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Abstract

Constructing a bivariate distribution with specific marginals and correlation has been a
challenging problem since 1930s. In this survey we shall focus on the recent
developments on the FGM-related distributions, including Sarmanov and Lee’s
distributions, Baker’s distributions and Bayramoglu’s distributions. This complements
the most recent works of (i) the review by Sarabia and Gómez-Déniz (2008, SORT) and
(ii) the monograph by Balakrishnan and Lai (2009, Springer). Some new results are
provided.
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1 Introduction and a brief history
In both statistical theory and practice, we often need to construct a joint distribution with
specific marginals and correlation. Ever since Wigner (1932) and Eyraud (1936), it has
been an active and challenging topic. Its field of applications is wide ranging. It encom-
passes physics, economics, engineering, risk analysis, medicine etc. There is no dearth
of interesting real life examples. Only recently Takeuchi (2010) constructed a bivariate
distribution having specific marginals and certain degrees of correlation to model the
joint behavior of far-infrared and far-ultraviolet galaxy luminosity. Danaher and Smith
(2011) studied the interaction between a firm’s total amount of purchase (log-normal dis-
tribution) and the time since last purchase (exponential distribution). For applications in
reliability theory, see for example Li et al. (2013) and the references therein.
Since 1990 there have been seven conferences devoted to this topic: 1990 (Rome,

Italy), 1993 (Seattle, USA), 1996 (Prague, Czech Republic), 2000 (Barcelona, Spain), 2004
(Québec, Canada), 2007 (Tartu, Estonia), and 2010 (São Paulo, Brazil), averaging one in
every three to four years. The papers presented in the conferences during the period 1990-
2000 have all appeared in monographs, edited by Dall’Aglio et al. (1991), Rüschendorf
et al. (1996), Beněs and Štěṕan (1997), and Cuadras et al. (2002), respectively. As for the
2004 and 2007 ones, they were published as special issues of Insurance: Mathematics
and Economics (August 2005), The Canadian Journal of Statistics (September 2005) and
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Journal of Statistical Planning and Inference (November 2009). We have yet to find any
documentation for the 2010 conference.
There were three survey papers: Lai (2004; 2006) and Sarabia and Gómez-Déniz (2008).

The latest monograph by Balakrishnan and Lai (2009) provided an excellent overview.
As for the continuous multivariate version, there were Kotz et al. (2000) and Kotz and
Nadarajah (2004). For the discrete version, see Johnson et al. (1997), Gómez-Déniz et al.
(2012) and Sarabia and Gómez-Déniz (2011), among others. Then there were Cuadras
(1992) and Dolati and Úbeda-Flores (2005) for constructing distributions with given
multivariate marginals and given dependence structure.
Section 2 is a review of some basic properties of the bivariate distributions with fixed

marginals. Then, in Sections 3 to 6, we will focus on the recent developments on the FGM-
related distributions, including Sarmanov and Lee’s distributions, Baker’s distributions
and Bayramoglu’s distributions. Some new results are provided. This complements the
most recent works mentioned above. Finally, in Section 7 we briefly discuss some other
related distributions.

2 The natural bounds of the correlations
We first recall an important fundamental result due to Hoeffding (1940) and Fréchet
(1951) independently. LetH(x, y) = Pr(X ≤ x, Y ≤ y) be the joint distribution of any pair
(X,Y ) of random variables whose marginals are F(x) = Pr(X ≤ x) andG(y) = Pr(Y ≤ y).
We write (X,Y ) ∼ H , X ∼ F , Y ∼ G. Then the bivariate distribution H satisfies the
following inequality:

max{0, F(x) + G(y) − 1} ≡ H−(x, y)

≤ H(x, y) ≤ H+(x, y) ≡ min{F(x), G(y)}, x, y ∈ R ≡ (−∞,∞), (1)

where the extremal distributions H+ and H− are known as the Fréchet–Hoeffding upper
and lower bounds, respectively.
To generate a pair of random variables obeying the extremal distributions, we start with

Z ∼ U(0, 1), the uniform distribution on (0, 1), and note that (F−1(Z), G−1(Z)) ∼ H+
and (F−1(Z), G−1(1 − Z)) ∼ H−, where F−1(t) = inf{x : F(x) ≥ t}, t ∈ (0, 1), is the
quantile function of F . Take for example F = G = U(0, 1). Then (Z,Z) ∼ H+ with
H+(x, y) = min{x, y} and (Z, 1−Z) ∼ H− withH−(x, y) = max{0, x+ y−1}. We see that
for this special case, both H+ and H− are singular bivariate distributions, with the entire
mass concentrated on the lines y = x or y = −x, respectively (see Lin and Huang 2010,
and the references therein).
The inequality (1) for H implies that Cov(H−) ≤ Cov(H) ≤ Cov(H+) by the Hoeffding

representation for covariance:

Cov(H) ≡ Cov(X,Y ) =
∫ ∞

−∞

∫ ∞

−∞
[H(x, y) − F(x)G(y)] dxdy, (2)

whenever the double integral exists and is finite. It then follows that

ρ(H−) ≤ ρ(H) ≤ ρ(H+), (3)

where ρ(H) denotes the correlation of any pair of random variables (X,Y ) ∼ H (or, sim-
ply, the correlation of H). Writing μ and σ for the mean and the standard deviation of
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the random variable appearing as a subscript, we see that the maximum correlation can
be expressed explicitly in terms of the quantile functions of the marginals:

ρ(H+) =
(∫ 1

0
F−1(t)G−1(t)dt − μXμY

)
/(σXσY ) ≤ 1.

Moreover, ρ(H+) = 1 iff the marginals F and G are of the same type, namely, F(x) =
G(ax + b) on R for some a > 0 and b ∈ R. Similarly, we have

ρ(H−) =
(∫ 1

0
F−1(t)G−1(1 − t)dt − E(X)E(Y )

)
/(σXσY ) ≥ −1,

and ρ(H−) = −1 iff the distributions of X and −Y are of the same type.

3 FGM distributions
To construct a bivariate distribution with fixed marginals, a well known method is
the FGM distribution, dating back to Eyraud (1936), Farlie (1960), Gumbel (1960) and
Morgenstern (1956). Let (X,Y ) ∼ H , X ∼ F and Y ∼ G. The bivariate distribution

H(x, y) = F(x)G(y){1 + αF(x)G(y)}, x, y ∈ R, (4)

is called the FGM distribution, where F = 1 − F , G = 1 − G and α is a parameter such
that H is a bona fide bivariate distribution.
The advantage of the FGM distribution is its simplicity. Its drawback is the lack of flex-

ibility. As was pointed out by Schucany et al. (1978), for absolutely continuous marginals
the correlation in FGM is restricted to the interval [−1/3, 1/3], which is a far cry from the
full range [−1, 1] enjoyed by the bivariate normal. Schucany et al.’s condition of absolute
continuity was later relaxed by Lin (1987) to just continuity.
To alleviate the deficiency, Johnson and Kotz (1975) proposed the ‘iterated’ FGM

distribution:

Hk(x, y) = F(x)G(y) +
k∑

j=1
αj(F(x)G(y))�j/2	+1(F(x)G(y))�(j+1)/2	, x, y ∈ R,

where �z	 denotes the greatest integer less than or equal to z, and k = 1, 2, 3, . . . .
For k = 1, it reverts back to the plain FGM, where |α1| ≤ 1 if both F and G are

continuous. For k = 2 the iterated FGM takes the form (Huang and Kotz 1984, 1999)

H(x, y) = F(x)G(y) + α1F(x)G(y)F(x)G(y) + α2[ F(x)G(y)]2 F(x)G(y), x, y ∈ R.

To ensure that H be a bona fide distribution function, the range of the parameters,
however, is more complicated, namely, for continuous marginals,

|α1| ≤ 1, α1 + α2 ≥ −1, α2 ≤ 2−1 {3 − α1 + (9 − 6α1 − 3α2
1)

1/2} .
(See also Lin 1987.) Take F = G = U(0, 1) for the sake of comparison, the iteration
succeeded in extending the range to − 1

3 ≤ ρ ≤ 0.434 from the previous − 1
3 ≤ ρ ≤ 1

3 of
the plain FGM.
The iteration, however, was little studied beyond the k = 2 case due to the difficulty in

determining the admissible range of the parameters αj.
There were several other extensions of the FGM distribution, but the improvement in

correlation was still limited (see, e.g., Balakrishnan and Lai 2009). To accommodate higher
flexibility we turn to two other classes: (i) Sarmanov and Lee’s distribution (Sarmanov
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1966, Lee 1996) and its generalization and (ii) Baker’s distribution (Baker 2008) and its
generalization.

