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Abstract

Uncertainty theory is a branch of mathematics for modeling human uncertainty, and
uncertain statistics is a methodology for collecting and interpreting expert’s
experimental data by uncertainty theory. In order to estimate uncertainty distributions
via experts’ experimental data, this paper will present a method of moments and
design a numerical method to find moment estimate of unknown parameters.
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Introduction
Probability theory is a branch of mathematics concerned with analysis of random phe-
nomena. The probability distribution describes the range of possible values and the
probability of a random variable. In order to determine the probability distribution, ran-
dom statistics (i.e., the classical mathematical statistics) was proposed as a methodology
for collecting and interpreting the test data with correlative information in a system by
probability theory. On the other hand, the fuzzy set theory via membership function
initiated by Zadeh [1] is a mathematical model of vague qualitative or qualitative data,
frequently generated by means of natural language. In order to determine the member-
ship function, fuzzy statistics was presented including fuzzy point estimation by a fuzzy
decision-making approach and so on.
However, a lot of surveys showed that some information and knowledge represented

usually by human language like ‘about 1,000 km,’ ‘roughly 60 kg,’ ‘high speed,’ and ‘small
size’ are neither randomness nor fuzziness. When the sample size is too small (even no-
sample) to estimate a probability distribution, we have to invite some domain experts
to evaluate their belief degree that each event will occur. Since human beings usually
overweigh unlikely events, the belief degree may have much larger variance than the real
frequency. Perhaps some people think that the belief is a subjective probability or fuzzy
membership degree. However, the examples [2] tell us that it is inappropriate because
probability theory and fuzzy set theory may lead to counterintuitive results in this case.
In order to model this type of imprecise quantities, uncertainty theory was founded

by Liu [3] in 2007 and refined by Liu [4] in 2010 and became a branch of mathematics
based on the normality, duality, subadditivity, and product axioms. Based on Liu’s uncer-
tainty theory, some basic and important theoretical work of uncertainty theory such as
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uncertain process [5], uncertain calculus [6], uncertain differential equation [6], uncertain
logic [7], uncertain inference [8], and uncertain risk analysis [9] have been established.
Meanwhile, as an application of uncertainty theory, Liu [10] proposed a spectrum of
uncertain programming and applied uncertain programming to system reliability design,
facility location problem, vehicle routing problem, project scheduling problem, and so
on. Other references related to uncertainty theory are Gao [11], Gao et al. [12], Peng and
Iwamura [13], and Liu and Ha [14]. Nowadays, uncertainty theory was well developed
on both theory section and practice section. For exploring the recent developments of
uncertainty theory, the readers may consult the book [15].
One important issue in uncertainty theory is how to determine uncertainty distribu-

tion of an uncertain variable. In order to answer this question, uncertain statistics was
firstly presented by Liu [4] in 2010, and is a methodology for collecting and interpreting
expert’s experimental data by uncertainty theory. In uncertain statistics, Liu [4] first sug-
gested an empirical uncertainty distribution and proposed a principle of least squares as
the method for estimating the unknown parameters based on the expert’s experimental
data. After that, Chen and Ralescu [16] employed uncertain statistics to estimate the travel
distance between Beijing and Tianjin. In 2012, Wang et al. recast the Delphi method as a
process to determine the uncertainty distributions [17] and presented a method of uncer-
tain hypothesis testing for determining if the views of two domain experts are identical
(i.e., wether or not they have the same uncertainty distribution) [18].
Based on experts’ experimental data and the empirical uncertainty distribution, the

kth sample moment is defined in this paper. Then, a method of moments for estimating
the unknown parameters of uncertainty distribution is proposed. The remainder of this
paper is organized as follows. The next section is intended to introduce some concepts
in uncertainty theory as they are needed. Some basic concepts of uncertain statistics are
introduced in Section ‘Beginning of uncertain statistics.’ The uncertain moment method
for estimating parameters is proposed in Section ‘Method of moments.’ A numerical
method to find the moment estimate of unknown parameters is designed in Section
‘Numerical method.’ Finally, a conclusion is drawn in Section ‘Conclusions.’

