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Abstract

HIV dynamic model offers a different perspective of studying HIV pathogenesis and
developing treatment strategies for AIDS patients. Many HIV dynamic models have
recently been developed to characterize short-term AIDS treatment, whereas in
long-term HIV dynamics, viral load often rebounds in the later stage of treatment
primarily due to reduced drug efficacy. Although time-varying drug efficacy can be
incorporated into the ordinary differential equations (ODE) model, such a system has
no analytical solution, and the measurement of viral load is usually censored at the
detection limit due to technological constraints. We consider nonlinear mixed-effects
ODE model with stochastic approximation EM algorithm to overcome these difficulties.
The performance of the proposed method is illustrated by means of a simulation study
and a real-data application. Numerical evidence shows that the HIV infection is
generally more severe when considering left-censored data. The T cell production rate
from human body source varies, but the death rate of infected T cells, infection rate of
virus, and other dynamic parameters do not have much difference among patients. We
hope these findings inspire more research on clarifying biological mechanism of HIV
infection and developing better treatment.

Keywords: Below detection limit; Drug efficacy; HIV dynamic model; Long-term
treatment; Nonlinear mixed-effect model

1 Introduction
HIV dynamic model, a set of ordinary differential equations (ODE) that describes the
interaction between HIV virus and human body cells, has been proven useful for under-
standing the pathogenesis of HIV infection and developing treatment strategies. In order
to estimate biologically/clinically meaningful parameters in the HIV dynamic model,
many statistical models have been developed in the last decade, ranging from the simple
nonlinear least squares (NLS) approach to more general nonlinear mixed-effect model-
ing approaches (Nowak and May 2000; Perelson and Nelson 1999; Perelson et al. 1996;
Perelson et al. 1997; Wu and Ding 1999; Wu et al. 1998; Wu et al. 2005). However, in
more complex scenarios, the ODE system has no close-form solution and thus needs to be
solved numerically. Note that data from viral dynamic studies usually consist of repeated
viral load measurements taken over time for each subject. In addition, the viral dynamic
processes share certain similar patterns among patients while still having distinct individ-
ual characteristics. These properties indicate that the nonlinear mixed-effects (NLME)
models appear to be reasonable for modeling HIV dynamics.
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Disparate from short-term (a few hours) AIDS treatment, viral load remains sustained,
whereas in long-term treatment (a few weeks to years), viral load usually decreases
at the beginning of treatment and is followed by rebounds later, which leads to the
treatment failure. There are various reasons that could contribute to the failure; one
of which is the non-constant drug efficacy due to time-varying drug resistance, drug
adherence or/and pharmacokinetical factors, such as median inhibitory concentration
(IC50), and so on. Huang et al. (2006) incorporated these clinical/PK factors into a
time-varying drug efficacy model to characterize viral load resurgence featured in the
long-term (24 weeks) AIDS treatment trajectory. This approach is capable of capturing
the long-term treatment effect, but the difficulty may arise for the case in which the
solution of ODE can not be linearized, because analytical formula does not exist. Accord-
ingly, the classical nonlinear mixed-effects modeling approach becomes futile under this
scenario.
It is remarkable that only a few methods have recently been proposed to tackle this

problem in the longitudinal setting. For example, Huang et al. (2006) combined the
Bayesian approach with the mixed-effects model to estimate both population and indi-
vidual parameters within a framework of hierarchical Bayesian nonlinear models. From
a frequentist point of view, Guedj et al. (2007) adapted a Newton-like approach using
only first derivative to deal with the problem. Later on, in the presence of left-censoring,
Huang and Getachew (2012) investigated the NLME model with a skew-t (ST) distribu-
tion for the response process and the ST nonparametric mixed-effects model for covariate
measurement error process. However, the first approach ignores below detection limit
viral load data but simply imputes the missing data with detection limit. The second
approach requires reiteratively evaluating integral through an adaptive Gaussian quadra-
ture approach, which quickly becomes intractable when the dimension of random effects
is high. In addition, the computation of the approach is very complicated. The third
approach is only applicable to short-term HIV dynamics and cannot be directly applied
for long-term HIV dynamics. In particular, we may face severe bias in parameter estima-
tion if we simply ignore censoring (below detection limit) or do not carefully handle it.
As an illustration, in the simulation study performed later, we show that either imputing
censored viral load with detection limit or completely removing those censored data will
lead to large bias.
A classical way to deal with the incomplete or missing data problem is the Expectation-