4 Sarmanov and Lee’s distributions
The joint density of a Sarmanov–Lee distribution is given by

h(x, y) = f (x)g(y){1 + αθ1(x)θ2(y)}, x, y ∈ R, (5)

where f and g are the densities of the marginals F and G, while θ1 and θ2 are measurable
functions satisfying the condition

1 + αθ1(x)θ2(y) ≥ 0 and E(θ1(X)) = E(θ2(Y )) = 0,

which serves to ensure that h is a bona fide joint density.
When the marginals F and G are absolutely continuous, setting θ1 = 1 − 2F and θ2 =

1 − 2G shows that FGM is a special case of the Sarmanov–Lee.
Shubina and Lee (2004) showed that the maximum positive correlation of (5) is effected

by concentrating all its mass on the (NE-SW) quadrants: {(x, y) : (x − x0)(y − y0) ≥ 0},
and for the negative, on the (NW-SE) quadrants: {(x, y) : (x − x0)(y − y0) ≤ 0}, for some
real numbers x0 and y0.
The improvement in correlation is substantial. The maximum correlation, for the uni-

form marginals case, is 3/4 as opposed to 1/3 of the plain FGM and 0.434 of the (k = 2)
iterated FGM.
To further extend the Sarmanov–Lee family (5), a ‘generalized’ Sarmanov–Lee was

proposed by Bairamov et al. (2001),

h(x, y) = f (x)g(y)
{
1 + αT(F(x),G(y))

}
, x, y ∈ R, (6)

where the product function θ1(x)θ2(y) in (5) is replaced by T(F(x),G(y)) in which T is an
integrable bivariate function on [ 0, 1]2, satisfying∫ 1

0
T(u, v)du =

∫ 1

0
T(u, v)dv = 0 and 1 + αT ≥ 0 on [ 0, 1]2 , (7)

and the parameter α satisfies

− [max(u,v)∈D+ T(u, v)
]−1 ≤ α ≤ [max(u,v)∈D−(−T(u, v))

]−1 , (8)

where D+ = {(u, v) : T(u, v) > 0} and D− = {(u, v) : T(u, v) < 0}. Again, the constraints
(7) and (8) together guarantee that the function h in (6) is a bona fide bivariate density
with marginal densities f and g.
The new class (6) is so rich it contains members arbitrarily close to H+ and H−, the

two extremal distributions (1) of Fréchet–Hoeffding. It is thus flexible enough to accom-
modate nearly the maximum positive (negative) correlation. Some simple examples help
demonstrate the idea (more can be found in Lin and Huang 2011).

Example 1. The generalized Sarmanov–Lee density (3 × 3) with uniform marginals.
Consider the partitioning of the unit square into 3 × 3 = 9 subsquares, induced by the
lines x, y = 1/3, 2/3. Let the function T be defined by

T(x, y) =
{
2, 0 < x, y < 1

3 or 1
3 < x, y < 2

3 or 2
3 < x, y < 1,

−1, elsewhere.
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Then the joint density becomes

h(x, y) =
{
3, 0 < x, y < 1

3 or 1
3 < x, y < 2

3 or 2
3 < x, y < 1,

0, elsewhere.

Its correlation is ρ(h) = 8/9, which exceeds the maximum, ρmax = 3/4, of the plain
Sarmanov–Lee (with uniform marginals).

Example 2. The generalized Sarmanov–Lee density (n × n) with uniform marginals.
For n = 2, 3, 4, . . . , let

Tn(x, y) =
{
n − 1, i−1

n < x, y < i
n , i = 1, . . . , n,

−1, elsewhere,

and

hn(x, y) =
{
n, i−1

n < x, y < i
n , i = 1, . . . , n,

0, elsewhere.

We have the correlation ρ(hn) = 1 − n−2 → 1 as n → ∞.

Example 3. The generalized Sarmanov–Lee density (n×n) with exponential marginals.
Let

hn(x, y) =
{
ne−x−y, ln n

n−i+1 < x, y < ln n
n−i , i = 1, . . . , n,

0, elsewhere,

where ln(n/0) ≡ ∞. Our calculations show that ρ(hn) ≈ 1 − 1.08/n → 1 as n → ∞.

The convergence to the maximal correlation is not limited to those with uniform or the
exponential marginals. It holds formore general cases. The following Theorems 1 through
3 are successively stronger. Only Theorem 3 will be proved, since the others appeared in
Lin and Huang (2011).
Let F and G be arbitrary distributions (not necessarily identical nor ‘of the same type’)

with densities F ′ = f and G′ = g. Define the joint density of (Xn,Yn) by

hn(x, y) =

⎧⎪⎨⎪⎩
nf (x)g(y), (x, y) ∈ (F−1( i−1

n ), F−1( i
n )
)× (G−1( i−1

n ),G−1( i
n )
)
,

i = 1, 2, . . . , n,
0, elsewhere,

(9)

where F−1(0) ≡ limt→0+ F−1(t) and F−1(1) ≡ limt→1− F−1(t) are the left and right
extremities of the distribution F , respectively. It qualifies as a generalized Sarmanov–Lee
bivariate density (with marginal densities f and g).

Theorem 1. For F = G, (9) becomes

hn(x, y) =
{
nf (x)f (y), F−1( i−1

n ) < x, y < F−1( i
n ), i = 1, 2, . . . , n,

0, elsewhere.

If F has a finite variance σ 2, then the correlation is

ρ(hn) = 1
σ 2

⎡⎣n n∑
i=1

(∫ F−1( i
n )

F−1( i−1
n )

xf (x)dx
)2

− (E(X))2

⎤⎦ ,

which converges to ρ(H+), which is 1 in this case, as n → ∞.
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Theorem 2. If in (9), X and Y satisfy any of the conditions:

(i) F−1 or G−1 is uniformly continuous on (0, 1),
(ii) a ≤ X, a′ ≤ Y a.s., (iii) X ≤ b, Y ≤ b′ a.s.,
(iv) X ≥ a, Y ≤ b a.s. and F−1,G−1 have continuous derivatives, where

a, b, a′, b′ ∈ R,

then ρ(hn) converges to ρ(H+) as n → ∞.

Remarks 1. Theorem 1 follows immediately from a general result, which is interesting
in its own right: For any X ∼ F with finite E(X2),

Sn ≡ n
n∑

i=1

(∫ i
n

i−1
n

F−1(t)dt
)2

−→
∫ 1

0

(
F−1(t)

)2 dt = E(X2) as n → ∞.

The proofs of Remarks 1 and Theorem 2 are based on the following two lemmas.

Lemma 1. (Chebyshev’s inequality for integrals.) Let f1, f2 : (a, b) → R be both
increasing or both decreasing, and let p : (a, b) → (0,∞) be an integrable function. Then∫ b

a
p(x)f1(x)dx

∫ b

a
p(x)f2(x)dx ≤

∫ b

a
p(x)dx

∫ b

a
p(x)f1(x)f2(x)dx,

provided that all integrals exist and are finite.

Remarks 2. An extension of this inequality can be rephrased in probabilistic terms:
Let X be any random variable and let f1, f2 be both increasing or both decreasing, then
the covariance Cov( f1(X), f2(X)) = E[ f1(X)f2(X)]−E[ f1(X)]E[ f2(X)] is non-negative,
provided that the expectations E[ f1(X)], E[ f2(X)] and E[ f1(X)f2(X)] exist.

Lemma 2. (Euler–Maclaurin summation formula.) Let m < n be positive integers and
let f be a real-valued function on [m, n]. Then we have
(i) if f has a continuous derivative on [m, n],

n∑
k=m

f (k) =
∫ n

m
f (x)dx + 1

2
( f (m) + f (n)) +

∫ n

m
f ′(x)(x − �x	 − 1

2
)dx;

(ii) if f has a continuous derivative of order 4,
n∑

k=m
f (k) =

∫ n

m
f (x)dx + 1

2
( f (m) + f (n)) + 1

12
( f ′(n) − f ′(m)) + R( f ),

where the remainder R( f ) = 1
24
∫ n
m f (4)(x)(B4 − B4(x − �x	))dx in which B4(x) = x4 −

2x3+x2− 1
30 is the Bernoulli polynomial and B4 = B4(0) = −1/30 the Bernoulli number.

Theorem 3. For arbitrary marginals F and G with densities F ′ = f and G′ = g, we have
(i) the distributionHn of (9) converges weakly toH+ as n → ∞, and (ii) the correlation of
Hn converges to that of H+ as n → ∞, provided that F and G have finite variances.

