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Abstract

Purpose: Rodent models of sepsis are frequently used to investigate pathophysiological
mechanisms and to evaluate putative therapeutic strategies. However, preclinical
efficacy in these models has failed to translate to the clinical setting. We thus questioned
the representativeness of such models and herein report a detailed comparison of
the metabolic and cardiovascular phenotypes of long-term faecal peritonitis in
fluid-resuscitated rats and mice with similar mortality profiles.

Methods: We conducted prospective laboratory-controlled studies in adult male Wistar
rats and C57 black mice. Animals were made septic by intraperitoneal injection of faecal
slurry. Rats received continuous intravenous fluid resuscitation, whereas mice received
intermittent fluid boluses subcutaneously. Sham-treated animals served as controls.
Survival was assessed over 72 h. In separate studies, whole body metabolism
(O2 consumption, CO2 production) was measured over 24 h with echocardiography
performed at early (6 h) and established (24 h) phases of sepsis. Blood gas analysis was
performed at 6 h (rats) and 24 h (rats, mice).

Results: Similar survival curves were seen in both rodent models with approximately
75% mortality at 72 h. In mice, sepsis caused severity-dependent falls in core
temperature and global metabolism. Oxygen consumption in severely septic mice fell
by 38% within 2 h, and 80% at 22 h compared with baseline values. This was
only partially restored by external warming. By contrast, septic rats maintained core
temperature; only severely affected animals showed a pre-mortem decline in oxygen
consumption. Significant myocardial dysfunction was seen in mice during early and
established sepsis, whereas peak velocity and other hemodynamic variables in rats were
similar at 6 h and significantly worse by 24 h in severely septic animals only.

Conclusions: Markedly differing metabolic and cardiovascular profiles were seen in
long-term fluid-resuscitated rat and mouse models of bacterial sepsis despite similar
mortality. The mouse model, in particular, does not represent the human condition. We
urge caution in applying findings in murine models to septic patients, both with regard
to our understanding of pathophysiology and the failure to translate preclinical efficacy
into successful clinical trials.
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Introduction
Severe sepsis is the exaggerated host inflammatory response to an infectious insult

leading to multiple organ failure (MOF) and, in many cases, death [1]. The underlying

pathophysiology remains poorly understood, and targeted treatments that improve out-

comes remain elusive. Rodent models are routinely used to investigate both patho-

physiological mechanisms and novel therapeutic strategies. This is facilitated by rapid

breeding, ease of care, relatively low costs and powerful genetic technology [2]. A

PubMed search using the words ‘endotoxin’ or ‘sepsis’ for ‘mouse’ and ‘rat’ yielded

10,500 and 5,100 citations, respectively. However, numerous positive therapeutic inter-

vention studies in such laboratory models have failed to translate into clinical benefit in

subsequent human trials. This has resulted in much closer scrutiny of these models

and their relevance to patients [3,4]. Many are poorly representative of the human con-

dition in terms of the type of septic insult (e.g. injection of endotoxin), study duration

(hours rather than days), lack of any resuscitation (such as fluid), and the timing of pu-

tative therapies (often given at or preceding the insult rather than after establishment

of organ dysfunction, as would be the case in patients). The physiological, immuno-

logical and biochemical phenotype of these models, and temporal changes thereof, are

also largely unknown.

Over the last decade, we have attempted to create well-characterized rat and mouse

models that are more representative of the human condition in terms of type (faecal

peritonitis) and duration of insult (≥24 h), with fluid resuscitation to avoid tissue hypo-

perfusion related to untreated hypovolaemia [5-7]. Here, we report a detailed assess-

ment of the cardiovascular, metabolic and biochemical phenotypes in long-term rat and

mouse sepsis models with similar mortality. Concurrent with a recent publication report-

ing non-concordance in leukocyte transcriptional changes between human and murine

systemic inflammatory states including sepsis [8], we describe an early severity-related

hypometabolic and hypodynamic state in our mouse model that further calls into question

its validity as a paradigm for human sepsis.

Materials and methods
All experiments were performed in accordance with the UK Animals (Scientific

Procedures) Act of 1986 and approval from the University College London Ethics Com-

mittee. All animals were housed under standard conditions with water and chow diet ad

libitum. Operative procedures and echocardiography were performed under general an-

aesthesia while the animals were breathing spontaneously through a facemask entrained

with a mixture of room air and isoflurane. Animals were externally warmed during an-

aesthesia to maintain body temperature between 36°C and 38°C. In mice, the depth of

anaesthesia was titrated at each time point using the loss of reflex withdrawal to pain as

the end point to minimize the cardiovascular effects of isoflurane. In rats, a fixed per-

centage (2.5% during surgical procedures and 1.5% for induction of sepsis and echocar-

diography) of isoflurane was used throughout. Room temperature was maintained at a

constant 21°C.