maximization (EM) algorithm, originally proposed by Dempster et al. (1977). For the
E-step of the EM algorithm, one needs to compute the expectation of the complete log-
likelihood with respect to missing data distribution at current estimates. The M-step
includes the maximization of the expected log-likelihood function to update unknown
parameters. One then follows iteration method until convergence is achieved. Within the
mixed-effects modeling framework, the random effects can be treated as missing data so
that the EM algorithm is capable of estimating fixed effects after averaging random effects
in the E-step. Also, the below detection limit data are missing and can thus be averaged
along with random effects at the E-step. Nevertheless, the E-step usually fails quickly
when the number of censored data and/or the dimension of random effects increases
since numerical integration becomes intractable in high dimensional situations.
To circumvent this difficulty, within linear mixed-effects model setting, Hughes (1999)

used Monte Carlo integration to evaluate the E-step by repeatedly sampling from the
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conditional distribution of below detection data. Wu (2002, 2004) extended the Monte
Carlo version of EM (MCEM) for the nonlinear mixed-effects model. However, sampling
the missing data is often time consuming and the algorithm is also slow to converge.
Delyon et al. (1999) proposed a stochastic approximation version of EM (SAEM) to obtain
the maximum likelihood estimate (MLE) of the unknown parameter. Kuhn and Lavielle
(2005) coupled the Markov chain Monte Carlo (MCMC) procedure to the SAEM so that
only one simulation of missing data at each iteration is required. The algorithm has been
proven to converge quickly toward the MLE under general conditions. For theoretical
proof, we refer readers to Delyon et al. (1999) and Kuhn and Lavielle (2005). In this paper,
we couple the SAEM algorithm with the nonlinear mixed-effects model under the sce-
narios in which the ODE system has no analytical solution and the data from long-term
AIDS treatment are left-censored. The performance of the proposed method is illus-
trated by means of a simulation study and a real-data application. Numerical evidence
shows that the HIV infection is generally more severe when considering left-censored
data.
The remainder of the paper is organized as follows. In Section 2, we introduce HIV

dynamicmodel and time-varying drug efficacymodel, which are used tomodel long-term
AIDS treatment. In Section 3, the statistical model and method of estimating parameters
are presented. In Section 4, we carry out a simulation study to examine the performance
of the proposed method and in Section 5, we evaluate the performance of our method
via analysis of the real AIDS clinical trial study. We conclude with a brief discussion in
Section 6.

2 Model specification
2.1 Antiviral response model

One of the commonly used HIV dynamic models that describes the interaction between
human body cells and virus is given by (Huang et al. 2006):

d
dt

T(t) = λ − ρT(t)−[ 1 − γ (t)] kT(t)V (t),

d
dt

T∗(t) =[ 1 − γ (t)] kT(t)V (t) − δT(t)∗, (1)

d
dt

V (t) = NδT∗(t) − cV (t),

where T(t), T∗(t), andV (t) stand for uninfected T cells, infected T cells, and virus at time
t, respectively, λ represents the rate at which new T cells are generated from body source
like thymus, ρ is the death rate of uninfected T cells, k is the infection rate of T cells, δ
is the death rate of infected T cells, N is the number of new virions produced from each
infected T cells during their life-time, and c is the clearance rate of free virions. The time-
varying parameter γ (t) is the antiviral drug efficacy as defined below. In this paper, we
assume that the system of equations (1) is in a steady-state before initiating antiretroviral
treatment, and then the initial conditions for (1) are given by

T0 = c
kN

, T∗
0 = cV0

δN
, and V0 = λN

c
− ρ

k
. (2)

The above ordinary differential equations have no analytical solutions and thus need to
be solved numerically. One feature that distinguishes this dynamic model from others is
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that by considering time-varying drug efficacy, we are capable of characterizing rebounds
of virus in long-term antiviral treatment, which is not seen typically in the short-term
period. On the other hand, more complexity may be added to the model by incorporating
various clinical or/and pharmacokinetical (PK) factors such as drug susceptibility, drug
resistance, and drug adherence etc. Thereafter, it becomes more challenging to carry out
statistical inference.

