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Abstract

Fuzzy knowledge-based systems (FKBS) are significantly applicable in the area of
control, classification, and modeling, having knowledge in the form of fuzzy if-then
rules. Type-2 fuzzy theory is used to make these systems more capable of dealing with
inherent uncertainties in real-world problems. In this paper, the authors have proposed
a genetic tuning approach named lateral displacement and expansion/compression
(LDEC) in which α and β parameters are calculated to adjust the parameters of interval
type-2 membership functions. α tuning deals with lateral displacement, whereas β
tuning carries out compression/expansion operation. The interpretability and accuracy
features are considered during the development of this approach. The experimental
results show the performance of the proposed approach.
Introduction
Fuzzy systems, more specifically fuzzy knowledge-based systems (FKBS) or fuzzy rule-

based systems (FRBS), are significantly applicable in areas like control [1], classification

[2], and modeling [3]. The essential feature of FKBS is the incorporation of human expert

knowledge which is in the form of fuzzy [4] extended if-then rules. The major compo-

nents of FKBS are fuzzification interface, inference engine, knowledge base, and defuzzifi-

cation interface [5]. Knowledge base (KB) is composed of two components: data base

(DB) and rule base (RB). DB is the repository of membership functions (MFs) and scaling

functions (SFs) representing linguistic values, whereas RB is the collection of knowledge

related to problems in terms of fuzzy if-then rules.

The design and implementation of KB can be assumed as an optimization task. Hence,

genetic algorithms (GAs) are used for learning and tuning of various parameters of KB

due to their strong capacity of searching in a complicated and poorly defined search

space. Such an application of GAs in developing FKBS is specifically named as genetic

fuzzy systems (GFS) [5-8]. GFS have been used for handling various types of applications

like predicting surface finish in ultraprecision diamond [9], bioaerosol detector [10], clas-

sification of intrusion attacks from a network traffic data [11], tool wear monitoring [12],

smart base isolation system [13], etc.

Fuzzy systems for applications like in economics, medicine, etc. are to be developed

such that the users may understand how they work by inspecting their KB and func-

tioning. Technically, this feature is called ‘interpretability’ [14] which is the subjective

feature of a fuzzy system showing how much the system is readable/understandable to
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the users by observing its functionality. Accuracy [15] is another feature showing the

closeness between the real model and the developed model. Interpretability and accur-

acy are contradictory with each other, i.e., one can be improved at the cost of the other,

denoted by ‘interpretability-accuracy trade-off ’ (I-A Trade-Off ) [16-19]. For the above

applications, interpretability as well as accuracy is required to be maintained at the

higher level by maintaining a good I-A Trade-Off.

Interpretability and accuracy features are directly related to the approaches of develop-

ing FKBS which are domain expert method and experimental data method. In the first

method, domain experts of the problem are contributing their knowledge to develop the

RB of the FKBS. Such FKBS are much more interpretable. In the second method, RB is

generated by using some machine learning method applied on the data set of the particu-

lar problem. The FKBS developed by the second method are less interpretable but are

more generic. An idea of generating FKBS with the experimental data method guided by

the domain expert method is good enough toward achieving an I-A Trade-Off with higher

levels of interpretability as well as accuracy.

The special interest of this paper is the use of interval type-2 fuzzy systems (IT2FS)

[20]. The membership functions are tuned using GAs, which leads toward a new sys-

tem, the ‘type-2 genetic fuzzy system’ (T2GFS).

The paper continues with the ‘Interpretability issues in FKBS’ section in which the inter-

pretability issues of FKBS are discussed. The ‘Tuning and learning operations in FKBS’

section introduces the basics of tuning and learning approaches. The fundamentals of type-

2 fuzzy systems are discussed in the ‘Type-2 fuzzy systems’ section. A new lateral displace-

ment and expansion/compression (LDEC) tuning approach is discussed in the ‘Proposed

LDEC tuning approach’ section. The genetic representation of KB and the proposed tuning

approach is discussed in the ‘Genetic representation of knowledge base’ section.