Rat model

Wistar rats (male, with approximately 300 g body weight, 12 to 14 weeks old) were

anaesthetized and placed in a supine position. Following skin preparation, the left common
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carotid artery and right internal jugular vein were exposed and cannulated using PVC tub-

ing with 0.96-mm outside diameter (Biocorp Ltd, Huntingdale, Australia). These were tun-

nelled subcutaneously to the back of the neck and attached to a swivel/tether system

(InsTech, Plymouth Meeting, PA, USA). The neck incision was closed, and subcutaneous

(s/c) buprenorphine (0.05 mg/kg) (Vetergesic, Reckitt Benckiser, York, UK) was adminis-

tered for pain relief prior to cessation of anaesthesia. The tether system allowed free move-

ment around the cage with ad libitum access to food and water. The arterial line was

connected to a pressure transducer (Powerlab, AD Instruments, Chalgrove, Oxon, UK) for

continuous measurement of mean arterial pressure recorded using a 16-channel Powerlab

system and Chart 5.0 acquisition software (AD Instruments, Chalgrove, Oxon, UK).

Twenty-four hours after line insertion, sepsis was induced with an intraperitoneal in-

jection of faecal slurry (3 ml/kg body weight) administered through a 19G needle

inserted into the right lower quadrant of the abdomen with care taken to avoid bowel

perforation. Sham animals (control group) received an equivalent volume of 0.9% saline.

Standardized human slurry (pooled stool from three healthy, non-vegetarian donors)

was kindly donated by the Department of Anesthesiology and Intensive Care at Friedrich

Schiller University, Jena, Germany [9]. A continuous infusion of 6% hydroxyethyl starch

130/0.4 (Volulyte, Fresenius Kabi, Bad Homburg, Germany) and glucose (1:1) at 10 ml/kg/h

was administered through the internal jugular line commencing 2 h post-induction of

sepsis. For survival studies exceeding 24 h, the rate was halved at 24-h intervals. These

studies were performed prior to knowledge of the negative outcomes seen with

starch-based intravenous fluids [10,11]. Pilot studies revealed significant hypogly-

caemia if glucose was not administered.

Mouse model

C57 black mice (male, 25 to 35 g body weight, 18 to 30 weeks old) were initially made

septic using the same technique as for the rats, with prior carotid and internal jugular

cannulation and connection to a tether system. However, this method induced signifi-

cant morbidity and mortality in the sham-operated group so was abandoned in favour

of a simplified model without invasive arterial and venous cannulae. Sepsis was induced

by injection of faecal slurry (20 ml/kg body weight) into the peritoneal cavity through a

small (4 mm) transverse abdominal skin incision. Sham animals received the same inci-

sion and were injected with an equivalent volume of 0.9% saline. Faecal slurry was

made fresh each day by diluting caecal content of rats (1:7 dilution with 0.9% saline).

Mice were given 10 ml/kg of 0.9% saline s/c at the end of the procedure and received

further s/c boluses of 50 ml/kg of pre-warmed 5% glucose/0.81% saline at 6 and 12 h

thereafter for both fluid resuscitation and prevention of hypoglycaemia.

Basic measurements and biochemistry

A clinical scoring system (Table 1) was used to record the severity of sepsis for each

animal. This scoring system was previously validated in rats [5]. Clinical scores of 0 to

3 implied mild sepsis and ≥4 severe sepsis. Rectal temperature was measured at 0-, 6-,

18- and 24-h time points. At 24 h post-insult, mice were rapidly anaesthetized and the

blood obtained by cardiac puncture as a terminal event. In rats, the blood was drawn

from the arterial line without using anaesthesia. Samples were analyzed for blood gases

and biochemistry.



Table 1 Clinical severity score characteristics

Characteristic Scoring range

Hunched 0-1

Bloated 0-1

Conjunctival injection/mucky eyes 0-1

Piloerection (rats only) 0-1

Lack of movement 0-2

Lack of alertness 0-2

Scoring denotes absence (0), presence (1) or marked presence (2). Total score of 0 to 3 denotes mild sepsis and ≥4
severe sepsis.
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Metabolic rate

Following induction of sepsis and in-time-matched sham-operated controls (23 rats

and 19 mice in total), whole body metabolic rate was measured for 24 h in individual

metabolic chambers (Oxymax System, Columbus Instruments, Columbus, OH, USA).