2.2 Antiviral drug efficacy model

In many studies, drug efficacy is often assumed to be either a constant or perfect over
treatment time; see, for example, Perelson et al. (1997) Perelson and Nelson (1999), Ding
andWu (2000), among others. Such an assumption may be reasonable during short-term
period, whereas in long-term treatment, drug efficacy varies across time due to drug resis-
tance, imperfect drug adherence or/and other clinical/pharmacological factors, which
could lead to treatment failure. To deal with this issue, we advocate the modified Emax
model to account for time-varying drug efficacy (Huang et al. 2006). In this paper, we
consider two antiretroviral drugs given by

γ (t) = C1A1(t)/IC1
50(t) + C2A2(t)/IC2

50(t)
φ + C1A1(t)/IC1

50(t) + C2A2(t)/IC2
50(t)

, (3)

where C1 and C2 represent drug concentration or any PK parameters such as C12h.
The median inhibitory concentrations IC1

50(t) and IC2
50(t) are used to quantify drug

susceptibility (Molla et al. 1996) and are written as

IC50(t) =
{
I0 + Ir−I0

tr t for 0 < t < tr ,

Ir for t ≥ tr ,
(4)

where I0 and Ir are respective values of IC50(t) at the baseline and time point tr , which is
the time of virological failure. Let φ be a conversion factor between IC50(t) in vitro and
IC50(t) in vivo and it can be estimated from data. Here, A1(t) and A2(t) are adherence
profiles of the two drugs, which are measured by pill counts and are modeled as

A(t) =
{
1 if all doses are taken in (Tk ,Tk+1],

R if 100R% doses are taken in (Tk ,Tk+1],
(5)

where Tk is the time at the kth clinical visit of patients, Rk represents the percentage of
drugs that is consumed by patients during the interval of two visits. In particular, if all of
the prescribed drugs are taken, Rk is one. This suggests that poor adherence is one of the
major causes of treatment failure, and thus it is definitely necessary to take this factor into
account; see, for example, Besch (1995).

3 Statistical model and parameter estimation
3.1 Nonlinear mixed-effects ODEmodel

Viral load data from an HIV/AIDS clinical trial are composed of repeated measurements
on a group of patients so that a hierarchical modeling approach is necessary to account
for within subject as well as between subject variation simultaneously. We are inter-
ested in estimating biologically/clinically meaningful parameters in (1) and conducting
statistical inferences while taking below detection limit measurements for all patients
into account. In the area of longitudinal data analysis, the mixed-effects model is often
used to characterize both within and between subjects variation. Let yij be logarithmic
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measurement of viral load for subject i at time tij for i = 1, · · · , n and j = 1, · · · , ni;
population parameterμ = (log c, log δ, log λ, log ρ, logN , log k, logφ)T ; individual param-
eter θ i = (log ci, log δi, log λi, log ρi, logNi, log ki, logφi)T . Let g(θ i, tij) = log10(Vij(θ i, tij))
with Vij(θ i, tij) being the true amount of viral load based on (1) for subject i at time tij.
Following Davidian and Giltinan (1995), a natural Nonlinear Mixed-effects ODE Model
(NLME-ODE) is modeled as

(i) Within-subject variation: yij = g(θ i, tij) + εij. Measurement error εij is assumed to
follow a normal distribution with mean zero and variance σ 2.

(ii) Between-subject variation: θ i = μ+bi. Random effect bi characterizes the deviation
of individual parameters from population level and we assume bi ∼ N (0,D).

It deserves mentioning that the model described here is different from the classical
NLME model in that g(·) has no explicit form in the long-term HIV dynamic setting,
which leads to additional challenges for estimating parameters. A fewmethods such as the
Bayesian approach and a Newton-like method were proposed to attack these challenges;
see, for example, Huang et al. (2006), Guedj et al. (2007). However, these procedures
either ignore missing (under detection limit) mechanism or are not applicable in the
high dimensional setting. We here advocate the SAEM algorithm to take below detec-
tion limit data for parameter estimation into account in the longitudinal HIV dynamic
model.

3.2 Parameter estimation

Both random effects from NLME-ODE and below detection limit (left-censoring) viral
load can be treated as missing data. EM algorithm is able to deal with missing data where
the log-likelihood with regard to missing components distribution is obtained at the E-
step and the parameter estimates are updated through maximization (M-step). In light of
high dimensionality of random effects and censored data, SAEM algorithm coupled with
MCMC provides a convenient way of drawing samples at the E-step (Delyon et al. 1999;
Kuhn and Lavielle 2005). The detail of this method is described below.