Proof. Note that the support of (9) is contained in the region bounded by the two
curvesG(y) = F(x)+ 1

n andG(y) = F(x)− 1
n . Therefore for any (x, y) in the regionG(y) >

F(x), we have Pr(Xn < x, Yn > y) = 0 for all large n (n ≥ (G(y) − F(x))−1). This implies
that Hn(x, y) = Pr(Xn ≤ x, Yn ≤ y) = Pr(Xn ≤ x) − Pr(Xn ≤ x, Yn > y) = Pr(Xn ≤ x) =
F(x) = min{F(x),G(y)} = H+(x, y) for all n ≥ (G(y) − F(x))−1. Likewise, for each (x, y)
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in the region G(y) < F(x) we have Hn(x, y) = G(y) = min{F(x),G(y)} = H+(x, y) for all
large n. Finally, for each (x, y) with G(y) = F(x), F(x) − 1

n ≤ Hn(x, y) ≤ F(x) for all n, and
limn→∞ Hn(x, y) = F(x) = G(y) = H+(x, y). All together, we see that in all three cases,
we have limn→∞ Hn(x, y) = H+(x, y). This proves part (i). Part (ii) follows from the next
lemma which can be proved by using Hölder’s inequality (see, e.g., the proof of Theorem 4
in Dou et al. 2013).

Lemma 3. Let (Xn,Yn) ∼ Hn be a sequence of bivariate random variables and Xn ∼
F , Yn ∼ G for all n ≥ 1. Assume that (Xn,Yn) converges in distribution to (X0,Y0) ∼
H0 as n tends to infinity. If, in addition, E[ |Xn|p+q], E[ |Yn|p+q]< ∞ for some positive
integers p and q, then limn→∞ E[Xp

nY
q
n ]= E[Xp

0Y
q
0 ] .

Remarks 3. We wondered if the convergence of Theorem 3(ii) is monotone. Indeed,
ρ(Hm) ≥ ρ(Hn) ifm is a multiple of n (say,m = kn). To see this, write from (9)

E(XnYn) = n
n∑

i=1

(∫ i/n

(i−1)/n
F−1(t)dt

)(∫ i/n

(i−1)/n
G−1(t)dt

)
≡ n

n∑
i=1

AiBi,

where

AiBi =
k∑

j=1

(∫ (i−1)/n+j/(kn)

(i−1)/n+(j−1)/(kn)

F−1(t)dt
) k∑

j=1

(∫ (i−1)/n+j/(kn)

(i−1)/n+(j−1)/(kn)

G−1(t)dt
)

≡
k∑

j=1
aij

k∑
j=1

bij ≤ k
k∑

j=1
aijbij,

by Chebyshev’s sum inequality (see, e.g., Dou et al. 2013, Lemma 1). This in turn implies
that E(XmYm) ≥ E(XnYn) and hence ρ(Hm) ≥ ρ(Hn). That the sequence {ρ(Hn)}∞n=1 fails
to bemonotonically increasing can be seen from the following counterexample. Let f = g,
f (x) = 1/6 if 0 ≤ a ≤ |x| ≤ a + 3, and f (x) = 0 otherwise. We have ρ(H3) < ρ(H2) for
a > (−1 + √

6)/2.

For certain marginals, the rate of convergence of Theorem 3(ii) can be determined (Lin
and Huang 2011 and Theorem 4 below). The calculation is based on the following. Note
that the correlation of two random variables is location-scale invariant.

Lemma 4. For positive integer n > 1, we have

(i)
∑n

k=1 k ln k = 1
2n

2 ln n − 1
4n

2 + 1
2n ln n + 1

12 ln n + R1(n), where |R1(n)| < 5
12 ;

(ii)
∑n

k=1 k2(ln k)2 = 1
3n

3(ln n)2 − 2
9n

3 ln n+ 2
27n

3 + 1
2n

2(ln n)2 + 1
6n(ln n)2 + 1

6n ln n+
R2(n), where R2(n) = O(1) as n → ∞;
(iii)
∑n

k=1 k(k+ 1)(ln k) ln(k+ 1) = 1
3n

3(ln n) ln(n+ 1)− 1
9n

3(ln n+ ln(n+ 1))+ 2
27n

3 +
n2(ln n) ln(n+1)− 1

4n
2 ln(n+1)− 1

12n
2 ln n+ 2

3n(ln n) ln(n+1)+ 1
9n

2+ 1
12 (ln n) ln(n+1)+

1
4n ln n+ 1

12 (n+1) ln(n+1)− 11
36n− 1

12 (ln n)2+ 5
36 ln(n+1)+R3(n), where R3(n) = O(1) as

n → ∞.

Remarks 4. Recall that the Euler constant γ = limn→∞
(∑n

k=1 1/k − ln n
) ≈ 0.57721.

Interestingly, each of the three remainder terms in Lemma 4 also converges to a real
constant as n → ∞, say limn→∞ Ri(n) = Ri, i = 1, 2, 3. In fact, R1 = lnA ≈
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0.24875, where A ≈ 1.28243 is the so-called Glaisher–Kinkelin constant, and lnA can be
represented as

lnA = 1
4

+ 1
24

∫ ∞

1
f (4)
1 (x)h(x)dx

= 1
4

+ 1
24

∞∑
k=1

∫ 1

0
f (4)
1 (x + k)[−x2(x − 1)2] dx

= 1
4

+ 1
12

∞∑
k=1

{6k + 3 − (6k2 + 6k + 1) ln(1 + 1/k)},

where f1(x) = x ln x and h(x) = B4 − B4(x − �x	). Similarly,

R2 = − 2
27

+ 1
24

∫ ∞

1
f (4)
2 (x)h(x)dx ≈ −0.06576,

R3 = 1
18

ln 2 + 13
108

+ π2

72
+ 1

24

∫ ∞

1
f (4)
3 (x)h(x)dx

= 0.295956 + 1
24

∫ ∞

1
f (4)
3 (x)h(x)dx ≈ 0.303,

where f2(x) = x2(ln x)2 and f3(x) = x(x + 1)(ln x) ln(x + 1).

Theorem 4. (i) If F is uniform and if G is a power function distribution, then the
convergence rate of ρ(hn) in (9) is 1/n2 as n → ∞.
(ii) If F = U(0, 1) and if G is exponential, then the convergence rate of ρ(hn) is (ln n)/n2

as n → ∞. More precisely, ρ(hn) = √
3/2 − (2

√
3)−1(ln n)/n2 + O(n−2) as n → ∞.

(iii) If F = U(0, 1) and if G is logistic, then the convergence rate of ρ(hn) is (ln n)/n2 as
n → ∞. More precisely, ρ(hn) = 3/π − π−1(ln n)/n2 + O(n−2) as n → ∞.
(iv) If F = G is exponential, then ρ(hn) = 1 + O(n−1) as n → ∞.

It is interesting to characterize the FGM and Sarmanov–Lee distributions by minimiz-
ing the χ2 divergence. Let h be the joint density of X and Y with marginal densities f = F ′

and g = G′. Define the χ2 divergence (distance) between the joint density h and the
product density fg (of independent random variables) by

χ2(h; f , g) =
∫ ∫

SF×SG

[
h(x, y)
f (x)g(y)

− 1
]2

f (x)g(y)dxdy, (10)

where SF and SG are the supports of F and G, respectively.
Nelsen (1994) obtained a characterization of the FGM distributions by minimizing the

χ2 divergence (10). Huang and Lin (2011) extended Nelsen’s (1994) result to the case of
Sarmanov–Lee distributions. For i = 1, 2, consider the functions θ∗

i : [ 0, 1]−→[−1, 1]
satisfying∫ 1

0
θ∗
i (u)du = 0,

∫ 1

0
(θ∗

i (u))2du = ci > 0, sup
u∈[0,1]

θ∗
i (u) = 1, inf

u∈[0,1]
θ∗
i (u) = −hi, (11)

where hi ∈ (0, 1]. Then we have the following.

Theorem 5. Among all absolutely continuous bivariate distributions with marginal
densities f = F ′ and g = G′, the one whose joint density is closest to the product density
of independent random variables (in the sense of minimizing the χ2 divergence) subject
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to the constraint E
[
θ∗
1 (F(X))θ∗

2 (G(Y ))
] = c0, where −1 ≤ c0

c1c2 ≤ (max{h1, h2})−1 and
θ∗
i , ci, hi, i = 1, 2, are given in (11), is the Sarmanov–Lee distribution having joint density

h(x, y) = f (x)g(y)
{
1 + c0

c1c2
θ∗
1 (F(x))θ∗

2 (G(y))
}
, x, y ∈ R.