Gas samples from each box were sampled for 90 s at 8-min intervals. Oxygen con-

sumption (VO2) and CO2 production (VCO2) were calculated using standard formulae.

The respiratory exchange ratio (RER) was calculated as the ratio of VCO2 to VO2.

Values near 1 indicate a predominance of carbohydrate metabolism while values ap-

proaching 0.7 indicate fatty acid oxidation [12].

Animals were acclimatized in their metabolic cages for at least 3 h prior to induction

of sepsis. All experiments were started at the same time of day to avoid bias due to di-

urnal variation in metabolic rate. Mice were recovered for 1 h in a warm chamber fol-

lowing general anaesthesia prior to returning to their cages.

In separate studies, mice were removed from their metabolic cages at 10 and

24 h and then re-warmed in a heating chamber to 37°C (rectal temperature) over

1.5 h. Echocardiography was performed under a brief period of isoflurane anaesthesia

before and immediately after re-warming, and then the mice were returned promptly to

their metabolic cages where oxygen consumption recordings were resumed within 1 to

2 min.

Cardiac output measurement

Echocardiography was performed at 0, 6 and 24 h in sham and septic animals using a

14-MHz probe connected to a Vivid 7 Dimension echocardiography machine (GE

Healthcare, Chalfont St. Giles, Bucks, UK). The aortic blood flow velocity was mea-

sured in the proximal ascending aorta immediately before the bifurcation of the right

carotid artery using pulse-wave Doppler. Aortic diameters in rats and mice of this age

are, respectively, 2.6 mm [13] and 1.35 mm (S Hollenberg, personal communication).

Stroke volume was calculated by multiplying the velocity time integral (VTI) from six

consecutive cycles (equivalent to one respiratory cycle) by the aortic cross-sectional

area. The average peak-to-peak distance and maximum velocity over the six consecu-

tive systolic cycles were used to measure heart rate and peak velocity, with the latter

being a marker of left ventricular contractility [14]. Cardiac output was calculated as

the product of stroke volume and heart rate.

Survival studies

In separate studies, animals were followed for up to 72 h to assess survival.
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Statistics

PASW Version 18.0 (SPSS Inc., Chicago, IL, USA) was used to carry out statistical

tests. All variables were tested for normality of distribution using the Kolmogorov-

Smirnov test. All parametric data were compared using Student’s t test or analysis of

variance (one-way or two-way with repeated measures). Statistical significance level

was set at p < 0.05. Tukey’s HSD and Dunnett’s post hoc tests were used to ascertain

the significance between groups.

Results
Survival studies were carried out in 10 sham and 30 septic mice, and 5 sham and 12

septic rats. Similar survival curves were observed in both rodent models; most of the deaths

had occurred by 48 h with an approximately 75% mortality at 72 h (Figure 1A,B). Animals

surviving to this point showed signs of clinical recovery. Of the septic animals surviving to

24 h, 38% of the mice were scored as mild and 62% as severe at this time point, while 33%

of the rats were scored mild and 66% severe. The clinical score at 6 and 24 h in the mice

and at 24 h in the rats is related to subsequent mortality (Figure 1C,D).

Metabolic measurements in mice were made over 24 h in six controls, six with mild

sepsis and seven with severe sepsis. Sham-operated control mice remained normother-

mic and showed normal diurnal rhythmicity in VO2, both consistent with an increase

in nocturnal activity (Figure 2A,C). By contrast, all septic mice became hypothermic

with a significant severity-related drop in temperature at 6 h (p = 0.001 two-way

ANOVA). However, while core temperature fell by 1.5°C in mildly septic mice, severely

septic animals became profoundly hypothermic, reaching approximately 29°C by 6 h
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and failing to recover (Figure 2A). The core temperature fall in mice mirrored severity-

dependent reductions in VO2 and VCO2 (Figure 2C). This was associated with a

complete absence of variability (diurnal and movement/feeding related) in the individ-

ual VO2 traces. Compared to baseline values, VO2 in the severely septic mice fell by

38% ± 9% within 2 h, by 63% ± 8% within 6 h and as high as 80% ± 3% reduction at

22 h. In contrast, VO2 in mildly affected mice fell by 30% ± 7% at 6 h. Whereas no

recovery was seen in severely septic animals, core temperature and metabolic rate re-

covered to normal values in the mildly septic mice by 18 h, in line with their clinical

improvement.