Preliminaries
In this section, we will introduce some useful definitions about uncertain measure,
uncertain variable, uncertain moment, and so on.
Let � be a nonempty set, and be a σ -algebra over �. Each element � ∈ is called an

event. A number (�) indicates the level that � will occur. Uncertain measure was
introduced as a set function satisfying the following three axioms (Liu [3]):

Axiom 1. {�} = 1.

Axiom 2. {�} + {�c} = 1 for any event �.

Axiom 3. For every countable sequence of events {�i}, we have

{∞⋃
i=1

�i

}
≤

∞∑
i=1

{�i}.
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Although probability measure satisfies the above three axioms, probability theory is not
a special case of uncertainty theory because product probability measure does not satisfy
the following product axiom (Liu [3]):

Axiom 4. Let (�k , k , k) be uncertainty spaces for k = 1, 2, . . .. The product uncertain
measure is an uncertain measure satisfying{ ∞∏

k=1
�k

}
=

∞∧
k=1

k{�k},

where �k are arbitrarily chosen events from k for k = 1, 2, . . . , respectively.

The concept of uncertain variable was introduced by Liu [3] as a measurable func-
tion from an uncertainty space (�, , ) to the set of real numbers. The expected value
operator of an uncertain variable was defined by Liu [3] as

E[ξ ]=
∫ +∞

0
{ξ ≥ x}dx −

∫ 0

−∞
{ξ ≤ x}dx,

provided that at least one of the two integrals is finite. The kth moment of an uncertain
variable ξ is defined by E

[
ξ k
]
, where k is a positive integer.

For any x ∈ �, the function �(x) = {ξ ≤ x} is called the uncertainty distribu-
tion of uncertain variable ξ , Peng and Iwamura [13] presented a sufficient and necessary
condition of uncertainty distribution that a function � : � →[0, 1] is an uncertainty
distribution if and only if it is an increasing function except �(x) ≡ 0 and �(x) ≡ 1.
Moreover, if the inverse function �−1(α) exists and is unique for each α ∈ (0, 1), then
�(x) is called regular, and the inverse function �−1(α) is called the inverse uncertainty
distribution of ξ . If an uncertain variable ξ has regular distribution �(x) and its expected
value exists, then the expected value may be presented by the following formula:

E[ξ ]=
∫ 1

0
�−1(α)dα.

In addition, Liu [4] proved a series of operational laws of independent uncertain vari-
ables for calculating the uncertainty distribution of monotone function of uncertain
variables. By these operational laws, the uncertainty distributions of sum, difference,
product, quotient, maximum, and minimum for n uncertain variables are easy obtained.
The detail contents are shown in [4] or [15].

Beginning of uncertain statistics
Uncertain statistics is based on the expert’s experimental data rather than historical data.
One question is how to obtain expert’s experimental data. Liu [4] designed a questionnaire
survey for collecting expert’s experimental data, that is, we invite one or more domain
experts who are asked to complete a questionnaire about the meaning of an uncertain
variable ξ like ‘about 1,000 km’ individually.
We first ask the domain expert to choose a possible value x that the uncertain variable ξ

may take. Then, we quiz him ‘how likely is ξ less than x?’ and denote his belief degree by α.
Thus, we obtain an expert’s experimental data (x,α) from the domain expert. Repeating
the above process, we obtain the expert’s experimental data.
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Let (x1,α1), (x2,α2), . . . , (xn,αn) be the expert’s experimental data that meet the follow-
ing condition:

x1 < x2 < · · · < xn, 0 ≤ α1 ≤ α2 · · · ≤ αn ≤ 1. (1)

Based on the above data, Liu [4] presented the following empirical uncertainty
distribution:

�(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x < x1

αi + (αi+1−αi)(x−xi)
xi+1−xi , if xi ≤ x ≤ xi+1, 1 ≤ i < n

1, if x > xn.