3.2.1 A. Expectation

From one point of view, both individual parameter θ i and below detection limit data can
be treated as missing data. A classical way to cope with missing data is the EM algo-
rithm proposed by Dempster et al. (1977). Let θ = (θ1, · · · , θn). Denote Yo and Ym as
observations beyond and below detection limit for all subjects across the study period,
respectively. Let L(Yo,Ym, θ ;μ,D, σ 2) represent the complete data likelihood. The MLE
of (μ,D, σ 2) is determined by themarginal likelihood of the observed data L(Yo;μ,D, σ 2),
whereas this quantity is often intractable. As an alternative, the EM algorithm calcu-
lates the expected value of the complete log-likelihood function, with respect to the joint
conditional distribution of Ym, θ given Yo under the current estimates of the parameter
(μ(k),D(k), σ 2 (k))

Q
(
μ,D, σ 2 | μ(k),D(k), σ 2 (k)

)
= EYm,θ |Yo,μ(k),D(k),σ 2 (k)

[
log L(μ,D, σ 2;Yo,Ym, θ)

]
.

(6)

For simplicity of notation, let Io = {(i, j); yij ≥ DL} with DL being the detection limit,
and yoij be the corresponding observation such that Im = {(i, j); yij < DL}, and ymij be the
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corresponding missing data. Also, let nt be the total number of observations and ns be the
number of subjects. In the long-term HIV treatment, it follows

L(μ,D, σ 2;Yo,Ym, θ) ∝ (σ 2)−
nt
2 × |D|− ns

2 exp
{
− 1
2σ 2	i,j∈Io

[
yoij − g(θ i, tij)

]2

− 1
2σ 2	i,j∈Im

[
ymij − g(θ i, tij)

]2 − 1
2
	i(θ i − μ)TD-1(θ i − μ)

}
.

(7)

Of particular note is that when g(·) is a linear function of θ , it is easy to obtain that
equation (6) follows a normal distribution. For our problem, g(·) is the result of numeri-
cally integrating theODE system in (1), which is not only a nonlinear function of θ , but the
close-form expression does not exist as well. Accordingly, we follow the idea of a stochas-
tic version of EM algorithm (SAEM) (Delyon et al. 1999) and evaluate equation (6) as
follows.

3.2.2 B. Gibbs sampler for incomplete data

It has been long known that Gibbs sampler is useful for simulating data from the joint
posterior distribution (Gelfand et al. 1990; Wakefield 1996). In our case, at the kth iter-
ation, θ and Ym can be alternatively generated from the joint posterior distribution
P

(
θ ,Ym | Yo,μ(k−1),D(k−1), σ 2(k-1)

)
summarized in the following two steps.

Step 1 Simulate Ym(k) from the marginal conditional posterior distribution
P

(
Ym | θ (k−1),Yo,μ(k−1),D(k−1), σ 2(k-1)

)
which follows a normal distribution

truncated at the detection limit. Each ym(k)
ij is then centered at g

(
θ

(k−1)
i , tij

)
with variance σ 2(k-1) and can thus be simulated as follows (Breslaw 1994):

(a) calculate the cumulative probability of the detection limit under the
same distribution as ym(k)

ij and denote as PDL;
(b) draw u from the uniform distribution U(0, 1); and
(c) obtain a sample of ym(k)

ij as
ym(k)
ij = g(θ (k−1)

i , tij) + σ (k−1)
−1[ u × PDL], where 
 is the
standard normal cumulative distribution function.

It should be noted that this sampling algorithm requires only one draw at each iteration
therefore is efficient.

Step 2 Simulate θk from the conditional posterior distribution
P

(
θ | Ym(k),Yo,μ(k−1),D(k−1), σ 2(k-1)

)
, which has no close-form formula but

is proportional to (7) with all the parameters given at current values. The
Metropolis-Hastings (M-H) algorithm is capable of generating samples from
this distribution. Indeed, one choice of the proposal distribution is
qk−1 ∼ N (μ(k−1),D(k−1)). Then the procedure proceeds as follows

(a) Calculate acceptance probability α(ϕ|θ (k−1)) as

min

⎧⎨
⎩1,

P
(
ϕ | Ym(k),Yo,μ(k−1),D(k−1), σ 2(k-1)

)
P

(
θ (k−1) | Ym(k),Yo,μ(k−1),D(k−1), σ 2(k-1)

) q(k−1)
(
θ (k−1) | μ(k−1),D(k−1)

)
q(k−1)

(
ϕ | μ(k−1),D(k−1)

)
⎫⎬
⎭ ,

(8)
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where ϕ is a candidate simulated from qk−1. If we assume that each
θ i is independent, then D is diagonal. We may thus simulate ϕ for
each i (denote as ϕi) separately. After some arrangements, the
acceptance probability α is simplified as

α(ϕi | θ (k−1)) = min
{
1, Ri} , (9)

where

Ri = exp
{

1
2σ 2(k-1)

(
	j;i,j∈Io [ yoij − g(θ (k−1)

i , tij)]2 +	j;i,j∈Im
[
ym(k)
ij

− g
(
θ

(k−1)
i , tij

)]2 − 	j;i,j∈Io
[
yoij − g

(
ϕi, tij

)]2
−	j;i,j∈Im

[
ym(k)
ij − g

(
ϕi, tij

)]2)}
. (10)

(b) For each i, draw u from the uniform distribution U(0, 1). If
u ≤ α(ϕi|θ (k−1)), then accept ϕi as new θ

(k)
i ; otherwise keep θ

(k−1)
i

as θ
(k)
i .