The Sarmanov–Lee distribution and its generalization have been used in actuarial sci-
ence, financial markets, electrical engineering and quantum statistical mechanics (see
the references in Lin and Huang 2011). For example, Hernández-Bastida and Fernández-
Sánchez (2012) applied a Sarmanov–Lee family to the Bayes premium in a collective risk
model. In the analysis of longitudinal data, Cole et al. (1995) used a Sarmanov–Lee bivari-
ate distribution for transition probabilities in a two-state Markov model and developed
an empirical Bayes estimation methodology. Recently, Pelican and Vernic (2013a; 2013b)
studied the parameter estimation problems for the Sarmanov–Lee distribution.

5 Baker’s distributions
Write Xk,n ∼ Fk,n for the kth smallest order statistic of the random sample {Xi}ni=1 from
F . Likewise, let Yk,n and Gk,n stand for another sequence Yi ∼ G, {Yi}ni=1 independent of
{Xi}ni=1. For maximal correlation, Baker (2008) proposed the bivariate distribution

H(n)
+ (x, y) = 1

n

n∑
k=1

Fk,n(x)Gk,n(y), x, y ∈ R, (12)

and for the minimum,

H(n)
− (x, y) = 1

n

n∑
k=1

Fk,n(x)Gn−k+1,n(y), x, y ∈ R. (13)

Clearly, both H(n)
+ and H(n)

− satisfy the constraint of having F and G as the marginals. The
following convex combination of H(n)

+ (or H(n)
− ), n = 1, 2,

Hq±(x, y) = (1 − q)H(1)
± (x, y) + qH(2)

± (x, y)

= F(x)G(y){1±qF(x)G(y)}, x, y ∈ R, q ∈[ 0, 1] ,
is an FGM distribution.
As a generalization of (12) and (13), Baker (2008) also introduced

H(n)
r (x, y) =

n∑
k=1

n∑
	=1

rk,	Fk,n(x)G	,n(y), x, y ∈ R, (14)

where (rk,	) = r ∈ R which consists of all r satisfying: rk,	 ≥ 0 and
∑n

k=1 rk,	 =∑n
	=1 rk,	 = 1/n for all k, 	 = 1, 2, . . . , n; namely, nr is a doubly stochastic matrix.
If P{(Xn,Yn) = (Xk,n,Y	,n)} = rk,	 for all k, 	, then (Xn,Yn) ∼ H(n)

r . A simple application
of majorization theory leads to the inequality:

H−(x, y) ≤ H(n)
− (x, y) ≤ H(n)

r (x, y) ≤ H(n)
+ (x, y) ≤ H+(x, y), x, y ∈ R,

and hence

Cov(H−) ≤ Cov(H(n)
− ) ≤ Cov(H(n)

r ) ≤ Cov(H(n)
+ ) ≤ Cov(H+),

ρ(H−) ≤ ρ(H(n)
− ) ≤ ρ(H(n)

r ) ≤ ρ(H(n)
+ ) ≤ ρ(H+),

provided the variances of F and G are positive and finite.



Lin et al. Journal of Statistical Distributions and Applications 2014, 1:14 Page 10 of 23
http://www.jsdajournal.com/content/1/1/14

Unlike the Sarmanov–Lee, all Baker’s distributions retain the same support as that of
F × G (and so does FGM). The former also admits discrete F and G.
For (X,Y ) ∼ H with continuous marginals F and G, let ρs(H)(= 12E[ F(X) G(Y )]−3)

and τ(H)(= 4E[H(X,Y )]−1) be its Spearman’s rho and Kendall’s tau coefficients, respec-
tively (see, e.g., Joe 2001, pp. 31-32). Baker (2008) proved that limn→∞ ρs(H(n)

+ ) = 1 and
limn→∞ τ(H(n)

+ ) = 1. On the other hand, Lin and Huang (2010) found conditions under
which Pearson’s correlation ρ(H(n)

+ ) converges to ρ(H+) as n → ∞. It is also possible to
calculate the convergence rate of ρ(H(n)

+ ) for some specific marginals. For instance, we
have

Theorem 6. (i) If F is uniform and if G a power function distribution, then the
convergence rate of ρ(H(n)

+ ) in (12) is 1/n as n → ∞.
(ii) If F = U(0, 1) and if G is exponential, then the convergence rate of ρ(H(n)

+ ) is 1/n as
n → ∞. More precisely, ρ(H(n)

+ ) = √
3/2 − √

3/n + O(n−2) as n → ∞.
(iii) If F = U(0, 1) and if G is logistic, then the convergence rate of ρ(H(n)

+ ) is 1/n as
n → ∞. More precisely, ρ(H(n)

+ ) = 3π−1 − 6π−1/n + O(n−2) as n → ∞.
(iv) If F = G is exponential, then the convergence rate of ρ(H(n)

+ ) is (ln n)/n as n → ∞.
More precisely, ρ(H(n)

+ ) = 1 − 1
n
∑n

k=1 1/k = 1 − (ln n)/n + O(n−1) as n → ∞.

For H(n)
+ in (12), Dou et al. (2013) established the weak convergence and the product-

moment convergence as well as the TP2 property described below. The results for H(n)
−

can be derived similarly and are omitted. The next theorem is of interest in its own right.

Theorem 7. Let (Xn,Yn) ∼ H(n)
+ in (12) with marginal densities f and g, and let Un =√

n(G(Yn)−F(Xn)). Then, as n → ∞, (Xn,Un) converges in distribution to (X̃, Ũ) having
joint density

k(x,u) = 1
2
√

πF(x)F(x)
exp
{

− u2

4F(x)F(x)

}
f (x).

The conditional distribution of Ũ given X̃ = x is the normal distribution with mean 0 and
variance 2F(x)F(x), namely, Ũ|X̃=x ∼ N(0, 2F(x)F(x)).

By Theorem 7, we see that for uniform marginals F = G = U(0, 1), Baker’s distribution
H(n)

+ converges weakly to H+ (with support on the diagonal line y = x) as n → ∞. This
can be further extended to the following general case by using the monotone property of
distribution functions.

Theorem 8. For general marginals F and G, Baker’s distributionH(n)
+ converges weakly

to the Fréchet–Hoeffding upper bound H+ as n tends to infinity.

Theorem 9. Let (Xn,Yn) ∼ H(n)
+ with general marginals F and G, and let (X̃, Ỹ ) =

(F−1(Z),G−1(Z)), where Z ∼ U(0, 1). If, in addition, E[ |Xn|p+q], E[ |Yn|p+q]<
∞ for some positive integers p and q, then limn→∞ E[Xp

nY
q
n ] = E[ (X̃)p(Ỹ )q]=∫ 1

0
(
F−1(t)

)p (G−1(t)
)q dt.

Corollary 1. If F and G have finite non-zero variances, limn→∞ ρ(H(n)
+ ) = ρ(H+).

The main tool in the proof of Theorem 7 is the following generalization of the so-called
local limit theorem for binomial distribution, which is also of interest in itself.
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Lemma 5. Let 0 < p, q < 1 be constants such that p+q = 1, and let u ∈ R be a constant.
Let ψ be a function such that ψ(n) = o(n1/6) as n → ∞. Write k = np + yk

√npq ∈
{0, 1, 2, . . . , n}. Then, as n → ∞,(

n
k

)(
p + u√

n

)k (
q − u√

n

)n−k
≈ 1√

2πnpq
exp
{

−1
2

(
yk − u√pq

)2}
(15)

(asymptotically) uniformly in yk such that |yk| ≤ ψ(n). Namely, the left-hand side
an(k) and the right-hand side bn(yk) in (15) satisfy sup{k:|yk |≤ψ(n)} |an(k)/bn(yk) − 1| →
0 as n → ∞.

Recall that a real-valued function k on R2 is totally positive of order two (TP2), a
notion of strong positive dependence, if k(x1, y1)k(x2, y2) ≥ k(x1, y2)k(x2, y1) for all x1 ≤
x2, y1 ≤ y2.

Theorem 10. For general distributions F and G, Baker’s distribution H(n)
+ is TP2.

Finally, if we allow the two sample sizes in (14) to be different, say m and n, then the
resulting bivariate distribution is

H(m,n)
r (x, y) =

m∑
k=1

n∑
	=1

rk,	Fk,m(x)G	,n(y) = C(F(x),G(y); r), (16)

where C is a Bernstein copula and the parameters rk,	 satisfy
n∑

	=1
rk,	 = 1

m
,

m∑
k=1

rk,	 = 1
n
, rk,	 ≥ 0, 1 ≤ k ≤ m, 1 ≤ 	 ≤ n.

Because of the Weierstrass approximation theorem, we can use H(m,n)
r in (16) to approxi-

mate smooth bivariate distributions. Moreover, since (16) is a finite mixture distribution,
the EM algorithm applies to the estimation of the parameters rk,	 of H(m,n)

r . Dou
et al. (2014) took these advantages and succeeded in fitting Baker’s distributions to some
practical data sets including the Illinois state education data.