Experimental results are discussed in the ‘Experiments and results’ section.
Interpretability issues in FKBS

Interpretability [14,21-23] and accuracy [15] are the two important features considered

during the design of fuzzy systems. Basically, interpretability is identified as a feature to

understand the significance of something [21], and it is also known with other names like

comprehensibility, intelligibility, transparency, readability, understandability, etc. Also, the

quantification of interpretability is a highly subjective task depending on various parame-

ters like experience, preference, and the knowledge of the person who interprets the

system functionality.

Linguistic fuzzy modeling (LFM) and precise fuzzy modeling (PFM) [24] are two model-

ing approaches of fuzzy systems. In LFM, fuzzy models are developed by means of linguis-

tic FRBS which are called Mamdani-type FKBS [25] mainly focusing on interpretability.

On the other hand, PFM is developed considering the accuracy parameter and called

Takagi-Sugeno FKBS [26]. Accuracy improvement in LFM [15] and interpretability im-

provement in PFM [14] are carried out to achieve the desired I-A Trade-Off.

Various approaches have been developed to deal with different issues of the interpret-

ability of fuzzy systems. These are discussed in Table 1.

Many other indexes and methodologies have been developed for assessing the inter-

pretability, which are considered in this paper. These are (1) number of rules (NOR),



Table 1 Interpretability in type-1 FKBS

Year Authors Description of work Reference

2000 Y. Jin Interpretability improvement in high-dimensional
fuzzy systems

[23]

2001 S. Guillaume Automatic rule generation and structure
optimization for maintaining interpretability

[27]

2005 R. Mikut et al. Maintaining interpretability in data-based fuzzy system
development along with user-controllable trade-off in
between interpretability and accuracy

[28]

2006 R. Alcala et al. Seven hybrid techniques for developing accurate
and interpretable FKBS

[16]

2008, 2012 J. M. Alonso et al. Highly interpretable linguistic knowledge (HILK)
utilizing the features of LFM and PFM

[29,30]

2008 S. M. Zhou and J. A. Gan Identification of two interpretability levels:
low level on the fuzzy set and high level on the fuzzy rule

[31]

2008 C. Mencar and A. M. Fanelli Introduction of semantic constraints,
distinguishability, coverage, convexity, and normality

[32]

2009 J. M. Alonso et al. Conceptual framework for assessing the interpretability
based on two issues: ‘description’ and ‘explanation’

[22]

2011 M. J. Gacto et al. A proposal of double-axis taxonomy: ‘complexity and
semantic interpretability’ and ‘rule base and fuzzy partition’

[33]

2013 M. Fazzolari et al. I-A Trade-Off handling with instance selection techniques [34]
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(2) total rule length (TRL) - the sum of the number of premises in all the rules, and (3)

average rule length (ARL) - calculated by TRL/NOR.

Nauck's index (NI) [35] has been proposed to assess the interpretability of fuzzy rule-

based classifiers. It is given by

INauck ¼ comp � part� cov

where comp ¼ number of classes
total number of premises (it measures the complexity), part ¼ 1

number of labels−1

(it is the average normalized partition index), and cov is the average normalized cover-

age degree of the fuzzy partition. For strong fuzzy partition (SFP), it is equal to 1.

Similarly, a new global fuzzy index has been proposed in [36]. In this approach, the

index has been computed as the outcomes of the inference of hierarchical fuzzy system.

Tuning and learning operations in FKBS

During the design of genetic FKBS, tuning and learning operations (Figure 1) are car-

ried out to improve the performance of FKBS [5,6]. In the tuning operation, the param-

eters of DB constituents, MFs and SFs, are adjusted, maintaining no change in the
Figure 1 Tuning and learning approaches for the FKBS.
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previously defined RB, whereas in the learning operation, the parameters of RB are

changed simultaneously with the DB. There are three main approaches for carrying out

learning operations: the Pittsburgh approach [37], Michigan approach [38], and itera-

tive rule learning approach [39].

In the literature, two types of approaches are found for tuning operations: one is re-

lated to applying SFs for handling linguistic hedges and the other is the tuning of the

MF parameters. In this paper, the second approach of MF tuning is considered.

The scaling functions are responsible for adjusting the universe of discourse of input

and output variables to the domain. The parameters used for tuning the scaling func-

tions are scaling factor, upper and lower bounds (linear scaling functions), and con-

traction/dilation parameters (non-linear scaling function). The linguistic hedges are

used and applied on the tuned MFs as discussed in [40-42]. The main linguistic hedges

are as follows: very, more-or-less, extremely, very-very, positively, and negatively. Lin-

guistic hedges are playing the role of adjectives and adverbs in the languages respon-

sible for changing the qualitative linguistic statements.

