)m+1

{[
1
2
R + (2m + 3)(DuR)

](
1
4

)m+1
+

m∑
�=1

(
2m + 1

2�

)(
1
4

)m−�+1

×
[(

1
2

+ 2(2m − �) + 5
4� − 2

· (2� − 1)(2�)
(2(m − �) + 2)(2(m − �) + 3)

)(
D2�
u R
)

+
(
2(m + �) + 3

2� + 1
+ 2(m − �) + 3

2� − 1
· (2� − 1)(2�)
(2(m − �) + 2)(2(m − �) + 3)

)(
D2�+1
u R

)]
+
[
2m + 3
4m + 2

(
D2m+2
u R

)+ 1
2m + 1

(
D2m+3
u R

)](2m + 1
2m

)}
.

It is easily seen that the last summand equals[
1
2
(
D2m+2
u R

)+ 1
2m + 3

(
D2m+3
u R

)] · (2m + 3)

and a direct but rather tedious calculation gives that(
2m + 1

2�

)
·
(
1
2

+ 2(2m − �) + 5
4� − 2

· (2� − 1)(2�)
(2(m − �) + 2)(2(m − �) + 3)

)
= 1

2

(
2m + 3

2�

)
and (

2m + 1
2�

)
·
(
2(m + �) + 3

2� + 1
+ 2(m − �) + 3

2� − 1
· (2� − 1)(2�)
(2(m − �) + 2)(2(m − �) + 3)

)
= 2(m − �) + 3

2� + 1

(
2m + 3

2�

)
.

In summary, we therefore get

Dm+1
τ R(τ ) = − i

4
q−1/4(−1)m+1

m+1∑
�=0

[
1
2

(
D2�
u R
)(

−τ − 1
2
; 2τ
)

+2(m − �) + 3
2� + 1

(
D2�+1
u R

)(
−τ − 1

2
; 2τ
)]

·
(
2m + 3

2�

)(
1
4

)m−�+1

which proves Conjecture 1.
The fact that we actually get a cusp form can be seen in the following way:
By Corollary 7.2 in [5], we see that the function τ 	→ ck

2
(
[H ,ϑ]k (τ ) − [H ,ϑ]k(

τ + 1
2
))

is a non-holomorphic cusp form if k ≥ 1. We use the same argument as there to
see that

(
D2�+1
u Âodd

1
) (
0, τ + 1

2 ; 2τ
)
is a cusp form as well. Because we know by Lemma 6

that we have for γ ∈ SL2(R) that(
D2�+1
v Âodd

1

)
|2�+2γ = D2�+1

v

(
Âodd
1 |1γ

)
,

and by definition
(
D2�+1
v Âodd

1
) (
0, τ + 1

2 ; 2τ
)
vanishes at the cusp i∞ for all � ∈ N0. So by

the above equation, it vanishes at every cusp of �0(4).
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Corollary 2. By comparing the first few Fourier coefficients of the modular forms in
Theorem 1, one finds for all odd n ∈ N the following class number relations:∑

s∈Z

(
4s2 − n

)
H
(
n − s2

)+ λ3 (n) = 0,

∑
s∈Z

g4(s, n)H
(
n − s2

)+ λ5 (n) = − 1
12

∑
n=x2+y2+z2+t2

Y4(x, y, z, t),

∑
s∈Z

g6(s, n)H
(
n − s2

)+ λ7 (n) = −1
3

∑
n=x2+y2+z2+t2

Y6(x, y, z, t),

∑
s∈Z

g8(s, n)H
(
n − s2

)+ λ9 (n) = − 1
70

∑
n=x2+y2+z2+t2

Y8(x, y, z, t)

where g�(n, s) is the �-th Taylor coefficient of
(
1 − sX + nX2)−1 andYd(x, y, z, t) is a certain

harmonic polynomial of degree d in four variables. Explicitly, we have

g4(s, n) = (16s4 − 12ns2 + n2
)
,

g6(s, n) = (64s6 − 80s4n + 24s2n2 − n3
)
,

g8(s, n) = (256s8 − 448s6n + 240s4n2 − 40s2n3 + n4
)
,

and

Y4(x, y, z, t) = (x4 − 6x2y2 + y4
)
,

Y6(x, y, z, t) = (x6 − 5x4y2 − 10x4z2 + 30x2y2z2 + 5x2z4 − 5y2z4
)
,

Y8(x, y, z, t) = (13x8 + 63x6y2 − 490x6z2 + 63x6t2 − 630x4y2z2 − 315x4y2t2 + 1435x4z4

− 630x4z2t2 + 315x2y2z4 + 1890x2y2z2t2 − 616x2z6 + 315x2z4t2

−315t2y2z4 + 22z8
)
.

The first two of the above relations were already mentioned in [5].

Remark 3. The formula (4) looks indeed very similar to the Eichler-Selberg trace
formula as given in [5], so one might ask whether our result gives a similar trace for-
mula for Hecke operators on the space Sk (�0(4)) of cusp forms of weight k on �0(4).
Computer experiments suggest that in fact for k ≥ 1, the coefficient of X2k in (4)
equals −3

∑
n odd trace

(
T (2k+2)
n

)
qn, where T (�)

n denotes the nth Hecke operator on
S� (�0(4)). This will be shown in an upcoming publication [24], since it requires different
methods than the ones applied here.
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