Notice that, unlike the implementation of M-H algorithm in other cases in which the
choice of variance for proposal density q is essential to the efficiency of the algorithm.
Herein, there is no need to choose an appropriate variance manually. Since variance D
is always estimated from the last iteration, the algorithm updates the proposal variance
automatically to make itself adaptive. Often, the candidate parameter ϕ simulated from q
makes the integration of (1) unstable, which is the so-called stiffness. To handle the stiff
ODEs, we apply a Rosenbrock method, which is relatively easy to implement and also
provides a good accuracy. We refer the interested readers to Kaps and Rentrop (1979) for
more details.

3.2.3 C. Maximization

Once θ and Ym are simulated, it is straightforward to update (μ,D, σ 2) by maximizing
equation (6) and we obtain

μ(k) = 1
ns

	iθ
(k)
i ,

diag
(
D(k)

)
= 1

ns
	iθ

2(k)
i − μ2(k), (11)

σ 2(k) = 1
nt

{
	i,j∈Io [ yoij − g(θ (k)

i , tij)]2 +	i,j∈Im [ y
m(k)
ij − g(θ (k)

i , tij)]2
}
.

Note that the above estimates are composed of minimum sufficient statistics of
(μ,D, σ 2). Denote s1 = 	iθ i, s2 = 	iθ

2
i , and s3 = 	i,j∈Io [ yoij − g(θ i, tij)]2 +	i,j∈Im [ ymij −

g(θ i, tij)]2. Stochastic approximation step of SAEM is composed of updating s1, s2, and s3
with a sequence γ (k) at the kth iteration s(k)i = (1−γ (k))s(k−1)

i +γ (k)s(k)i . Kuhn and Lavielle
(2005) recommended to use γ (k) = 1 for the first K1 iterations followed by diminishing
γ (k) = 1/(k − K1) for another K2 iterations in order to satisfy the assumptions of SAEM
and to ensure the convergence of the algorithm. It deserves mentioning that the estimates
of variance can be easily obtained by the inverse of the observed fisher informationmatrix
of (7).
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4 Simulation
We illustrate the effectiveness of our method via analysis of an example in the long-term
HIV dynamic study with considering below detection limit measurements. Note that the
simulation experiment is similar to an actual AIDS clinical trial. Basically, 40 patients
were involved in a long-term antiretroviral treatment and then followed up to 200 days.
Some patients were loss to follow up due to various reasons as in the real study. Conse-
quently, the simulated viral load data are unbalanced longitudinal measurements. All data
for the pharmacokinetic factor (C1,C2), phenotype marker (baseline and failure IC50s)
and adherence as well as the baseline viral load (V0) were taken from an AIDS clinical trial
study.
In order to avoid parameter identifiability problem, ρ,N , and K are fixed at 0.1, 980,

and 0.0001, respectively. These values are chosen from previous studies in the literature
(Ding and Wu 2000; Nowak and May 2000; Perelson and Nelson 1999). In addition, we
assume the system is at steady state at the beginning of the treatment. This indicates that
only three parameters in (1) need to be estimated. Denote μ = (log c, log δ, logφ)T and
θ i = (log ci, log δi, logφi)T . The diagonal covariance matrix D has a vector of diagonal
elements d2 = (d2c , d2δ , d

2
φ)T . The value of log λ is obtained from (2). Altogether, there are

totally seven parameters in the model.
The true values for μ = (log c, log δ, logφ)T and d2 = (d2c , d2δ , d