(2)

Assume that an uncertainty distribution to be determined has a known functional form
with one or more unknown parameters like �(x; θ1, θ2, · · · , θp) where θ1, θ2, · · · , θp are
unknown parameters. How do we estimate those unknown parameters? Liu [4] presented
the principle of least squares, which says that the unknown parameters θi, i = 1, 2, . . . , p
are the solution of the minimization problem,

min
θ1,...,θp

n∑
i=1

(
�
(
xi; θ1, θ2, . . . , θp

)− αi
)2 . (3)

Let ξ be an uncertain variable with uncertainty distribution �(x; θ1, θ2, . . . , θp) where
θ1, θ2, . . . , θp are unknown parameters. If the uncertainty distribution �(xi; θ1, θ2, . . . , θp)
is regular, then�−1 is the inverse uncertainty distribution of ξ . Assume that we have some
expert’s experimental data (x1,α1), (x2,α2), . . . , (xn,αn) satisfying the condition (1). Then,
for any αi, we have

{
ξ ≤ �−1(αi)

} = αi, i = 1, 2, . . . , n. It means that the principle of
least squares can be changed into the following form:

min
θ1,...,θp

n∑
i=1

(
�−1 (αi; θ1, θ2, . . . , θp

)− xi
)2 , (4)

where the unknown parameters θi, i = 1, 2, . . . , p are the solution of the minimization
problem.
If the inverse uncertainty distribution of uncertain variable ξ is simple and easy to calcu-

late, we should solve the optimization problem (4) rather than the optimization problem
(3) to estimate the unknown parameters. For example, let (x1,α1), (x2,α2), · · · , (xn,αn) be
the expert’s experimental data, and the uncertain variable ξ to be determined be a normal
uncertain variable, which has the following uncertainty distribution:

�(x) =
(
1 + exp

(
π(e − x)√

3σ

))−1
, x ∈ �,

where e and σ are two unknown parameters. The inverse uncertainty distribution of
normal uncertain variable ξ is

�−1(α) = e + σ
√
3

π
ln

α

1 − α
, α ∈ (0, 1).

By solving the optimization problem (4), it is easy to obtain the following estimate
values:

ê = x̄ − σ̂

√
3

nπ

n∑
i=1

ln
αi

1 − αi
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and

σ̂ =
√
3
3

πn
x̄
∑n

i=1 ln
αi

1−αi
−∑n

i=1 xi ln
αi

1−αi(∑n
i=1 ln

αi
1−αi

)2 − n
∑n

i=1

(
ln αi

1−αi

)2
where x̄ = (x1 + x2 + · · · + xn)/n.

Method of moments
In this section, a method of moments based on expert’s experimental data is proposed
to estimate the unknown parameters. Firstly, we present the kth moment of the empiri-
cal uncertainty distribution (2), which is the uncertainty distribution of some uncertain
variable ξ .

Theorem 1. Let (xi,αi), i = 1, 2, . . . , n be the expert’s experimental data that meet the
following condition:

0 ≤ x1 < x2 < · · · < xn, 0 ≤ α1 ≤ α2 ≤ · · · ≤ αn ≤ 1. (5)

Then for any positive integer k, the uncertain variable ξ with the empirical uncertainty
distribution (2) has the kth moment

E
[
ξ k
]

= α1xk1 + 1
k + 1

n−1∑
i=1

k∑
j=0

(αi+1 − αi) x
j
ix
k−j
i+1 + (1 − αn) xkn. (6)

Proof. Since 0 ≤ x1 < x2 < · · · < xn, by (2), we have

E
[
ξ k
]

