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Abstract

Purpose: The aim of this paper is to develop a mean-entropy-skewness stock
portfolio selection model with transaction costs in an uncertain environment.

Methods: Since entropy is free from reliance on symmetric probability distributions
and can be computed from nonmetric data, it is more general than others as a
competent measure of risk. In this work, returns of securities are assumed to be
uncertain variables, which cannot be estimated by randomness or fuzziness. The
model in the uncertain environment is formulated as a nonlinear programming
model based on uncertainty theory. Also, some other criteria like short-and
long-term returns, dividends, number of assets in the portfolio, and the maximum
and minimum allowable capital invested in stocks of any company are considered.
Since there is no efficient solution methodology to solve the proposed model,
assuming the returns as some special uncertain variables, the original portfolio
selection model is transformed into an equivalent deterministic model, which can
be solved by any state-of-the-art solution methodology.

Results: The feasibility and effectiveness of the proposed model is verified by a
numerical example extracted from Bombay Stock Exchange, India. Returns are
considered in the form of trapezoidal uncertain variables. A genetic algorithm is used
for simulation.

Conclusions: The efficiency of the portfolio is evaluated by looking for risk
contraction on one hand and expected return and skewness augmentation on the
other hand. An empirical application has served to illustrate the computational
tractability of the approach and the effectiveness of the proposed algorithm.

Keywords: Uncertainty modeling; Mean-entropy-skewness portfolio selection model;
Uncertain variables; Trapezoidal uncertain variable; Genetic algorithm
Introduction
The Markowitz [1] formulation of modern portfolio theory has been the most impact-

making development in mathematical finance management to date. Since returns are

uncertain in nature, the allocation of capital in different risky assets to minimize the

risk and to maximize the return is the main concern of it.

In most of the significant works on portfolio selection, the first-order moment of

return distribution about the origin, i.e., the mean, quantifies the return, and the

second-order moment about the mean, i.e., the variance, quantifies the risk.
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Consideration of variance as risk is erroneous as it equally suggests penalties for up

and down deviations from the mean. To face this problem, Markowitz [2] recom-

mended semi-variance, a downside risk measure. Another alternative definition of risk

is the probability of an adverse outcome [3]. The popular risk measure value at risk

[4,5] is in fact an alternative expression of the definition by Roy [3]. Different authors

like Philippatos and Wilson [6], Philippatos and Gressis [7], Nawrocki and Harding [8],

Simonelli [9], Huang [10], Qin et al. [11], and Bhattacharyya et al. [12] used entropy as

an alternative measure of risk to replace the variance proposed by Markowitz [1]. Un-

certainty causes loss and so investors dislike uncertainty. Since entropy is a measure of

uncertainty, it is used to measure risk. Entropy is more general than others as an effi-

cient measure of risk because entropy is free from reliance on symmetric distributions

and can be computed from nonmetric data.

One of the important theoretical difficulties of these studies is that they assume that

asset returns are normally distributed or the utility function is quadratic or that the

higher moments are irrelevant to the investors' decision. However, some experimental

studies show that portfolio returns are generally not normally distributed. As a result, a

natural extension of the mean-variance model is to add the skewness as a factor for

consideration in portfolio management. The importance of higher order moments in

portfolio selection was suggested by Samuelson [13]. However, considerations of skew-

ness in portfolio selection problem were started by 1990 and were done by Lai [14],

Konno and Suzuki [15], Chunhachinda et al. [16], Liu et al. [17], Prakash et al. [18],

Briec et al. [19], Yu et al. [20], Li et al. [21], Bhattacharyya et al. [22], Bhattacharyya

and Kar [23,24], Bhattacharyya [25], and others. Consideration of a mean-entropy-

skewness model in portfolio selection problem is introduced by Bhattacharyya et al.

[12]. They have constructed three portfolio selection models in fuzzy environment

using the credibility theory approach.