Apart from tuning, learning, and interpretability issues in the design of FKBS, sev-

eral other burning issues are like dealing with the high dimensionality of the data

along with handling imbalanced data sets (Figure 2).
Type-2 fuzzy systems

To implement FKBS, type-2 fuzzy sets (T2FS) [43,44] are used having more capacity to

deal with inherent uncertainties in the system to be developed. General type-2 fuzzy

sets require high computational cost and type reduction complexity; hence, interval

type 2 fuzzy sets [45-48] are preferred to model and implement various problems.

T2FS which is denoted by A* is characterized by MF μA� x; uð Þ, where x∈X and u ∈ Jx⊆ [0, 1]:

A� ¼ x; uð Þ; μA� x; uð Þ ∀ x∈X; ∀u∈ Jx⊆ 0; 1½ �gjf

Here, 0≤μA� x;uð Þ≤1; when all μA� x; uð Þ ¼ 1, then A* is an interval type-2 fuzzy set.
Figure 2 Issues and challenges in fuzzy knowledge-based system design.



Figure 3 Block diagram of type 2 fuzzy systems [49].
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A type-2 fuzzy system [49] is identified as a FLS with if-then rules in which at least

one linguistic term is a T2FS. Normally, a type-2 fuzzy system differs from a type-1

fuzzy system by having one extra component at the output processing, which is called

type reducer (Figure 3). Also, in the type 2 fuzzy system, the antecedent and conse-

quent parts of the rule must have at least one T2FS.
Proposed LDEC tuning approach

In this section, the authors have proposed a LDEC tuning approach for adjusting the

parameters of interval type-2 fuzzy MFs. The two-phase procedure of the tuning ap-

proach is given in Figure 4. The first phase includes α tuning operation, and in the sec-

ond phase, β tuning operation is performed.

α tuning operation

In the α tuning operation, all the coordinates of IT2MF are shifted by parameter α and the

new coordinates would be as follows: a' = a ± α, b' = b ± α, c' = c ± α, d' = d ± α, e' = e ± α,

depending on the positive and negative values of α. When the value of parameter α is posi-

tive, it leads to a tuned MF with forward lateral displacement (Figure 5a), and the negative

value of α leads to backward lateral displacement (Figure 5b). The value of α is calculated

as given below.
Figure 4 Two-tier tuning approach.



Figure 5 α tuning approach. (a) Forward lateral displacement. (b) Backward lateral displacement.
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valα ¼ 1
2

vale−vala
vale

� valc−valað Þ
� �

β tuning operation

In the β tuning approach, parameter β is applicable on parameters a, b, d, and e. After

the tuning operation, the coordinates would be as follows:

a 0 ¼ aþ β; b 0 ¼ bþ β; d 0 ¼ d−β; e 0 ¼ e−β if β > 0 thencompressionor if

β < 0 thenexpansion

The position of c is assumed to be fixed. The value of β is calculated as follows:

valβ ¼ 1
4

valc−vala
vale

� �
� valc

A positive value of β leads to compression (Figure 6a), whereas a negative value

performs the expansion operation (Figure 6b).

Genetic representation of knowledge base

GAs [50,51] are popular search techniques for ill-defined and complex search spaces. They

are based on natural evolution. The initial population G(0) is generated with chromosomes

representing DB and RB information and subsequently goes under evolution. During evolu-

tion, the next generation G(n + 1) is generated by applying crossover and mutation operators



Figure 6 β tuning approach. (a) Compression. (b) Expansion.
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on the generation G(n). On each generation, each individual is evaluated by a fitness function.

A termination condition is set to stop the evolution process.

In [52], inter-valued fuzzy sets (IVFS) have been used to implement a linguistic

fuzzy rule-based classification system based on a new interval fuzzy reasoning

method along with a new fuzzy rule learning process, called IVTURS-FARC.

In [53], the performance of a fuzzy rule-based classification system is improved using

an interval-valued fuzzy set and a tuning approach using genetic algorithm. The uncer-

tainty is modeled by the function ‘weak ignorance.’