6 Bayramoglu’s distributions
In this section, we extend Baker’s distributions by an alternative approach. Starting with
any joint distribution H with marginals F and G (e.g., the FGM distribution (4)), let
(X1,Y1), . . . , (Xn,Yn) be a random sample of size n fromH . As before, sorting {X	}n	=1 and
{Y	}n	=1, we obtain the order statistics X1,n ≤ X2,n ≤ · · · ≤ Xn,n and Y1,n ≤ Y2,n ≤ · · · ≤
Yn,n, respectively, and again, write Xr,n ∼ Fr,n, Ys,n ∼ Gs,n.
Instead of Baker’s H(n)

+ and H(n)
− , Bairamov and Bayramoglu (2013) proposed

K (n)
+ (x, y) = 1

n

n∑
r=1

Pr(Xr,n ≤ x, Yr,n ≤ y), x, y ∈ R, (17)

K (n)
− (x, y) = 1

n

n∑
r=1

Pr(Xr,n ≤ x, Yn−r+1,n ≤ y), x, y ∈ R, (18)

both having marginals F and G. We see that if H(x, y) = F(x)G(y) for all x, y, namely, if X
and Y are independent, then Pr(Xr,n ≤ x, Ys,n ≤ y) = Fr,n(x)Gs,n(y) for all x, y, and hence
(17) and (18) reduce to (12) and (13), respectively. Therefore, the generalization admits a
wider range of correlation.
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When X and Y are not independent, the computation of the joint distribution of bivari-
ate order statistics is complicated (see David 1981, p. 26, or David and Nagaraja 2003,
p. 25):

K (n)
r,s (x, y) ≡ Pr(Xr,n ≤ x,Ys,n ≤ y) =

n∑
i=r

n∑
j=s

∑
k

f (n)

k,i,j(x, y), x, y ∈ R,

where k takes all integers such that k, i − k, j − k, n − i − j + k ≥ 0, the summand

f (n)

k,i,j(x, y) = n!
k! (i − k)! (j − k)! (n − i − j + k)!

Hk(x, y)(F(x) − H(x, y))i−k

· (G(y) − H(x, y))j−k(H(x, y))n−i−j+k ,

if the exponents k, i − k, j − k, n − i − j + k ≥ 0,

and f (n)

k,i,j(x, y) = 0, otherwise. HereH(x, y) ≡ Pr(X > x, Y > y) = 1−F(x)−G(y)+H(x, y).
Huang et al. (2013) established the following properties of K (n)

r,s , K (n)
+ and K (n)

− . Here-
after, we shall consider x, y as fixed, and for simplicity, write F ,G, H and H for F(x),G(y),
H(x, y) and H(x, y), respectively.

Theorem 11. For fixed marginals F , G and 1 ≤ r, s ≤ n , the joint distribution K (n)
r,s

of bivariate order statistics (Xr,n,Ys,n) is increasing in H . More precisely, for given x, y, F
and G, if H1(x, y) ≤ H2(x, y), then K (n)

r,s,1(x, y) ≤ K (n)
r,s,2(x, y), where K (n)

r,s,i, i = 1, 2, is the
distribution of (Xr,n,Ys,n) generated from Hi with marginals F and G.

Theorem 12. For given H with marginals F and G, Bayramoglu’s distribution K (n)
+ in

(17) is increasing in n. More precisely,

K (n)
+ = K (n−1)

+ + 1
n − 1

�n/2	∑
i=1

(
n − 1

i, i − 1, n − 2i

)
(F − H)i(G − H)i

(
H + H

)n−2i ,

n ≥ 2.

(19)

Theorem 13. For given H with marginals F and G, Bayramoglu’s distribution K (n)
− in

(18) is decreasing in n. More precisely,

K (n)
− = K (n−1)

− − 1
n − 1

�n/2	∑
i=1

(
n − 1

i, i − 1, n − 2i

)
(HH)i(1 − H − H)n−2i, n ≥ 2. (20)

Recall that the bivariate distribution H with marginals F and G is positive quadrant
dependent (PQD), ifH ≥ FG, that is,H(x, y) ≥ F(x)G(y) for all x, y, and thatH is negative
quadrant dependent (NQD) ifH ≤ FG. As immediate consequences of Theorems 11–13,
we have the following corollary (assuming σ 2

X , σ 2
Y ∈ (0,∞) if necessary).

Corollary 2. (i) For fixed n and marginals F , G, both K (n)
+ and K (n)

− are increasing in H ;
(ii) ρ(K (n)

+ ) ≥ ρ(H(n)
+ ) if H is PQD, and ρ(K (n)

− ) ≤ ρ(H(n)
− ) if H is NQD;

(iii) K (2)
+ = FG if H = H−, and in general, 0 ≤ Cov(K (2)

+ ) ≤ Cov(K (3)
+ ) ≤ · · · ;

(iv) K (2)
− = FG if H = H+, and in general, 0 ≥ Cov(K (2)

− ) ≥ Cov(K (3)
− ) ≥ · · · .

Remarks 5. The first parts of Corollaries 2(iii) and 2(iv) can be proved directly without
invoking the identities (19) and (20), but the proof is complicated. For instance, that of
Corollary 2(iv) can be proceeded as follows. Let Z1 and Z2 be two independent copies of



Lin et al. Journal of Statistical Distributions and Applications 2014, 1:14 Page 13 of 23
http://www.jsdajournal.com/content/1/1/14

Z ∼ U(0, 1), and let Z1,2 ≤ Z2,2 be the corresponding order statistics. Then (Xi,Yi) =
(F−1(Zi), G−1(Zi)), i = 1, 2, are independent and have common distribution H+(x, y)
= min{F(x), G(y)}, x, y ∈ R. In this case, we have

K (2)
− (x, y) = 1

2
[
Pr(X1,2 ≤ x, Y2,2 ≤ y) + Pr(X2,2 ≤ x, Y1,2 ≤ y)

]
= 1

2
[
Pr(F−1(Z1,2) ≤ x,G−1(Z2,2) ≤ y) + Pr(F−1(Z2,2) ≤ x,G−1(Z1,2) ≤ y)

]
= 1

2
[
Pr(Z1,2 ≤ F(x),Z2,2 ≤ G(y)) + Pr(Z2,2 ≤ F(x),Z1,2 ≤ G(y))

]
= 1

2
[
Pr(Z1 ≤ F(x),Z2 ≤ G(y)|Z1 ≤ Z2)+Pr(Z1 ≤ F(x),Z2 ≤ G(y)|Z1>Z2)

]
= Pr(Z1 ≤ F(x), Z2 ≤ G(y)) = F(x)G(y), x, y ∈ R,

the penultimate equality following from the fact that Pr(Z1 ≤ Z2) = Pr(Z1 > Z2) = 1/2
and the law of total probability.

In the rest of this section, we will mention some new results (Theorems 14–17)
regarding (a) weak convergence, (b) product-moment convergence and (c) convergence
of correlations (including Pearson’s correlation, Spearman’s rho and Kendall’s tau) of
Bayramoglu’s distributions. The proofs are given in the Appendix. For proving the weak
convergence, we offer an alternative approach different from that (Theorem 7) for Baker’s
distributions.

Theorem 14. Let H be any bivariate distribution with marginals F and G.

(i) Bayramoglu’s distribution (17) converges weakly to H+ as n → ∞. Moreover,
limn→∞ ρ(K (n)

+ ) = ρ(H+), provided both F and G have finite nonzero variances.
(ii) Bayramoglu’s distribution (18) converges weakly to H− as n → ∞. Moreover,
limn→∞ ρ(K (n)

− ) = ρ(H−), provided both F and G have finite nonzero variances.

Theorem 15. Let (X,Y ) ∼ H with marginals F and G and E[ |X|p+q] , E[ |Y |p+q]< ∞
for some positive integers p and q.

(i) If (Xn,Yn) ∼ K (n)
+ and (X̃, Ỹ ) = (F−1(Z), G−1(Z)) ∼ H+, then

lim
n→∞E[Xp

nY
q
n ]= E[ (X̃)p(Ỹ )q]=

∫ 1

0

(
F−1(t)

)p (G−1(t)
)q dt.

(ii) If (X∗
n ,Y ∗

n ) ∼ K (n)
− and (X̃∗, Ỹ ∗) = (F−1(Z), G−1(1 − Z)) ∼ H−, then

lim
n→∞E[ (X∗

n)
p(Y ∗

n )q]= E[ (X̃∗)p(Ỹ ∗)q]=
∫ 1

0

(
F−1(t)

)p (G−1(1 − t)
)q dt.