In most of the abovementioned research works on portfolio selection, the common

assumptions are that the investor has enough historical data and that the situation of

asset markets in the future can be reflected with certainty by asset data in the past.

However, it cannot always be made with certainty. Basically, the usual feature of a

financial environment is uncertainty. Mostly, it is realized as risk uncertainty and is

modeled by stochastic approaches. However, the term uncertainty has a second aspect-

vagueness (imprecision or ambiguity), which can be modeled by fuzzy methodology. In

this respect, to tackle the uncertainty in the financial market, stochastic-fuzzy and

fuzzy-stochastic methodologies are extensively used in portfolio modeling. Authors like

Konno and Suzuki [15], Leon et al. [26], Vercher et al. [27], Bhattacharyya et al.

[12,22], Dey and Bhattacharyya [28], etc. used fuzzy numbers to replace uncertain

returns of securities, and they define portfolio selection as a mathematical program-

ming problem in order to select the best alternative. Huang [29] measures portfolio risk

by credibility measure and proposed two credibility theory-based mean-variance

models. Huang [30] also proposed a mean-semi-variance model for describing the

asymmetry of fuzzy returns. She extends the risk definition of variance and chance to a

random fuzzy environment and formulates optimization models where security returns

are fuzzy random variables.

So, in attempts dealing with portfolio selection problems, randomness and fuzziness

are considered as the two basic types of uncertainty contained in security returns. It
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has become a common practice that when security returns cannot be reflected by his-

torical data, fuzzy variables can be used to show experts' knowledge and estimation of

security returns. However, illogicality will come into view if fuzzy variables are used to

describe the subjective estimation of security returns. For example, a stock return is

considered as a triangular fuzzy variable ξ = (−0.2, 0.3, 0.7). Using possibility theory (or

credibility theory), the return is exactly 0.3 with belief degree 1 in possibility measure

(or 0.5 in credibility measure). However, this conclusion is unacceptable because the

belief degree of exactly 0.3 is almost 0. In addition, the return being exactly 0.3 and not

exactly 0.3 has the same belief degree in either possibility measure or credibility meas-

ure, which implies that the two events will happen equally likely. This conclusion is

quite astonishing and hard to accept.

Again, philosophically, though randomness and fuzziness are two basic types to rep-

resent uncertain phenomena, in real life, there are some situations where uncertainty

behaves neither randomly nor fuzzily. For example, the occurrence chance of a security

price falling in the interval of [100, 110] is 30%, and the occurrence chance of the se-

curity price in the interval of [110, 120] is 20%. Then what is the occurrence chance of

the security price in the interval of [100, 120]? A survey shows that some people believe

that the occurrence chance should be somewhere that is not less than 30% but not

greater than 50%. In this case, the security price is neither random nor fuzzy. Recently,

Liu [31] proposed an uncertain measure and developed an uncertainty theory, which

can be used to handle subjective imprecise quantity. Much research works have been

done on the development of uncertainty theory and related theoretical works. Though

some considerable amounts of publications have been done in the field of uncertainty

theory, not much work has been done in the portfolio selection problem. Huang [32]

proposed a mean-risk model for uncertain portfolio selection. Yan [33] found out the

deterministic forms of mean-variance portfolio section models corresponding to differ-

ent special uncertain variables like rectangular uncertain variable, triangular uncertain

variable, trapezoidal uncertain variable, and normal uncertain variable. In this study, se-

curity returns are considered as uncertain variables, which are characterized by identifi-

cation functions, and instead of possibility/credibility measure, uncertain measure is

used to handle the uncertain events.

Not all the relevant information for an investment decision can be confined in terms

of explicit return, risk, and skewness. By capturing additional and alternative decision

criteria, a portfolio that is dominated with respect to expected return, skewness, and

risk may frame for the shortfall in these three important factors by a very good act on

one or several other criteria. As a result, portfolio selection models that consider more

criteria than the standard expected return and variance objectives of the Markowitz

model have become well liked. Ehrgott et al. [34] proposed a model having five criteria,

viz., short-and long-term return, dividend, ranking, and risk, and used a multicriteria

decision making approach to solve the portfolio selection problem. Fang et al. [35] pro-

posed a portfolio rebalancing model with transaction costs based on fuzzy decision the-

ory considering three criteria: return, risk, and liquidity.

