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Abstract

Flexible adhesives play an important role in various applications. The possibility of
bonding dissimilar substrates has generated wide interest in flexible adhesives.
However, most of the theoretical and experimental investigations have focused on
rigid epoxy adhesives. The purpose of this work is to investigate the mechanical
behavior of a flexible adhesive joint in the overlap region. Aluminum adherends
were used for single lap joint made with an adhesive characterized by high flexibility
and large strains. The specimen was tested in tension. Full-field displacements of the
overlap region were measured by the Digital Image Correlation method. A large
shear strain of the order of 48% was observed. Small transverse deflections of the
adherends were estimated. Also, it was observed that the shear strain distribution in
the adhesive layer decreases at the overlap ends, which is different from previously
reported results in the literature.
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Background
Knowledge of adhesion has a great importance for many bonded structures, mainly in

automotive, aircraft and marine structures. A better understanding of the mechanical

behavior of adhesively bonded joints necessitates a detailed investigation of the ad-

herend and adhesive, as well as of the adherend-adhesive interface. The majority of stiff

adhesives are employed in structural applications, while flexible adhesives are indicated

for some particular cases. The use of flexible adhesives in engineering structures allows

displacement between joints and can avoid structural failure. For instance, they

may be used for bonding dissimilar substrates that present different coefficients of

thermal expansion.

Several investigations have been concerned with mechanical behavior of bonded

joints. Analytical models of adhesively bonded joints were established through the ef-

forts of Volkersen [1], Goland and Reissner [2] and Hart-Smith [3]. An improvement

to classical models of bonded lap joints has been proposed by Tsai et al. [4]. Luo and

Tong [5] presented a nonlinear analysis of single lap joints. A good literature review

on theoretical models for bonded joints is summarized in the literature [6,7]. Recent

publications show that bonded joints remain being extensively studied [8-10]. Full-field

optical methods such as Moiré and Digital Image Correlation have been employed to

determine strain fields of adhesively bonded joints [11-15].
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Although there are many works on adhesively bonded joints, only a relatively few

involve flexible adhesives. For instance, two different flexible adhesives were investi-

gated by means of adhesive joint tests [16]. Stress distributions in single lap joint made

with flexible adhesive were studied using finite element analysis [17]. Recently, experi-

ments and simulations of single lap bonded joints and their application in a boat struc-

ture were presented [18]. In addition, the effect of temperature on the mechanical

properties of adhesive and the mechanical behavior of different flexible adhesives were

analyzed [19,20].

This study was designed to investigate experimentally the mechanical behavior of a

flexible adhesive joint in the overlap region. Aluminum adherends were used for single

lap joint (SLJ) made with an adhesive characterized by high flexibility and large strains.

The specimen was tested under monotonic tensile load in quasi-static condition. For

each load, an image of the overlap region of the specimen was captured. All images

were processed using a homemade program based on the Digital Image Correlation.

Thus, horizontal and vertical displacement fields were obtained.
Methods
A single lap joint (SLJ) configuration was considered in the present study. The

aluminum substrate surfaces received a treatment that consisted of abrading the over-

lap region using a sandblasting machine and cleaning it with acetone before appli-

cation of the adhesive. A flexible adhesive based on silane modified polymer, Cascola

Flextec®FT 101, from Henkel (São Paulo, Brazil) was used. The mold illustrated in Figure 1

was used to make up the SLJ specimen. Using this mold, the final geometry of the SLJ

specimen had an overlap joint of 33.5 mm, a joint width of 25.3 mm, and adhesive and

adherends thicknesses of 0.15 mm and 2 mm, respectively. The elastic modulus of

aluminum alloy plates was 68 GPa and the shear modulus of the adhesive was 0.52 MPa.

It is important to remark that the adhesive is characterized by high flexibility and large

strains [21,22].

The single lap joint was loaded in tension on an apparatus developed to ensure that

one of the adherends moved parallel towards the applied load. The SLJ specimen was

tested under monotonic tensile load in quasi-static condition and at room temperature,

i.e., approximately 25°C. Figure 2 shows a close-up of the experimental arrangement
Figure 1 Mold for single lap joint specimen.



Figure 2 Experimental setup.
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that was composed by the SLJ specimen fixed to the apparatus and a high resolution

CCD camera with 1376x1024 pixels in the sensor array and a 10xZoom C-Mount lens.

In the experimental procedure, the lateral surface of SLJ specimen was sprayed with

black paint for obtaining a random speckle pattern. This process is essential to obtain

the displacement fields using the optical method described below. The surface of over-

lap region covered with random speckle pattern is illustrated in Figure 3. In this pic-

ture, the rectangle drawn on the surface was chosen as the region of analysis. All

specimen images in undeformed and deformed states associated with applied loads

were captured with the CCD camera.

The displacement fields were measured using an optical method, which is known as

Digital Image Correlation (DIC). This powerful optical-numerical method measures

full-field surface displacements. DIC method is noncontact and relatively noninvasive.

In the correlation procedure, small subsets from the undeformed image are compared

to subsets from each of the deformed images in order to match maximum correlation

between them and hence the displacements are determined. If the initial position

of each subset is known, and its final position can be estimated, it is possible to

compute the in-plane displacement fields designated by u(x,y) and v(x,y) associated

with x- and y-coordinates. More information about this method can be found in

the literature [23,24].

In the current work, a homemade DIC code based on a normalized cross-correlation

function was used to obtain displacement fields with accuracy of the order of ±0.01

pixels. All acquired images were selected at 1314x199 pixel resolution. In order to per-

form the matching process, reference and target subsets of 51x51 and 31x31 were
Figure 3 SLJ specimen with the region of analysis (a) and random speckle pattern on specimen
surface (b).
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respectively chosen. The system was calibrated considering a scale factor value equal to

38 pixel/mm.