Various parameters of type-2 fuzzy systems are optimized using GAs and other bio-

inspired optimization algorithms. Few of these works are summarized in Table 2.

New proposed KB representation using GA

Encoding scheme

A two-folded encoding scheme has been presented here to represent the DB

information:

CRGA ¼ CRM þ CRT

where CRM encodes the membership function and CRT encodes the tuning information

for the membership function.

Each MF would be represented by a five-tuple representation scheme (Figure 7). The

ith MF of the jth input will be represented by MFi(xj) and mathematically would be

expressed as shown in Figure 7.

The following rule is encoded as shown in Figure 8: IF x1 is MFi1(x1) … and xn is

MFin(xn), THEN y is MFin+1(y). It is represented by CRR.



Table 2 Type-2 fuzzy system

Year Authors Description Reference

2006 D. Wu and W. W. Tan Less computational expensive type-2 FLC is
developed for real-time applications

[54]

2006 D. Wu and W. W. Tan GAs are used to evolve type-2 FLC [55]

2007 R. Sepulveda et al. Feedback control systems for a non-linear plant
using type-1 and type-2 fuzzy logic controllers

[56]

2009 R. Martinez et al. Type-2 fuzzy systems and GAs are used to implement
track controller for unicycle mobile robot

[57]

2009 M. H. F. Zarandi et al. An interval type-2 fuzzy system has been
developed for stock price analysis

[58]

2011 O. Castillo et al. An interval type-2 fuzzy logic controller has
been developed using evolutionary algorithms

[59]

2012 O. Castillo et al. Ant colony optimization (ACO), particle swarm optimization
(PSO), and GAs are used to optimize the MF parameters
of a fuzzy logic controller

[60]

2012 D. Hidalgo et al. A footprint of uncertainty (FoU)-based type-2
fuzzy system optimization has been developed

[61]

2012 O. Castillo and P. Mellin A review on the optimization methods of type-2
fuzzy systems using bio-inspired computing

[62]

2012 R. Hosseini et al. Automatic tuning and learning approach for type-2
fuzzy systems has been proposed applied to
lung CAD classification system

[63]
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The real coded chromosomes are used to encode the DB tuning information (CRT)

(Figure 9). For the ith input variable, the chromosome will be represented as shown in

Figure 9 if there are n MFs for one variable.

Figure 10 gives the description of the tuning operation on MFs using α and β

parameters.

Fitness function

The chromosomes are evaluated with the fitness function that considers the minimization

of mean squared error (MSE):

MSE ¼ 1
2:M

XM
i¼1

F ai
� �

−bi
� �2�

where the size of the data set is M. F(ai) is the output obtained from FRBS for the ith

example. The desired output is bi.

GA operators

To perform GA operations, the following GA operators are used:

� Selection: Tournament selection has been used for the selection operation.

� Crossover: Crossover is the operator that generates new offspring by integrating

multiple parents. A simple two-point crossover has been applied to all the

chromosomes.

� Mutation: This operator is used to maintain the diversity in the solutions from

one generation to another generation. This operator changes the values of one

or more bits in the chromosomes. In this proposed approach, a uniform

mutation operator has been used in which the bits of chromosomes are altered

within uniform random values at user-specified ranges.



Figure 10 α-β (LDEC) tuning shown with MFs.

Figure 9 Chromosome representation for DB tuning information.

Figure 8 Chromosome encoding in the RB.

Figure 7 Chromosome encoding for the MF representation.
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Table 3 Description of data set

Serial number Characteristics Value

1 Type Classification

2 Number of attributes 3

3 Number of instances 306

4 Attribute characteristics Integer
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Experiments and results
The RB generation methods used in the experiments are the decision tree (DT) method,

Wang-Mendel method [64], and fast prototyping algorithms. The experiments are sup-

ported by the open-access free software tool ‘Guaje’ [29,65] for type-1 fuzzy system

implementation.

The proposed approach has been tested on Haberman's Survival Data Set. This data set is

available at the UCI Machine Learning Repository [66]. The data set is prepared on behalf

of the test cases of survivals of patients who have undergone breast cancer surgery. The

major characteristics of the data set are tabulated in Table 3.
Figure 11 Input (a, b, c) and output (d) variables. (a) Age. (b) Year of operation. (c) Number of positive
auxiliary nodes detected. (d) Survival.