=
∫ +∞

0

{
ξ k ≥ x

}
dx

=
∫ +∞

0
kxk−1 {ξ ≥ x} dx

=
∫ +∞

0
kxk−1(1 − {ξ < x})dx

= k
∫ x1

0
xk−1(1 − {ξ < x})dx + k

n−1∑
i=1

∫ xi+1

xi
xk−1(1 − {ξ < x})dx

+ k
∫ +∞

xn
xk−1(1 − {ξ < x})dx

= k
∫ x1

0
xk−1dx + k

n−1∑
i=1

∫ xi+1

xi
xk−1(1 − {ξ < x})dx

= xk1 + k
n−1∑
i=1

∫ xi+1

xi
xk−1

(
1 − αi − (αi+1 − αi) (x − xi)

xi+1 − xi

)
dx

= kα1 + α2
k + 1

xk1 + 1
k + 1

n−1∑
i=1

k−1∑
j=1

(αi+1 − αi) x
j
i x

k−j
i+1 + 1

k + 1

n−1∑
i=2

(αi+1 − αi−1) xki

+ (1 − 1
k + 1

αn−1 − k
k + 1

αn)xkn

= α1xk1 + 1
k + 1

n−1∑
i=1

k∑
j=0

(αi+1 − αi) x
j
i x

k−j
i+1 + (1 − αn) xkn.

The theorem is proved.
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Definition 1. Let ξ be an uncertain variable. For any positive integer k, if the kth moment
of ξ exists, then E

[
ξ k
]
is called the kth theoretical moment of ξ .

Definition 2. Let (x1,α1), (x2,α2), · · · , (xn,αn) be the expert’s experimental data that
meet the condition (5). For any positive integer k,

ξ̄ k = α1xk1 + 1
k + 1

n−1∑
i=1

k∑
j=0

(αi+1 − αi) x
j
i x

k−j
i+1 + (1 − αn) xkn (7)

is called the kth sample moment.

Secondly, we introduce a method of moments for estimating the unknown parameter,
the description of the method is presented as follows.
Method of moments Let ξ be an uncertain variable with uncertainty distribution

�(x; θ1, θ2, . . . , θp) where θ1, θ2, . . . , θp are unknown parameters. Let (x1,α1),
(x2,α2), . . . , (xn,αn) be the expert’s experiment data satisfying the condition (5). Let
E
[
ξ k
]
and ξ̄ k , k = 1, 2, . . . , p be the kth theoretical and kth sample moments, respec-

tively. As a general procedure for estimating the unknown parameters θ1, θ2, . . . , θp, a
system of equations is presented:

E
[
ξ k
]

= ξ̄ k , k = 1, 2, . . . , p. (8)

Since E
[
ξ k
] = k

∫ +∞
0 xk−1(1 − �(x; θ1, θ2, . . . , θp))dx, the above system of equations is

equivalent to the following form:

k
∫ +∞

0
xk−1(1 − �(x; θ1, θ2, . . . , θp))dx = ξ̄ k , k = 1, 2, . . . , p. (9)

A solution of the equations, θ1, θ2, . . . , θp, is called a moment estimate. We denote the
estimate values by θ̂1, θ̂2, . . . , θ̂p, respectively.

Example 1. Assume (xi,αi), i = 1, 2, . . . , n are the expert’s experimental data satisfying
the condition (5) and the uncertainty distribution of uncertain variable ξ has a functional
form with one unknown parameter a as follows:

�(x; a) = ax
1
2 , a > 0. (10)

By Equation 8, the estimate value of the unknown parameter a is the solution of the
equation

E[ξ ]= ξ̄ ,

where ξ̄ is defined by Equation 7. Since E[ξ ]= 1
3a2 , we have

1
3a2

= α1 + α2
2

x1 +
n−1∑
i=2

αi+1 − αi−1
2

xi + (1 − αn−1 + αn
2

)xn. (11)

Hence, we obtain the estimate value of the unknown parameter a,

â =
{
3
[

α1 + α2
2

x1 +
n−1∑
i=2

αi+1 − αi−1
2

xi + (1 − αn−1 + αn
2

)xn

]}− 1
2

. (12)
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Assume that the expert’s experiment data are obtained as follows:(
1
16

,
1
4

)
,
(
1
4
,
1
2

)
,
(
16
25

,
4
5

)
.