2
φ)T are set to be

(1.1,−1, 3)T and (0.25, 0.04, 0.0625)T , respectively. These values are similar to the ones
used in the simulation study of Huang et al. (2006). The true value for σ 2 is 0.1 and the
detection limit is 25 as in the real study. The true values of parameters θ i for i = 1, · · · , 40
are simulated fromN (μ, D) independently. Given PK/clinial data (C, IC50,A(t)) and true
parameters (θ i) as well as initial viral load (V0), viral load Vij are generated by numeri-
cally solving the ODE system in (1) for each individual. A measurement error term εij
is then added to logVij to mimic observation data log yij for the ith subject at time tij,
where εij ∼ N(0, σ 2). We then censor the viral load data at detection limit 25, producing
totally 23 percent of below detection data which are imputed at 25 as observed in a real
experiment.
We examine the effect of taking into account censored data or not on parameter esti-

mates. First, the data below detection limit is completely hold out before fitting model,
named as ‘case A’; second, the below detection limit data are retained but assumed 25
as the true value, named as ‘case B’; third, the below detection limit data are considered
as censored data, named as ‘case C’. For each case, we fit the nonlinear mixed-effects
ODE model coupled with the SAEM algorithm. However, in cases A and B, the data are
fit as they are, i.e., the data are considered as complete while censoring mechanisms are
accounted for in case C. In this simulation study, K1 is set to be 10,000 to make sure the
estimates converging to the neighborhood of MLE, then a decreasing step size γ is used
for another 2,000 steps to fine-tune the final estimates. The same generating and model
fitting processes are repeated 100 times. The performance of the proposed method on
three cases is measured with respect to the bias and square root of MSE (RMSE).
The simulation results are presented in Table 1. In all three cases, the biases for inter-

subject variance components are significantly larger than the ones of fixed effects. Biases
for d2c in all the three cases exceed 45%. The biases for variance estimates are especially
large (almost 500% for ‘case A’ and ‘case B’; 83% for ‘case C’). For fixed effects, case A is
superior to case B in terms of both bias and RMSE. Among all the three cases, case C
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Table 1 The true values andmean estimates of population dynamic parameters with 100
replications as well as the corresponding bias, RMSE

log c log δ logφ d2
c d2

δ d2
φ σ 2

Case A

True value 1.1 -1 3 0.25 0.04 0.0625 0.01

Mean estimate 0.9 -0.8 3.07 0.13 0.06 0.11 0.05

Bias(%) 15.2 23.7 2.4 47.3 46.4 69.5 484

RMSE(%) 78 69 4.6 85 198 147 658

Case B

True value 1.1 -1 3 0.25 0.04 0.0625 0.01

Mean estimate 1.9 -0.8 3.6 0.03 0.067 0.669 0.06

Bias(%) 71 22 19 90 68 970 490

RMSE(%) 141 58 23 105 125 1013 687

Case C

True value 1.1 -1 3 0.25 0.04 0.0625 0.01

Mean estimate 1.2 -1.0 3.02 0.12 0.036 0.048 0.02

Bias(%) 9.9 0.2 0.9 53 9.5 23.3 83

RMSE(%) 54 5 3 75 39 211 783

In case A, the below detection limit data are hold out before fitting the model; In case B, the below detection limit data are
retained but assumed 25 as the true value; In case C, the below detection limit data are considered as censored data and
censoring mechanism is introduced by the proposed method.

has the least bias and RMSE for all of the seven parameters, thus performs the best. In
general, imputing censored viral load with the detection limit (25) leads to larger bias for
both fixed effects and random effects variance estimates. Our simulation results show that
simply omitting censored observations (case A) is even better than retaining the censored
values (case B) in terms of parameter estimating accuracy. Handling below detection limit
data with the proposed method gives us the least bias in the current setting.
We also compared the fitting results with the Bayesian method and Gaussian quadra-

ture method. We observed that for cases A and B, all the three methods provide similar
estimates (Table 2). However, the Bayesian method fails to handle with below detection
data so that it can not deal with case C. In addition, we also tried to fit case C with the
Gaussian quadrature method. Unfortunately, this method does not converge in our case.
To test the robustness of parameter estimates with regard to initial values, we carry

out a sensitivity analysis. Three sets of initial settings are examined. One sets the mean
vector μ = (log c, log δ, logφ)T at the true values (1.1,−1, 3)T , the other two set μ

at the two extremes (3,−0.5, 5)T and (0.2,−0.2, 0.6)T , separately. Variance components
d2 = (d2c , d2δ , d

2
φ)T are also increased to (5, 5, 5)T and (10, 10, 10)T , respectively. We then

Table 2 Comparison of bias(%) on parameter estimates by threemethods: Bayesian,
Gaussian quadrature and NLME-SAEMmethods