For non-negative random variables X and Y , we can consider the general functions α,
β of X, Y , respectively.

Theorem 16. Let (X,Y ) ∼ H , defined on R2+ ≡[ 0,∞)×[ 0,∞), and let X ∼ F , Y ∼ G.
Let α and β be two increasing and left-continuous functions on R+. Assume also that
E[ |α(X)β(Y )|], E[ |α(X)|] and E[ |β(Y )|] are finite.
(i) If (Xn,Yn) ∼ K (n)

+ and (X̃, Ỹ ) = (F−1(Z), G−1(Z)) ∼ H+, then

lim
n→∞E[α(Xn)β(Yn)]= E[α(X̃)β(Ỹ )]=

∫ 1

0
α(F−1(t))β(G−1(t))dt.
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(ii) If (X∗
n ,Y ∗

n ) ∼ K (n)
− and (X̃∗, Ỹ ∗) = (F−1(Z), G−1(1 − Z)) ∼ H−, then

lim
n→∞E[α(X∗

n)β(Y ∗
n )]= E[α(X̃∗)β(Ỹ ∗)]=

∫ 1

0
α(F−1(t))β(G−1(1 − t))dt.

For Spearman’s ρs and Kendall’s τ , we have

Theorem 17. If H has continuousmarginals F and G then

(i) limn→∞ ρs(K (n)
+ ) = 1 and limn→∞ ρs(K (n)

− ) = −1;
(ii) limn→∞ τ(K (n)

+ ) = 1 and limn→∞ τ(K (n)
− ) = −1.

Remarks 6. By the monotone property of K (n)
+ and K (n)

− (Theorems 12 and 13), we can
further conclude, in addition to Theorems 14 and 17, that all the sequences {ρ(K (n)

+ )},
{ρ(K (n)

− )}, {ρs(K (n)
+ )}, {ρs(K (n)

− )}, {τ(K (n)
+ )} and {τ(K (n)

− )} are monotone (see, e.g., Joe 2001,
p. 54).

To prove the new results, we need two more lemmas. Lemma 6 below is an exten-
sion of the classic Hoeffding’s (1940) identity (2) for Cov(X,Y ) to Cov(α(X),β(Y )), and
Lemma 7 gives an explicit form of the expectation E[α(X)β(Y )] for (X,Y ) ∼ H on R2+.
Our assumptions on the marginals (F ,G) are weaker than those in Cuadras (2002), pp.
19-20, and the proof differs from that of Beare (2009).

Lemma 6. Let (X,Y ) ∼ H , X ∼ F and Y ∼ G. Let α,β : R → R be two left-continuous
functions and be of bounded variation on each compact subset of R. Further, assume that
the expectations E[ |α(X)β(Y )|], E[ |α(X)|], E[ |β(Y )|]< ∞. Then

Cov(α(X),β(Y )) = E[α(X)β(Y )]−E[α(X)]E[β(Y )]

=
∫ ∞

−∞

∫ ∞

−∞
[H(x, y) − F(x)G(y)] dα(x)dβ(y)

=
∫ ∞

−∞

∫ ∞

−∞
[H(x, y) − F(x)G(y)] dα(x)dβ(y).

Lemma 7. Let (X,Y ) ∼ H defined on R2+ and X ∼ F , Y ∼ G. Let α and β be two
increasing and left-continuous functions on R+. Then

E[α(X)β(Y )] =
∫ ∞

0

∫ ∞

0
H(x, y)dα(x)dβ(y) − α(0)β(0)

+ α(0)E[β(Y )]+β(0)E[α(X)] , (21)

provided the expectations exist.

Corollary 3. Let (X,Y ) ∼ H defined on R2+, and assume that the expectations E[XrY s],
E[Xr], E[Ys]< ∞ for some real numbers r, s > 0. Then

E[XrY s]= rs
∫ ∞

0

∫ ∞

0
H(x, y)xr−1ys−1dxdy.

Lemma 7 is a strengthening of Theorem 3.1 of Gupta et al. (2008). Then as a result, our
corollary here extends their Corollary 2 in that no assumption of any smoothness of the
bivariate distribution H is required.
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7 Other related distributions
In addition to the above Sarmanov–Lee and Baker approaches, we mention some others.
For constructing bivariate distributions H with marginals F and G, Johnson and

Tenenbein (1981) proposed the following steps:
(i) Let X′

1 and X′
2 be two i.i.d. random variables with a density k.

(ii) Define the correlated random variables

(X1,X2) = (X′
1, αX′

1 + (1 − α)X′
2), α ∈[ 0, 1].

(iii) Find the copula C(u, v) of (X1,X2), which is a function of α and k.
(iv) Define H(x, y) = C(F(x),G(y)), x, y ∈ R.
In general, the constructed copula C in (iii) is too complicated to have a closed form.
Takeuchi (2010) suggested using FGM distributions for low correlation, and the

Gaussian copula for high correlation:

CN (u, v; ρ) = 
2(

−1(u),
−1(v); ρ), u, v ∈[ 0, 1] ,

where 
2 is a two-dimensional normal distribution with correlation ρ, and 
−1

is the quantile function of the standard normal distribution. For example, for
constructing a bivariate (FIR-FUV) galaxy luminosity distribution, he proposed
H(x, y) = CN (F(x),G(y); ρ), x, y ∈ R, where X ∼ F is far-infrared luminosity and Y ∼ G
is far-ultraviolet luminosity. Note that there is no explicit form for the quantile function

−1.
Larralde (2012) gave the maximum-entropy bivariate distribution with normal

marginals. Dukic and Marić (2013) considered the convex combinations of the indepen-
dent case FG and the extreme H+ or H−. But these are not what we really want because
both H+ and H− are composed of singular distributions.
In conclusion, the most convenient unified approach to the above-mentioned problem

is probably by way of a linear combination of the joint distributions of bivariate order
statistics.

Appendix: Proof of the new results in Section 6
Proof of Lemma 6. Let (X1,Y1) and (X2,Y2) be two independent copies of (X,Y ). Then

E[α(Xi)β(Yi)]=
∫ ∞

−∞

∫ ∞

−∞
α(x)β(y)dH(x, y) for i = 1, 2,

and

E[α(Xi)β(Yj)]=
∫ ∞

−∞

∫ ∞

−∞
α(x)β(y)dF(x)G(y) for i �= j.

Define the function I on R2 by

I(u, x) =
{
1, if u < x,
0, otherwise

(note that the function I here is a slight modification of those defined in Lehmann 1966,
Lemma 2, and Quesada-Molina 1992, Theorem 2.1, and the references therein). Since α

is left-continuous on R and is of bounded variation on each compact subset of R, we have∫ ∞

−∞
[ I(u, x1) − I(u, x2)] dα(u) = −

∫
[x1, x2)

dα(u) = α(x1) − α(x2) if x1 ≤ x2,
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and ∫ ∞

−∞
[ I(u, x1) − I(u, x2)] dα(u) =

∫
[x2, x1)

dα(u) = α(x1) − α(x2) if x2 ≤ x1.

Hence, in either case,
∫∞
−∞[ I(u, x1) − I(u, x2)] dα(u) = α(x1) − α(x2), and∫ ∞

−∞

∫ ∞

−∞
[ I(u, x1) − I(u, x2)] [ I(v, y1) − I(v, y2)] dα(u)dβ(v)

= [α(x1) − α(x2)] [β(y1) − β(y2)] .

On the other hand, note that E[ I(u,Xi)I(v,Yj)]= Pr(Xi > u,Yj > v). This implies that

E[ I(u,Xi)I(v,Yj)]= Pr(X > u,Y > v) if i = j, and

E[ I(u,Xi)I(v,Yj)]= Pr(X > u)Pr(Y > v) if i �= j.

Therefore, we have

2{E[α(X)β(Y )]−E[α(X)]E[β(Y )] }
= E[α(X1)β(Y1) − α(X1)β(Y2) − α(X2)β(Y1) + α(X2)β(Y2)]

= E
[∫ ∞

−∞

∫ ∞

−∞
{I(u,X1) − I(u,X2)}{I(v,Y1) − I(v,Y2)}dα(u)dβ(v)

]
=
∫ ∞

−∞

∫ ∞

−∞
E [{I(u,X1) − I(u,X2)}{I(v,Y1) − I(v,Y2)}] dα(u)dβ(v)

=
∫ ∞

−∞

∫ ∞

−∞
2 [Pr(X > u,Y > v) − Pr(X > u)Pr(Y > v)] dα(u)dβ(v)

= 2
∫ ∞

−∞

∫ ∞

−∞
[H(x, y) − F(x)G(y)] dα(x)dβ(y)

= 2
∫ ∞

−∞

∫ ∞

−∞
[H(x, y) − F(x)G(y)] dα(x)dβ(y),

last equality following from the fact that H(x, y) − F(x)G(y) = H(x, y) − F(x)G(y).