The main focus of this paper is to propose a mean-entropy-skewness portfolio selec-

tion framework with transaction cost having returns in the form of uncertain variables.

In addition, it incorporates some useful constraints in the model to make the model

more realistic. In addition, this paper provides a real application by using data from
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Bombay Stock Exchange (BSE), where we consider returns as trapezoidal uncertain

variables.

The rest of the paper is organized as follows. We review the necessary knowledge about

uncertainty variables and develop some essential results in the ‘Uncertainty theory: related

topics’ section. In the ‘Mean-entropy-skewness model formulation’ section, a tri-objective

mean-entropy-skewness portfolio selection model is formulated with constraints on

short-term and long-term returns, dividends, number of assets in the portfolio, and the

maximum and minimum allowable capital invested in stocks of any company. The model

is then converted into a single-objective constrained optimization problem with weights

over mean, skewness, and entropy. To solve the proposed optimization problem, we pro-

vide a genetic algorithm in the ‘Genetic algorithm’ section. In the ‘Case study: Bombay

Stock Exchange’ section, a case study from Bombay Stock Exchange is done to illustrate

the method. The same section also contains a comparative study with other relevant

models. Finally, in the last section, some concluding remarks are specified.

Uncertainty theory: related topics
In this paper, the concept of uncertainty theory has been introduced in the field of

stock portfolio selection. This section contains only those definitions and theorems on

uncertainty theory which are directly used for the formation of this article. The con-

cepts of uncertain measure, uncertain variable, uncertain space, first and second identi-

fication functions, rectangular uncertain variable, triangular uncertain variable,

exponential uncertain variable, bell-shaped uncertain variable, linear uncertain variable,

zigzag uncertain variable, normal uncertain variable, lognormal uncertain variable, and

others would be useful to understand the backbone of the article and can be obtained

from Liu [31].

Definition 1. A trapezoidal uncertain variable is defined to be the uncertain variable

which is fully determined by the four-tuple (a, b, c, d) of crisp numbers with a < b < c <

d, and whose first identification function is

λ xð Þ ¼

x−a
2 b−að Þ if a≤x≤b

0:5 if b≤x≤c
d−x

2 d−cð Þ if c≤x≤d:

8>>><
>>>:

Definition 2. The uncertainty distribution Φ :ℝ→ [0, 1] of an uncertain variable
⌣

ξ is
defined by

Φ xð Þ ¼ M
⌣

ξ≤x
� �

:

Definition 3. An uncertain variable
⌣

ξ is said to have an empirical uncertainty
distribution if

ϕ xð Þ ¼
0 if x < xi

αi þ αiþ1−αið Þ x−xið Þ
xiþ1−xið Þ if xi≤x≤xiþ1; 1≤i≤n

1 if x > xn

and is denoted by ε(x1, α1, x2, α2,…, xn, αn) , where x1 < x2 <… < xn and 0≤ α1≤ α2≤…≤ αn≤ 1.
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Example 1. The trapezoidal uncertain variable
⌣

ξ ¼ a; b; c; dð Þ follows the empirical

uncertain distribution given by

ϕ xð Þ ¼

0 if x < ax−a
2 b−að Þ if a ≤ x ≤ b

0:5 if b ≤ x ≤ c

0:5þ 0:5 x−cð Þ
d−c

if c ≤ x ≤ d

1 if x > d

:

8>>>>>><
>>>>>>:

Definition 4. The uncertain variables
⌣

ξ ;
⌣

ξ ;…;
⌣

ξ are said to be independent if
1 2 n

Μ ∩
n

i¼1

⌣

ξ i

� �
¼ min

1≤ i ≤ n
M

⌣

ξ i∈Bi
� �

for Borel sets B1, B2,…, Bn of real numbers. Here M denotes the uncertain measure.