To assess the effects of hypothermia, separate re-warming studies showed partial res-

toration of haemodynamics at 10 h and complete restoration at 24 h; however, oxygen

consumption only increased from 32% to 40% of the baseline values to 41% to 52% and

quickly fell thereafter (Table 2, Figure 3).



Table 2 Temperature, metabolic and echocardiography data in severely septic mice

Baseline 10-h 24-h

Pre-rewarming Post-rewarming Pre-rewarming Post-rewarming

Temperature (°C) 36.1 ± 0.2 30.0 ± 1.5* 36.3 ± 0.6** 28.8 ± 2.1* 36.6 ± 1.7

VO2 (ml/kg/h) 2,288 ± 181 925 ± 131* 1,190 ± 131** 730 ± 90* 941 ± 178

Peak velocity (m/s) 1.06 ± 0.06 0.46 ± 0.08* 0.80 ± 0.10** 0.66 ± 0.07* 1.14 ± 0.13

Heart rate (beats/min) 509 ± 31 452 ± 23 601 ± 45** 435 ± 6 614 ± 47

Stroke volume (μl) 60 ± 3 21 ± 3* 32 ± 6** 36 ± 4* 52 ± 11

Data were taken from severely septic mice at baseline (0 h) and before and after rewarming at 10 h (6 mice) and 24 h (3 mice).
Rewarming took place over 1.5 h. Mice were only anaesthetized for the period of echocardiography. Values denote mean ±
standard deviation. *p< 0.05 paired t test comparing the values to corresponding baseline (0 h) values. **p < 0.05 paired t test
comparing post-warming values to their corresponding pre-warming value.
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In stark contrast to the early metabolic phenotype observed in mice, septic rats main-

tained their core temperature (Figure 2B). While a transient 15% ± 2% fall in VO2

(p = 0.001) was observed in the first hour following slurry administration in both mildly

(n = 6) and severely affected (n = 7) rats, this promptly recovered to sham values (Figure 2D).

Despite maintaining their core temperature, the severely septic rats showed a progressive

decline in VO2 from 18 h onwards, in tandem with their clinical deterioration. Three of the

severely affected rats died by 24 h, whereas all the mildly septic rats survived the 24 h dur-

ation of the study.

The RER of sham mice exceeded 0.9 from 8 h onwards, whereas in both mild and se-

vere sepsis this fell promptly to approximately 0.75 (Figure 2E). Food intake was mark-

edly decreased in the septic animals. A similar difference in RER was seen in the sham
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and septic rats, albeit with recovery towards sham values in both mildly and severely af-

fected septic subsets (Figure 2F).

Echocardiography was performed in 10 sham and 30 septic mice under isoflurane an-

aesthesia. Baseline echocardiographic variables were similar in both sham and septic

mouse groups (Figure 4). However, at 6 h, all measured variables were significantly

lower in the septic mice (p < 0.05). By 24 h these had recovered in the mildly septic

mice but showed no improvement in severely affected animals.
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Five naïve, 17 sham and 25 septic rats underwent echocardiography. In contrast to

the mice, peak velocity and other haemodynamic variables were similar in septic and

sham animals at 6 h and unchanged from baseline values in naïve rats. However, these

measures significantly deteriorated by 24 h in the severely septic animals (Figure 4).

Blood sampling in mice at 24 h revealed no hypoxaemia but a marked mixed meta-

bolic and respiratory acidosis in the severely septic mice (Table 3). Acid–base balance

and arterial partial pressure of oxygen were unaffected in the rats, even in the severely

septic group where mild hypocapnia was observed. However, both species became

hyperlactataemic. Despite the aggressive fluid resuscitation, both septic mice and se-

verely septic rats showed significant haemoconcentration. Due to administration of glu-

cose, blood sugar levels were well maintained in both species with no recorded episodes

of hypoglycaemia.

Discussion
The phenotypic differences between septic rodents and humans are poorly character-

ized. In this study we describe profound differences in metabolic and cardiovascular

changes in severe, long-term models of rat and murine sepsis. Although the origin of

the faecal slurry and the route of fluid administration differed, the age of the animals

(approximating to juvenile/early adulthood) and laboratory conditions were similar,

as were the time to death and the overall 72-h mortality rate (approximately 75%)

of both models.