Proof of Lemma 7. By Lemma 6, we have

E[α(X)β(Y )]−E[α(X)]E[β(Y )]

=
∫ ∞

0

∫ ∞

0

[
H(x, y) − F(x)G(y)

]
dα(x)dβ(y)

=
∫ ∞

0

∫ ∞

0
H(x, y)dα(x)dβ(y) −

∫ ∞

0
F(x)dα(x)

∫ ∞

0
G(y)dβ(y). (22)

On the other hand, we have

E[α(X)] =
∫ ∞

0
α(x)dF(x) = −

∫ ∞

0
α(x)dF(x) = − lim

b→∞

∫
[0,b]

α(x)dF(x)

= − lim
b→∞

[
α(b)F(b) − α(0−)F(0−) −

∫ b

0
F(x)dα(x)

]

= α(0) +
∫ ∞

0
F(x)dα(x). (23)

The last equality is due to the assumption E[ |α(X)|]< ∞ and the monotone property of
the function α in case limx→∞ α(x) = ∞. Similarly,

E[β(Y )]= β(0) +
∫ ∞

0
G(y)dβ(y). (24)



Lin et al. Journal of Statistical Distributions and Applications 2014, 1:14 Page 17 of 23
http://www.jsdajournal.com/content/1/1/14

Therefore, it follows from (23) and (24) that∫ ∞

0
F(x)dα(x)

∫ ∞

0
G(y)dβ(y)

= {E[α(X)]−α(0)}{E[β(Y )]−β(0)}
= E[α(X)]E[β(Y )]−α(0)E[β(Y )]−β(0)E[α(X)]

+ α(0)β(0). (25)

Combining (22) and (25), we prove the identity (21).

Proof of Theorem 14. We first prove the following two facts.
Fact A. If H = H− with uniform marginals, limn→∞ Cov(K (n)

+ ) = 1
12 = Cov(H+).

Fact B. If H = H+ with uniform marginals, limn→∞ Cov(K (n)
− ) = − 1

12 = Cov(H−).
Proof of Fact A. For F = G = U(0, 1), and H(x, y) = H−(x, y) = max{0, x + y − 1}, we

have, by (19),

K (n)
+ = H+

n∑
m=2

1
m − 1

�m/2	∑
i=1

(
m − 1

i, i − 1,m − 2i

)
(x − H)i(y − H)i(1 − x − y + 2H)m−2i

=

⎧⎪⎪⎨⎪⎪⎩
∑n

m=2
1

m−1
∑�m/2	

i=1
( m−1
i,i−1,m−2i

)
xiyi (1 − x − y)m−2i , if x + y ≤ 1,

x+y −1+∑n
m=2

1
m−1
∑�m/2	

i=1
( m−1
i,i−1,m−2i

)
(1 − x)i(1 − y)i(x + y − 1)m−2i,

if x + y > 1.

Then, by (2),

Cov
(
K (n)

+
)

=
∫ 1

0

∫ 1−y

0

⎧⎨⎩−xy +
n∑

m=2

1
m − 1

�m/2	∑
i=1

(
m − 1

i, i − 1,m − 2i

)
xiyi (1 − x − y)m−2i

⎫⎬⎭ dxdy

+
∫ 1

0

∫ 1

1−y

{
−(1 − x)(1 − y) +

n∑
m=2

1
m − 1

·
�m/2	∑
i=1

(
m − 1

i, i − 1,m − 2i

)
(1 − x)i(1 − y)i (x + y − 1)m−2i

⎫⎬⎭ dxdy

= −
∫ 1

0

∫ 1−y

0
xydxdy −

∫ 1

0

∫ 1

1−y
(1 − x)(1 − y)dxdy

+
∫ 1

0

∫ 1−y

0

n∑
m=2

1
m − 1

�m/2	∑
i=1

(
m − 1

i, i − 1,m − 2i

)
xiyi (1 − x − y)m−2i dxdy

+
∫ 1

0

∫ 1

1−y

n∑
m=2

1
m − 1

�m/2	∑
i=1

(
m − 1

i, i − 1,m − 2i

)
(1 − x)i(1 − y)i(x + y−1)m−2idxdy

= − 1
12

+
n∑

m=2

1
m − 1

�m/2	∑
i=1

(
m − 1

i, i − 1,m − 2i

){∫ 1

0

∫ 1−y

0
xiyi (1 − x − y)m−2idxdy

+
∫ 1

0

∫ 1

1−y
(1 − x)i(1 − y)i (x + y − 1)m−2i dxdy

}
(26)
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= − 1
12

+
n∑

m=2

1
m − 1

�m/2	∑
i=1

(
m − 1

i, i − 1,m − 2i

)(
i! i! (m − 2i)!

(m + 2)!
+ i! i! (m − 2i)!

(m + 2)!

)
(27)

= − 1
12

+ 2
n∑

m=2

1
(m − 1)m(m + 1)(m + 2)

�m/2	∑
i=1

i .

The two double integrals in (26) are equal by changing variables and in (27) we apply the
representations for generalized (or multinomial) Beta function:∫ 1

0

∫ 1−y

0
xiyi (1 − x − y)m−2i dxdy = B(i + 1, i + 1,m − 2i + 1)

= �(i + 1)�(i + 1)�(m − 2i + 1)
�(m + 3)

= i! i! (m − 2i)!
(m + 2)!

.

Note that
n∑

m=2

�m/2	∑
i=1

=
n∑

m=2,even

�m/2	∑
i=1

+
n∑

m=2,odd

�m/2	∑
i=1

=
n∑

m=2,even

m/2∑
i=1

+
n∑

m=3,odd

(m−1)/2∑
i=1

and that
�m/2	∑
i=1

i =
⎧⎨⎩

1
2
m
2
(m
2 + 1

) = 1
8m(m + 2), m = even,

1
2
m−1
2
(m−1

2 + 1
) = 1

8 (m − 1)(m + 1), m = odd.

We have
n∑

m=2

1
(m − 1)m(m + 1)(m + 2)

�m/2	∑
i=1

i

=
n∑

m=2,even

1
(m − 1)m(m + 1)(m + 2)

m(m + 2)
8

+
n∑

m=3,odd

1
(m − 1)m(m + 1)(m + 2)

(m − 1)(m + 1)
8

= 1
8

⎛⎝ n∑
m=2,even

1
(m − 1)(m + 1)

+
n∑

m=3,odd

1
m(m + 2)

⎞⎠
=
⎧⎨⎩

1
8

(∑n
m=2,even

1
(m−1)(m+1) +∑n−1

m=3,odd
1

m(m+2)

)
, n = even,

1
8

(∑n−1
m=2,even

1
(m−1)(m+1) +∑n

m=3,odd
1

m(m+2)

)
, n = odd

=
⎧⎨⎩

1
8

(∑n/2
k=1

1
(2k−1)(2k+1) +∑n/2−1

k=1
1

(2k+1)(2k+3)

)
, n = even,

1
8

(∑(n−1)/2
k=1

1
(2k−1)(2k+1) +∑(n−1)/2

k=1
1

(2k+1)(2k+3)

)
, n = odd

=
⎧⎨⎩

1
8

(
1
2 − 1

2(n+1) + 1
6 − 1

2(n+1)

)
= 1

24
2n−1
n+1 , n = even,

1
8

(
1
2 − 1

2n + 1
6 − 1

2(n+2)

)
= 1

24
(n−1)(2n+3)

n(n+2) , n = odd.

The last equality follows from the two identities:
N∑
k=1

1
(2k − 1)(2k + 1)

= 1
2

N∑
k=1

(
1

2k − 1
− 1

2k + 1

)
= 1

2
− 1

2(2N + 1)
,

N∑
k=1

1
(2k + 1)(2k + 3)

= 1
2

N∑
k=1

(
1

2k + 1
− 1

2k + 3

)
= 1

6
− 1

2(2N + 3)
.
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Thus

Cov
(
K (n)

+
)

=
⎧⎨⎩− 1

12 + 2( 1
24

2n−1
n+1 ) = 1

12
n−2
n+1 , n = even,

− 1
12 + 2( 1

24
(n−1)(2n+3)

n(n+2) ) = 1
12

n2−n−3
n(n+2) , n = odd,

and in either case

lim
n→∞

1
12

n − 2
n + 1

= 1
12

, lim
n→∞

1
12

n2 − n − 3
n (n + 2)

= 1
12

.

Therefore, Cov
(
K (n)

+
)

→ 1
12 = Cov(H+) as n → ∞.