Case Method log c log δ logφ d2
c d2

δ d2
φ σ 2

A Bayesian 16.1 24.2 2.1 49.6 47.7 65.1 543

Gaussian quadrature 15.6 24 2.2 53.1 44.3 75.5 512

NLME-SAEM 15.2 23.7 2.4 47.3 46.4 69.5 484

B Bayesian 78 20 22 78 75 998 657

Gaussian quadrature 72 25 16 94 61 932 586

NLME-SAEM 71 22 19 90 68 970 490

In case A, the below detection limit data are hold out before fitting each model; In case B, the below detection limit data are
retained but assumed 25 as the true value. The number of simulation run is 100.
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estimate parameters using the same method as above. The first 10,000 steps are followed
by additional 2,000 steps. Figure 1 depicts the graphical diagnostic of convergence of
SAEM algorithm for the three cases. As shown clearly, after the first 10,000 steps, all
three chains converge to the neighborhood of true values and 2,000 more steps make
the estimate more precise. Based on these results, the different initial values give similar
parameter estimates, therefore the method is quite robust. We may thus conclude that
parameter estimates using the proposed method are insensitive to the choices of initial
values.

5 A real AIDS clinical study
In this section, we apply the proposed method to a real AIDS clinical trial study. This
study was a Phase I/II, randomized, open-label, 24-week comparative study of the PK,
tolerability and antiretroviral effects of two regimens of indinavir (IDV), ritonavir (RTV),
plus two nucleoside analogue reverse transcriptase inhibitors (NRTIs) on HIV-1-infected
subjects failing protease inhibitor (PI) containing antiretroviral therapies. The 44 subjects
were randomly assigned to the two treatment regimens, Arm A (IDV 800 mg q12h+RTV
200 mg q12 h), and Arm B (IDV 400 mg q12h+RTV 400 mg q12h). Study visits occurred
at pre-entry, entry (within 14 days of pre-entry) and days 7, 14, 28, 56, 84, 112, 140 and 168
of follow-up. Plasma HIV RNA testing was conducted at each study visit. The detection
limit is 25 cp/ml. Clinical assessment and laboratory parameters were performed at all
visit weeks with the exception of week 1. Phenotypic determination (IC50) of antiretroviral
drug resistance was performed at baseline and at the time of virological failure. The PK
parameters of IDV and RTV were determined using noncompartmental methods. Pill
counts were measured to monitor adherence at each study visit from weeks 2 to 24. Of
the 44 subjects, 42 subjects were included in this analysis; of the remaining two subjects,
one was excluded from the analysis because the PK parameters were not obtained and the
other was excluded because the phenotype assay could not be completed on this subject.
Acosta et al. (2004) gives more detailed descriptions of this study.
The analysis here is to investigate the effect of missing data on the parameter estimation

of HIV dynamic model (1). There are totally 14 percent (45 out of 328) of below detection
observations in this real study. We compare the parameter estimate results based on the
full data, with and without taking censoring mechanism into account. To avoid parameter
identifiability problem, we fix c = 3.0 and N = 980; see Stafford et al. (2000). There are
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Figure 1 Convergence diagnostics with respect to three different initial values from a simulation
study.



Lu and Wang Journal of Statistical Distributions and Applications 2014, 1:13 Page 11 of 14
http://www.jsdajournal.com/content/1/1/13

totally five fixed effects and six variance parameters (five from random effects and one
from measurement error). We tried different initial values which all gave similar results.
Table 3 presents parameter estimates and corresponding standard deviation for the 11
parameters.
The biological and clinical interpretation of estimating results are quite interesting.

Compared with the estimate with considering censoring mechanism, the death rate of
infected cell (T∗) is overestimated (log δ = -1.613 vs -1.801); the death rate of unin-
fected cell (T) is underestimated (log ρ = -3.798 vs -3.563); the infection rate of T cells
by virus is underestimated (log k = -11.87 vs -9.397); conversion factor is overestimated
(logφ = 1.395 vs 1.02); the production rate of T cells from body source is overestimated
(log λ = 5.68 vs 4.876) from the model without taking censoring into account. As a result,
the comparison above consistently indicates that the degree of infection is underestimated
by model without considering censoring if we define high degree of infection as low death
rate of infected cell (T∗), high death rate of uninfected cell (T), high infection rate of T
cells by virus, low production rate of T cells from body source. In other words, the degree
of infection is actually more severe if censored data are taken care of. As one can see,
these results are logical and meaningful. Moreover, as suggested by (3), conversion factor
φ is negatively associated with drug efficacy. By considering censoring, the drug efficacy
is higher, which is suggested by lower φ. Alternatively, the model without considering
censoring is more likely to underestimate drug efficacy.
In addition, the estimates from the model that incorporates censoring mechanism are