The major finding of our study was the marked and rapid decrease in metabolism in

septic mice. While significant hypothermia is recognized following endotoxin or bacter-

ial insults in mice [15-20], the 80% reduction in metabolic rate has not, to our know-

ledge, been previously reported. There was a corresponding change in cardiovascular

phenotype with rapid severity-dependent reductions in heart rate and stroke volume.

Despite an almost twofold rise in the cardiac output (and hence oxygen delivery) fol-

lowing re-warming of the septic mice, there was only a very modest rise in VO2. This

implies that the metabolic suppression in the septic mice is independent of the core

temperature or oxygen delivery. By contrast, the septic rats did not exhibit early falls in
Table 3 Blood gas results (mean ± SEM) at 24 h in sham, mildly septic (rats only) and
severely septic mice and rats

Mouse Rat

Sham Severe septic Sham Mild septic Severe septic

pH 7.33 ± 0.03 6.96 ± 0.12* 7.45 ± 0.02 7.44 ± 0.02 7.52 ± 0.04

PCO2 (kPa) 4.29 ± 0.29 8.46 ± 4.14* 4.3 ± 0.1 4.4 ± 0.1 3.2 ± 0.2*

PO2 (kPa) 13.4 ± 4.2 12.2 ± 4.3 13.8 ± 0.2 14.2 ± 0.1 17.6 ± 2.6

HCO3
− (mmol/l) 17.7 ± 0.5 10.9 ± 1.7* 23.9 ± 1.7 23.7 ± 0.8 25.0 ± 1.6

Cl− (mmol/l) 122 ± 5 122 ± 2 106 ± 2 106 ± 2 104 ± 2

BE (mmol/l) −8.5 ± 0.7 −18.0 ± 3.2* −1.3 ± 1.9 −1.3 ± 0.9 −3.0 ± 2.6

Lactate (mmol/l) 2.4 ± 0.9 5.0 ± 1.2* 0.8 ± 0.1 1.7 ± 0.3 2.6 ± 0.4*

Glucose (mmol/l) 11.7 ± 4.0 14.9 ± 2.4 7.0 ± 0.7 6.4 ± 0.8 5.4 ± 0.7

Hb (g/dl) 13.2 ± 0.2 15.1 ± 1.6* 12.2 ± 0.5 12.0 ± 1.0 13.9 ± 0.9

MAP at 24 h (mmHg) - - 118 ± 2 100 ± 10 95 ± 10

MAP, mean arterial pressure; Hb, haemoglobin concentration; BE, base excess. *p < 0.05 comparing severely septic to
sham and mildly septic animals.
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metabolic rate nor did they become hypermetabolic or hyperthermic. Falls in VO2 were

seen over the 4 to 6-h period pre-mortem.

In humans the early response to low-dose endotoxin injection in volunteers is a hy-

permetabolic response with 89% and 46% rises in oxygen delivery and consumption, re-

spectively by 3 h [21]. However, in septic patients, the increased metabolic response is

progressively blunted with increasing severity such that the resting energy expenditure

in was equivalent to normal healthy values [22]. Only in the recovery phase was a hy-

permetabolic response (up to 60% increase) noted [22,23]. By contrast, and as we found

with the septic rats, VO2 fell in critically ill patients during their dying process [24].

The reduced respiratory exchange ratio in the septic mice implies predominance of

fatty acid oxidation as compared to the sham animals that use carbohydrate as their

main energy source [12], even though high lactate levels result in an increase in VCO2

and RER [25]. This switch in fuel utilization is often seen in sick animals and during

starvation and has also been reported in septic mice [20]. Studies in healthy mice

starved for 20 h confirmed a similar fall in RER to 0.73 with a 25% fall in VO2 that re-

versed quickly on re-provision of food (data not shown). Notably, temperature did not

change in this starvation model. Furthermore, as there was only an 11% variation in the

VO2 observed with sleep-wake cycles in naïve mice (Additional file 1: Figure S1), de-

creased activity in the septic mice is likely to make only a relatively minor contribution

to the profound reduction in metabolic rate observed.

The different metabolic responses within the two rodent species may reflect the pres-

ence of intact hibernatory pathways in mice. Metabolic suppression has been described

in various organisms including mice under unfavourable situations such as cold, food

or fluid deprivation, and hypoxia [26]. This strategy of ‘cross-tolerance’ results in a bal-

anced reduction in energy production and utilization [27], enabling continuation of

life-dependent processes such as membrane pumps at the expense of other energy-

dependent functions such as protein synthesis [28,29]. Metabolic suppression may be

also triggered by a reduction in energy supply [30,31]. Hibernation has been described

in the septic mouse heart [32] and suggested in human critical illness [33,34]. Meta-

bolic suppression may be an adaptive response in severe sepsis in order to conserve

energy [34] and, perhaps, limit reactive species production.