Proof of Fact B. The case of K (n)
− from H(x, y) =H+(x, y) =min{x, y} requires no new

proof by noting that

Cov
(
K (n)

−
)

= 1
12

−
n∑

m=2

1
m − 1

�m/2	∑
i=1

(
m − 1

i, i − 1,m − 2i

){∫ 1

0

∫ y

0
xi(1 − y)i (y − x)m−2idxdy

+
∫ 1

0

∫ 1

y
yi(1 − x)i (x − y)m−2i dxdy

}
(28)

and that the two integrals in (28) are identical to those of (26) (by a simple change of
variables).
Proof of Theorem 14 (continued).
(i)We divide the proof of part (i) into two steps:
(1a) Consider arbitrary H with uniform marginals, and prove that K (n)

+ converges
weakly to H+ as n → ∞ and limn→∞ σ(K (n)

+ ) = σ(H+).
(1b) Extend the result (1a) to any H with general fixed marginals.
Proof of (1a). For arbitrary H with uniform marginals, since {K (n)

+ }∞n=1 is a bounded
and increasing sequence, its limit exists, say K+∞. Then K (n)

+ ≤ K+∞ ≤ H+ for all n ≥ 1.
Also, note that K (n)

+ ≥ K (n)
+ (H−) due to Theorem 11. We have, since K (n)

+ increases in n,

0 ≤
∫ 1

0

∫ 1

0

[
H+(x, y) − K+∞(x, y)

]
dxdy

=
∫ 1

0

∫ 1

0

[
H+(x, y) − lim

n→∞K (n)
+ (x, y)

]
dxdy

= lim
n→∞

∫ 1

0

∫ 1

0

[
H+(x, y) − K (n)

+ (x, y)
]
dxdy

= lim
n→∞

∫ 1

0

∫ 1

0

[
(H+(x, y) − xy) − (K (n)

+ (x, y) − xy)
]
dxdy

= lim
n→∞

[
Cov(H+) − Cov(K (n)

+ )
]

≤ lim
n→∞

[
Cov(H+) − Cov(K (n)

+ (H−))
]

= 0.

The last equality follows from Fact A. Therefore K (n)
+ converges weakly to H+ as n → ∞

and limn→∞ σ(K (n)
+ ) = σ(H+).

Proof of (1b). We now extend the result of part (1a) to any H with general fixed
marginals F andG. First, let C be a copula ofH . We rewrite the result of part (1a) in terms
of random variables. Let (Zi,Z∗

i ), i = 1, 2, . . . , n, be n independent copies of (Z,Z∗) ∼ C.
And let Z(k) and Z∗

(k) denote the kth smallest order statistics of {Zi}ni=1 and {Z∗
i }ni=1,

respectively. On the other hand, let Kn be a discrete random variable obeying the uniform
distribution on {1, 2, . . . , n}. Then (Z(Kn),Z∗

(Kn)
) ∼ K (n)

+ (C) (the bivariate distribution (17)
generated from C) and by part (1a), we have that as n → ∞,

(Z(Kn),Z∗
(Kn))

d→ (Z,Z) ∼ C+(the upper bound with uniform marginals).
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Proceeding on similar lines in the proof of Theorem 3 of Dou et al. (2013), we conclude
that the bivariate (F−1(Z(Kn)), G−1(Z∗

(Kn)
)) converges in distribution to (F−1(Z),G−1(Z))

as n → ∞ (Serfling 1980, p. 24), namely, K (n)
+ converges weakly to H+ as n → ∞ . This

together with Corollary 2(iii) completes the proof.

(ii)We also divide the proof of part (ii) into two steps:
(2a) Consider arbitrary H with uniform marginals, and prove that K (n)

− converges
weakly to H− as n → ∞, and limn→∞ σ(K (n)

− ) = σ(H−).
(2b) Extend the result (2a) to any H with general fixed marginals.
Proof of (2a). For arbitrary H with uniform marginals, since {K (n)

− }∞n=1 is a bounded
and decreasing sequence, its limit exists, say K−∞. Then H− ≤ K−∞ ≤ K (n)

− for all n ≥ 1.
Also, note that K (n)

− ≤ K (n)
− (H+) by Theorem 11. We have, since K (n)

− decreases in n,

0 ≤
∫ 1

0

∫ 1

0

[
K−∞(x, y) − H−(x, y)

]
dxdy

=
∫ 1

0

∫ 1

0

[
lim
n→∞K (n)

− (x, y) − H−(x, y)
]
dxdy

= lim
n→∞

∫ 1

0

∫ 1

0

[
K (n)

− (x, y) − H−(x, y)
]
dxdy

= lim
n→∞

∫ 1

0

∫ 1

0

[
(K (n)

− (x, y) − xy) − (H−(x, y) − xy)
]
dxdy

= lim
n→∞

[
Cov(K (n)

− ) − Cov(H−)
]

≤ lim
n→∞

[
Cov(K (n)

− (H+)) − Cov(H−)
]

= 0.

The last equality is due to Fact B. Therefore K (n)
− converges weakly toH− as n → ∞. This

together with Corollary 2(iv) completes the proof.

Proof of (2b). This is similar to the proof of part (1b) and is omitted.

Proof of Theorem 15. Apply Lemma 3 to Theorem 14.

Proof of Theorem 16. (i) Note that as n → ∞, K (n)
+ converges weakly to H+,

the Fréchet–Hoeffding upper bound with the same marginals F and G, and that
(F−1(Z), G−1(Z)) ∼ H+. Then the required result follows from Lemma 7 above and the
Generalized Monotone Convergence Theorem (see, e.g., Royden 1988, p. 265), because

E[α(Xn)β(Yn)] =
∫ ∞

0

∫ ∞

0
K (n)

+ (x, y)dα(x)dβ(y) − α(0)β(0)

+α(0)E[β(Y )]+β(0)E[α(X)] ,

and K (n)

+ converges monotonically to H+ as n → ∞ (see Theorems 12 and 14(i)).

(ii) The proof is similar to that of part (i), by noting that (F−1(Z), G−1(1 − Z)) ∼ H−
and that K (n)

− converges monotonically to H− as n → ∞ (see Theorems 13 and 14(ii)).

Proof of Theorem 17. It suffices to consider the case of uniform marginals. Let
(Xn,Yn) ∼ K (n)

+ with marginals F = G = U(0, 1), and (X∗
n ,Y ∗

n ) ∼ K (n)
− with marginals

F = G = U(0, 1).
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(i) From Theorem 15 it follows that

lim
n→∞E[ F(Xn)G(Yn)]= lim

n→∞E[XnYn]= 1
3
,

lim
n→∞E[ F(X∗

n)G(Y ∗
n )]= lim

n→∞E[X∗
nY

∗
n ]=

1
6
.

This in turn implies that limn→∞ ρs(K (n)
+ ) = 12 limn→∞ E[XnYn]−3 = 1 and

limn→∞ ρs(K (n)
− ) = 12 limn→∞ E[X∗

nY ∗
n ]−3 = −1. (Note that these results also follow

from Theorem 14; see, e.g., Balakrishnan and Lai 2009, p. 156.)
(ii) Let (X̃, Ỹ ) = (Z,Z) ∼ H+. Recall that K (n)

+ are bounded and continuous functions,
and that K (n)

+ converges increasingly to H+ as n → ∞ (see Theorems 12 and 14). More-
over, (Xn,Yn) converges in distribution to (X̃, Ỹ ) as n → ∞. By the Generalized Lebesgue
Dominated Convergence Theorem (see, e.g., Royden 1988, p. 270, or Hernández-Lerma
and Lasserre 2000), we have

lim
n→∞E[K (n)

+ (Xn,Yn)]= E[H+(X̃, Ỹ )]

= E[H+(Z,Z)]= E[min{Z,Z}]=
∫ 1

0
tdt = 1

2
.

Therefore, limn→∞ τ(K (n)
+ ) = 4 limn→∞ E[K (n)

+ (Xn,Yn)]−1 = 1. On the other hand,
letting (X̃∗, Ỹ ∗) = (Z, 1 − Z) ∼ H−, we have that (X∗

n ,Y ∗
n ) converges in distribution to

(X̃∗, Ỹ ∗) as n → ∞, and, as before,

lim
n→∞E[K (n)

− (X∗
n ,Y ∗

n )]= E[H−(X̃∗, Ỹ ∗)]
= E[H−(Z, 1 − Z)]= E[max{0,Z + (1 − Z) − 1}]= 0.

Therefore,

lim
n→∞ τ(K (n)

− ) = 4 lim
n→∞E[K (n)

− (X∗
n ,Y ∗

n )]−1 = −1.

This completes the proof.
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