more precise in terms of smaller standard error except for log λ. The inter-subject vari-
ance components are smaller for the ones based on the model with censoring mechanism,
especially for k and φ. These results indicate most of parameter estimates are not much
different among patients. On the contrary, the T cell production rate has a larger vari-
ation (d2λ) among patients when taking censoring into account. These results inform us
that the dynamic parameters are not varying much from one subject to another, but each
subject do present different health conditions as indexed by self production rate of T cells
(λ). Again, these estimates are more precise compared to those from the model without
considering censoring, as reflected by smaller standard errors. The variance for measure-
ment error (σ 2) is not comparable since in the model with censoring, the censored data
are replaced by viral load simulated from the model.

Table 3 Parameter estimates and standard deviation of parameters froma real AIDS clinical
study usingmodels with and without considering censoringmechanism, respectively

W/o censor mechanism With censor mechanism

Parameter Estimate SE Estimate SE

log δ -1.613 0.086 -1.801 0.07

log ρ -3.798 0.17 -3.564 0.02

log k -11.87 0.274 -9.397 0.001

logφ 1.395 0.094 1.02 0.001

log λ 5.68 0.17 4.876 0.21

d2δ 0.312 0.068 0.203 0.044

d2ρ 1.219 0.266 0.016 0.004

d2k 3.146 0.686 7 × 10−4 2 × 10−5

d2φ 0.37 0.081 2 × 10−4 3 × 10−6

d2λ 1.215 0.265 1.787 0.39

σ 2 0.14 0.01 0.29 0.02
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We also compared the model fitting from the two models with and without taking
censoring for each patient into account. Individual parameter estimates are from the pos-
terior mode of the Gibbs samples. The model fits the data very well. Figure 2 depicted the
model fitting results of four patients. Clearly, the model not only describes consistently
decreasing viral load trajectory (subject 13 and 42), but also rebounds (subject 1 and 12),
which is a character of long-term treatment failure and a challenge to short-term mod-
els as explained in Section 1. When no below detection limit data are present, i.e. subject
12, the two models behave similarly. Even when censoring data occur, the two models fit
the data beyond detection limit approximately the same way. However, without consider-
ing censoring, the model does not provide any information below detection limit. After
accounting for censoring mechanism, we have a better idea of what is going on under-
neath the line. For example, in subject 1, viral load rebound has already occurred before
it is detectable (solid line below detection limit). In subject 13, viral load keeps decreasing
until diminished below detection limit.
Based on the analysis, we conclude that handling below detection data carefully is

crucial to obtain more accurate estimates and also correct interpretation of the results.

6 Discussion
HIV dynamic model offers an opportunity to study HIV infection mechanism and treat-
ment development from a perspective, other than laboratory experiments. However,
research on this area is sparse mainly due to the absence of advanced statistical meth-
ods. The issue is further complicated by the lack of closed-form expression of the model
and the numerical solution always incurs errors. In contrast to other methods introduced
in Section 1, the SAEM algorithm is very efficient and fast, especially in the setting of
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below detection limit viral load by the proposed model; Logarithm of detection limit (1.398) is represented
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nonlinear mixed-effects ODEmodels. Numerical evidence shows that the algorithm con-
verges very fast, usually in a few minutes whereas other algorithms, such as the Bayesian
method, seem to be computationally expensive and also slow to converge. Note that the
simulation step of SAEM employs a similar MCMC procedure, such as the Gibbs sam-
pling and M-H step as in the Bayesian method. Nevertheless, the MCMC algorithm
converges much faster when coupled with the SAEM as compared to the employment in
a traditional Bayesian posterior sampling.
One disadvantage of the proposed method is that not all the parameters can be identi-

fied due to limitation of data on hand. We may use CD4 T cell counts in the model so that
the constraints on some parameters can be released. However, the measurements of CD4
T cells are not reliable so that the use of these data may induce significant bias. The ODE
model identifiability is an interesting topic but beyond the scope of this article. Some ref-
erences for nonlinear ODE model identifiability, including HIV dynamic models, can be
found in Jeffrey and Xia (2005), Wu et al. (2008), and Xia and Moog (2003).
In spite of this limitation, we compared the models with and without handling below

detection data and found that ignoring these data is very dangerous for interpreting
the results. The biological and clinical interpretation of the results accounting for cen-
soring mechanism is inspiring. We hope the study results in this paper may stimulate
more research in this area and contribute to the research on identifying the biological
mechanism of HIV infection as well as clinical treatment development.
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