Table 4 Accuracy and interpretability measures

Parameter E1 E2 E3 E4

Accuracy

MSE 0.121 0.112 0.117 0.092

RMSE 0.491 0.474 0.483 0.428

Interpretability

NI 0.016 0.016 0.009 0.016

ARL 2.839 2.773 2.69 2.652

NOR 31 22 42 23

TRL 88 61 113 61

AIFR 3.902 4.964 6.199 4.075

MSE, mean square error; RMSE, root-mean-square error; NI, Nauck's index; ARL, average rule length; NOR, number of rules;
TRL, total rule length; AIFR, average inferential fired rule.
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The IT2MF for the data set input and output are given in Figure 11a,b,c,d.

Type-1 fuzzy system implementation

The values of accuracy and interpretability measures calculated in the following experiments

are given in Table 4 and Figure 12:

� Experiment 1 (E1)
Fuzzy partition method: hierarchical fuzzy partition (HFP) and rule generation

method: Wang-Mendel method

� Experiment 2 (E2)

Fuzzy partition method: strong fuzzy partition (SFP) and rule generation method:

Wang-Mendel method

� Experiment 3 (E3)

Fuzzy partition method: HFP and rule generation method: fuzzy decision trees

� Experiment 4 (E4)

Fuzzy partition method: SFP and rule generation method: Wang-Mendel method
Figure 12 Interpretability and accuracy parameters.



Table 5 α and β parameters

Serial number Variable name α value β value

1 Age 2.785 1.12

2 Year of operation 0.184 0.918

3 Number of auxiliary nodes 13.75 3.42

Table 6 Results of experiment 5

Parameter Value

Accuracy

MSE 0.094

RMSE 0.432

Interpretability

NI 0.019

ARL 18

NOR 54

TRL 2.98

AIFR 3.876

Table 7 Results of experiment 6

Parameter Value

Accuracy

MSE 0.081

RMSE 0.398

Interpretability

NI 0.029

ARL 2.615

NOR 13

TRL 34

AIFR 2.02

Table 8 Comparative results

Method Number of rules Total number of instances Number of wrong classification MSE

WM 18 100 22 0.11

FDT 14 100 20 0.10

WM + LDEC 24 100 16 0.08

FDT + LDEC 22 100 14 0.07

WM, Wang-Mendel; FDT, fuzzy decision trees.
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Type 2 fuzzy system implementation

The values of tuning parameters α and β calculated in the experiment are given in Table 5.

� Experiment 5 (E5)
In this experiment (Table 6), the parameters of the genetic algorithm are as follows:

� Number of generations = 2,000

� Size of population = 70

� Tournament size = 2

� Size of population = 70

� Mutation probability = 0.1

� Crossover probability =0.5

Initial rules are generated by using the Wang-Mendel method.

� Experiment 6 (E6)

In this experiment (Table 7), the initial rules are generated by a fuzzy decision tree

with the following parameter settings:

� Minimum cardinality of leaf = 1

� Coverage threshold = 0.9

� Minimum deviance gain = 0.001

� Minimum significant level = 0.2

� Pruning condition = yes

The genetic algorithm parameters are the same as those in experiment 5.

The result comparisons of the proposed approach are outlined in Table 8.

Conclusions
Type-2 fuzzy systems are strongly capable of modeling uncertainties in FKBS than type1

fuzzy systems using three-dimensional membership function representation. General

type-2 fuzzy systems are deteriorating the interpretability of the systems, so IT2FS have

been preferred to implement the proposed model with good interpretability.

The tuning and learning operations in the development of fuzzy systems playa vital

role in improving their performance. This is considered as an optimization task and

dealt properly with the application of evolutionary approaches, like GAs. The proposed

tuning approach LDEC adjusts the parameters of interval type-2 fuzzy membership

functions. This approach is based on the lateral displacement, expansion, and compres-

sion operations on the MFs. The proposed tuning approach is interpretable and the ex-

perimental results are found satisfactory.

Abbreviations
DB: data base; FKBS: fuzzy knowledge-based system; GAs: genetic algorithms; GFS: genetic fuzzy systems;
KB: knowledge base; MFs: membership functions; RB: rule base; SFs: scaling functions.
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