By Equation 12, we have the moment estimate value

â = 1.0817,

and the moment estimate distribution is

�(x) = 1.0817x
1
2 .

Example 2. Let ξ be an uncertain variable with uncertainty distribution

�(x; a, b) = ax + b, (a > 0) (13)

where a, b are two unknown parameters. Assume (xi,αi), i = 1, 2, . . . , n are the expert’s
experimental data satisfying the condition (5). By Equation 8, we will solve the following
system of equations:⎧⎨

⎩
E[ξ ]= ξ̄

E
[
ξ2
] = ξ̄2

,

where ξ̄ and ξ̄2 are defined by Equation 7. In addition, the inverse uncertainty distribution
is �−1(α) = α−b

a . We have

E[ξ ]=
∫ 1

0
�−1(α)dα = 1 − 2b

2a
,

and

E
[
ξ2
] =

∫ 1

0
(�−1(α))2dα = 1 + 3b2 − 3b

3a2
.

Thus, we have the following system of equations⎧⎨
⎩

1−2b
2a = ξ̄

1+3b2−3b
3a2 = ξ̄2.

Then the unique solution of the above equations⎧⎨
⎩ â = 1

2
√
3

(
ξ̄2 − (ξ̄ )2

)− 1
2

b̂ = 1
2 (1 − 2âξ̄ )

(14)

is the moment estimate value of unknown parameters a and b, and the moment estimate
distribution is

�(x) = âx + b̂.

Assume that we have the following expert’s experimental data:

(0.4, 0.1), (1.0, 0.2), (1.5, 0.3), (2.0, 0.4), (3.0, 0.7), (4.0, 0.9).

From Equations 7 and 14, we have moment estimate values â = 0.2442, b̂ = −0.0519
and the moment estimate distribution is �(x) = 0.2442x − 0.0519.
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Numerical method
In this section, we introduce Newton’s method to estimate the moment estimate value. A
general algorithm is proposed to solve the parameter estimate problem as follows.
Assume (xi,αi), i = 1, 2, . . . , n are the expert’s experimental data satisfying the condi-

tion (5) and �(x; θ1, θ2, . . . , θp) is the uncertainty distribution of uncertain variable ξ with
unknown parameters θ1, θ2, . . . , θp. The numerical method is to solve the Equations 8,

E
[
ξ k
]

= ξ̄ k , k = 1, 2, . . . , p

where ξ̄ , ξ̄2, . . . , ξ̄p are the sample moments, which are constants calculated by
Equation 7.
Denote a function F : Rp → R

p,

F
(
θ1, θ2, · · · , θp

) =

⎛
⎜⎜⎜⎜⎜⎜⎝

F1
(
θ1, θ2, · · · , θp

)
F2
(
θ1, θ2, · · · , θp

)
· · ·

Fp
(
θ1, θ2, · · · , θp

)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where

Fk
(
θ1, θ2, . . . , θp

) = k
∫ +∞

0
xk−1 (1 − �

(
x; θ1, θ2, . . . , θp

))
dx − ξ̄p, k = 1, 2, . . . , n.

The Equation 8 is equivalent to F(θ1, θ2, . . . , θp) = 0.
If the function F is differentiable and the Jacobian matrix of F is easily computed, the

procedure can be summarized as follows:

Step 1. Estimate the kth sample moments by Equation (7), k = 1, 2, . . . , p.
Step 2. Give an initial value of parameters θ0 =

(
θ01 , θ02 , . . . , θ0p

)
.