Results and discussion
In this section, horizontal and vertical displacement fields of adherends and adhesive in

the overlap region are presented. As already indicated in Figure 3, the overlap region

was defined as the region of analysis. Figure 4 illustrates the horizontal displacement

field, denoted by u(x,y), of the overlap region for an applied load equal to 350 N.

The vertical displacement field, denoted by v(x,y), of the overlap region for the

same load is shown in Figure 5. These displacement maps were obtained using a

homemade DIC code.

As previously described in Section 2, one end of the lower adherend was kept fixed

to the apparatus while the other end was bonded to the upper adherend, in which the

load was applied. It is important to remark that no type of failures was observed,

considering the applied loads. As can be seen in Figure 4, there is no horizontal dis-

placement of the lower adherend, while the upper adherend presents an uniform dis-

placement on the order of 0.07 mm and no significant deformation of the adherend is

observed. Accordingly, the adhesive deforms in shear. Moreover, it should be noted

that both lower and upper adherends present a rotation in the x-y plane, as shown in

Figure 5. Neglecting rotations and considering only the initial thickness of the adhesive

layer (0.15 mm), an angular distortion equal to 0.47 is achieved.

Besides the observed rotation in the joint, vertical displacements of lower and upper

adherends at the edge of the overlap are different. This effect is related to the eccentric

loading path of the SLJ that generates bending moments of the adherends. Due to the

geometry and mechanical properties of adherends/adhesive, the effect of peel stress is

more pronounced. To illustrate lower and upper adherends deflections, mean values of
Figure 4 Horizontal displacement field of SLJ specimen at the overlap region: (a) color map and
(b) surface plot.



Figure 5 Vertical displacement field of SLJ specimen at the overlap region: (a) color map and
(b) surface plot.
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the vertical displacement of each adherend along y-direction were taken. Figure 6

shows these mean values for lower and upper adherends, considering applied loads

equal to 113, 230 and 350 N. It should be noted that, as the applied load increases,

adherends deflections and the adhesive thickness at the edge of overlap increase as well.

Nevertheless, this effect was not observed in cases with adherend stiffness much larger

than the adhesive stiffness [25].

To analyze the effects in the joint for the current case, i.e. aluminum adherends and

high flexible adhesive, values of shear and normal strain were investigated. Shear and
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Figure 6 Vertical displacements of upper and lower adherends at the overlap region.
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Figure 7 Shear and normal strains of adhesive at the overlap region.
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normal strains of the adhesive were obtained substituting the data illustrated in Figure 6

into the following definitions:

γxy ¼
uupper − ulower

h xð Þ and εyy ¼ vupper xð Þ− vlower xð Þ
h exp

ð1Þ

with the adhesive thickness defined by h(x) = hexp + [vupper(x) − vlower(x)]. Where uupper
and ulower, vupper and vlower denote the horizontal and vertical displacements of upper

and lower adherends, respectively. The initial adhesive thickness is denoted as hexp.

Figure 7 presents shear and normal strains in the adhesive layer along the x-coordinate

for different applied loads. It can be clearly seen that shear strain decreases at the edge

of the overlap, while there is an increase of normal strain.

It is well known that the eccentric load applied to a SLJ specimen generates a

combined effect of bending moment and transverse force. The magnitude of each effect

depends on adherend and adhesive stiffnesses, specimen geometry and loading condi-

tions. In fact, shear is often associated with peeling forces. Works found in the litera-

ture indicate that the shear strain in the adhesive layer increases at the edge of the
Figure 8 Schematic representation of a single lap joint bonded with a flexible adhesive.



Moreira and Nunes Applied Adhesion Science 2014, 2:1 Page 7 of 8
http://www.appliedadhesionscience.com/content/2/1/1
overlap. In the present case, however, a different result was observed. It is important to

emphasize that the adhesive stiffness used in this work is low in comparison to the

adherends stiffness. Also, the adhesive is an elastomer, such that it is characterized by

high flexibility and large deformation. Adams et al. [26] investigated two types of joint

configuration that remove the stress concentration from the ends of the lap by profiling

the adhesive layer. They used different rubbers to represent the adherends and adhe-

sives and concluded that an adhesive joint could display a lower shear stress at the ends

of the lap than in the middle, due to joint configuration. For that reason, the obtained

results in the current work are suitable.

In order to facilitate the comprehension of this phenomenon, a schematic representa-

tion of a single lap joint in a deformed configuration is depicted in Figure 8. The

dashed line denotes an adhesive deformation (angular distortion of γ2) that would be

generated only by transverse load, while the other configuration is obtained if the bend-

ing moment and peel effect are taken into account, which is placed with an angular dis-

tortion of γ1. In this case, γ2 > γ1 at the edges of the overlap, but they tend to the same

value in the middle of the overlap.

Conclusions
The behavior of a single lap joint made with a flexible adhesive and aluminum adher-

ends was experimentally investigated. The Digital Image Correlation method was

employed for estimating the horizontal and vertical displacement fields at the overlap

region of the single lap joint specimen. Vertical displacements associated to small

adherend deflections were observed. Results indicate that the adhesive thickness was

not equal along the horizontal coordinate. In fact, adhesive thickness was larger at the

edge of the overlap due to eccentric loads and adhesive stiffness. Using the measured

displacements, values of shear and normal strains in the adhesive layer were deter-

mined. Contrary to results from previous works found in the literature, shear strain de-

creased at the edge of the overlap. It is important to remark that a similar effect was

observed by Adams et al. It should be noted that this study has examined only dis-

placements and deformation. As a closing remark, one should mention that the current

work might be used to support recent investigation based on finite element method.

Moreover, analytical models of adhesively bonded joints may be developed assuming

that the adhesive is a hyperelastic material.
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