Mice have a very high metabolic rate (VO2 of 60 to 80 ml/kg/min compared with 3

to 4 ml/kg/min in humans), largely due to non-shivering thermogenesis to maintain

body temperature [35]. It is difficult to assess the contribution of loss of non-shivering

thermogenesis to the reduction in VO2 and core temperature observed in our mouse

model. While it is tempting to speculate that this may occur, our study was designed to

measure total oxygen consumption and could not distinguish between coupled and

uncoupled respiration. Non-shivering thermogenesis is mediated by mitochondrial un-

coupling proteins (principally UCP-1 in brown fat) as a result of beta-adrenergic stimu-

lation [36]. Interestingly however, both catecholamine levels and UCP protein levels

rise in sepsis [37-40]. The significance of upregulation of the uncoupling proteins UCP-

2 and UCP-3 in sepsis is still unclear; however, there is no evidence that these influence

thermoregulation [39].

Our protocol utilized fluid resuscitation, equivalent to 150 ml/kg s/c for mice and

220 ml/kg i/v in rats over the first 24 h. Notwithstanding these large volumes that are

considerably higher than those reported in the literature [4], haemoglobin concentrations
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still rose at 24 h in both severely septic rats and mice compared to sham animals, implying

haemoconcentration due to increased capillary leak. While hypovolaemia may have con-

tributed in part to the reduced cardiac output seen at 6 and 24 h in mice and at 24 h in

rats, the lack of tachycardia does imply that intrinsic sepsis-related myocardial depression

and/or hypothermia (in the mice) also play a significant role. Transient re-warming of the

mice to 37°C increased cardiac output (fully at 24 h) but only had a partial effect on global

oxygen consumption. This was contrary to the previous observations by Rudaya et al. [18]

who noted that thermoregulatory responses in LPS-treated mice were dependent on the

ambient temperature. Our data imply that metabolic shutdown is an important phenotypic

response to sepsis in mice.

Severity as measured by the clinical scoring system was predictive of mortality. While

we have previously evaluated and utilized this score in rat models of sepsis [5,41], this

is the first description of its use in a murine model, where mortality and serum bio-

chemical markers of organ failure correlated with clinical severity (data not shown). All

mice that scored ≥4 subsequently died, while those with scores ≤3 survived.

The severely septic mice developed a mixed respiratory and metabolic acidosis with

hyperlactataemia. Hyperchloraemia also contributes in part to the metabolic acidosis;

as this was also observed in the sham mice, it is likely related to the chloride-rich fluid

used for fluid resuscitation, which may have been avoided had a balanced crystalloid so-

lution been used instead. Nevertheless, acid–base balance was relatively unaffected in

the severely septic rats with only mild hypocapnia and hyperlactataemia.

Limitations of our study include an inability to directly reproduce the study design in

both rodent species. We did initially use a tether system and vascular instrumentation

under anaesthesia to enable continuous intravenous fluid administration in mice, but this

proved too stressful and injurious, even for non-septic controls, and had to be abandoned.

Thus, the mice did not receive any surgical trauma and their fluid regimens were, by neces-

sity, different. Importantly, however, the 72-h mortality rates were identical so we opted

not to use a model involving repeated subcutaneous fluid injections in the rats. We also

did not use antibiotics as the intention was to compare haemodynamic and metabolic re-

sponses between species with an insult of comparable mortality.
Conclusions
We demonstrate markedly differing metabolic and cardiovascular profiles in long-term

rat and mouse models of bacterial sepsis with similar mortality. The mouse model, in

particular, exhibits early severity-dependent metabolic down-regulation soon after the

initiation of sepsis. Other models of sepsis involving different insults, treatment regi-

mens, laboratory conditions (e.g. ambient temperatures), ages and gender should also

be examined to assess reproducibility of findings. In the meantime, we suggest that cau-

tion be applied in extrapolating findings in murine models to septic patients, both with

regard to our understanding of pathophysiology and the failure to translate preclinical

efficacy into successful clinical trials.

Additional file

Additional file 1: Figure S1. Averaged trace of VO2 of two naïve mice and four naïve rats over 48 to 72 h with
12-h dark periods marked (grey bar at top). Error bars depict standard deviation.
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