Step 3. Compute the converse matrix JF
(
θk
)−1 of the Jacobian matrix JF

(
θk
)
, k =

0, 1, 2, . . ., where

JF
(
θk
)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂F1
∂θ1

∂F1
∂θ2

· · · ∂F1
∂θp

∂F2
∂θ1

∂F2
∂θ2

· · · ∂F2
∂θp

· · · · · · · · · · · ·
∂Fp
∂θ1

∂Fp
∂θ2

· · · ∂Fp
∂θp

⎞
⎟⎟⎟⎟⎟⎟⎠
. (15)

The integrals in the equation can be computed by some numerical methods.
Step 4. Calculate θk+1 by the following equation:

θk+1 = θk − JF
(
θk
)−1

F
(
θk
)
. (16)

Step 5. Repeat the third to fourth steps when |θk+1 − θk | > α and k < M, where α and
M are given positive numbers.
Step 6. Report the last θn as the solution, if |θn − θn−1| ≤ α.

Remark 1. If the distribution �
(
x; θ1, θ2, · · · , θp

)
is continuous differentiable of the

parameters, we have

∂
∫ +∞
0

(
1 − �

(
x; θ1, θ2, · · · , θp

))
dx

∂θ1
= −

∫ +∞

0

∂�
(
x; θ1, θ2, · · · , θp

)
∂θ1

dx.
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Remark 2. If the function F is not differentiable or the Jacobian matrix is hard to
compute, we can compute

Fi
(
θ1, · · · , θj + hj, · · · , θp

)− Fi
(
θ1, · · · , θj, · · · , θp

)
hj

instead of

∂Fi
(
θ1, · · · , θj, · · · , θp

)
∂θj

,

where i, j = 1, 2, . . . , p, and h1, h2, . . . , hp are given small positive numbers.

Example 3. Assume that an uncertainty distribution has a lognormal form with two
unknown parameters e and σ , that is,

�(x|e, σ) =
(
1 + exp

(
π(e − ln x)√

3σ

))−1
,

and the expert’s experimental data are (0.6, 0.1), (1.0, 0.3), (1.5, 0.4), (2.0, 0.6), (2.8, 0.8),
(3.6, 0.9). We have

F(e, σ) =

⎛
⎜⎜⎜⎝

∫ +∞

0
1 −

(
1 + exp

(
π(e − ln x)√

3σ

))−1
dx − 1.86

2
∫ +∞

0
x
(
1 −

(
1 + exp

(
π(e − ln x)√

3σ

))−1
)
dx − 3.56

⎞
⎟⎟⎟⎠

and

JF(e, σ) =

⎛
⎜⎜⎜⎝
∫ +∞

0

π f (x|e, σ)√
3σ
(
1 + f (x|e, σ)

)2 dx ∫ +∞
0

π(e−ln x)f (x|e,σ)√
3σ 2(1+f (x|e,σ))

2 dx

2
∫ +∞

0
x

π f (x|e, σ)√
3σ
(
1 + f (x|e, σ)

)2 dx 2
∫ +∞
0 x π(e−ln x)f (x|e,σ)√

3σ 2(1+f (x|e,σ))
2 dx

⎞
⎟⎟⎟⎠ ,

where f (x|e, σ) = exp
(

π(e−ln x)√
3σ

)
. All of these integrals are computed by Simpson

formula, and the initial value is (0.6, 0.5).
A run of the algorithm shows that the approximate solution of the equation F(e, σ) = 0

is ê = 0.50 and σ̂ = 0.47, which leads to the moment estimate distribution

�(x|0.50, 0.47) =
(
1 + exp

(
π(0.50 − ln x)√

3 × 0.47

))−1
.

Conclusions
Uncertain statistics is a methodology for collecting and interpreting expert’s experimental
data by uncertainty theory. The method of moments in this paper is a new way to esti-
mate the unknown parameters in uncertainty distribution. This method depends on the
expert’s experimental data and is easy to be realistic in the real experiment.
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