Definition 5. Let
⌣

ξ be an uncertain variable. Then the expected value of
⌣

ξ is given by

E
⌣

ξ
� � ¼ ∫þ∞

0 M
⌣

ξ≥r
� �

dr−∫0−∞M
⌣

ξ≤r
� �

dr

provided that at least one of the two integrals is finite.

Definition 6. Let
⌣

ξ be an uncertain variable. Then the entropy of
⌣

ξ is given by

H
⌣

ξ
� 	 ¼ ∫∞−∞ −Φ xð Þ:ln Φ xð Þð Þ− 1−Φ xð Þð Þln 1−Φ xð Þð Þf gdx:

Definition 7. Let
⌣

ξ be an uncertain variable with finite expected value e. Then the
variance and skewness of
⌣

ξ are respectively given by

V
⌣

ξ
� 	 ¼ E

⌣

ξ−e
� �2n o

;

S
⌣

ξ
� 	 ¼ E

⌣

ξ−e
� �3n o

:

Example 2. If
⌣

ξ ¼ a; b; c; dð Þ is a trapezoidal uncertain variable then
E
⌣

ξ
� 	 ¼ aþ bþ cþ d

4
;

H
⌣

ξ
� 	 ¼ b−aþ d−c

2
þ c−bð Þln 2;

S
⌣

ξ
� 	 ¼ d−að Þ2− c−bð Þ2� �

d−cð Þ− d−cð Þf g
32

:

Theorem 1. Let
⌣

ξ 1;
⌣

ξ be two independent uncertain variables with finite expected

values. Then for any real numbers a and b, we have E a
⌣

ξ 1 þ b
⌣

ξ
� 	 ¼ aE

⌣

ξ 1
� 	

bE
⌣

ξ
� 	

:



Bhattacharyya et al. Journal of Uncertainty Analysis and Applications 2013, 1:16 Page 6 of 17
http://www.juaa-journal.com/content/1/1/16
Theorem 2. Let ⌣r i ¼ ai; bi; ci; dið Þ; i ¼ 1; 2;…; nð Þ be n independent uncertain trap-

ezoidal variables and let xi (i = 1, 2,…, n) be n real variables. Then

E ⌣r1x1 þ ⌣r2x2 þ…þ ⌣rnxn½ � ¼ 1
4

Xn
i¼1

ai þ bi þ ci þ dið Þxi;

H ⌣r1x1 þ ⌣r2x2 þ…þ ⌣rnxn½ � ¼ 1
2

Xn
i¼1

h
bi−aið Þ þ di−cið Þ þ 2 ci−bið Þln 2

i
xi;

S ⌣r1x1 þ ⌣r2x2 þ…þ ⌣rnxn½ � ¼ 1
32

Xn
i¼1

h
di−aið Þ2− ci−bið Þ2� �

di−cið Þ− bi−aið Þf g
i
x3
i
:

Proof. As ⌣r i ¼ ai; bi; ci; dið Þ; i ¼ 1; 2;…; nð Þ are n independent uncertain trapezoidal

variables and xi (i = 1, 2,…, n) are n real variables, we have

⌣r1x1 þ ⌣r2x2 þ…:þ ⌣rnxn

¼
Xn
i ¼ 1

⌣r ixi ¼
Xn
i ¼ 1

ai; bi; ci; dið Þxi

¼
Xn
i ¼ 1

aixi; bixi; cixi; dixið Þ ¼
Xn
i ¼ 1

aixi;
Xn
i ¼ 1

bixi;
Xn
i ¼ 1

cixi;
Xn
i ¼ 1

dixi

 !
:

Hence, ⌣r1x1 þ ⌣r2x2 þ…þ ⌣rnxn is a trapezoidal uncertain variable. Combining the
above result with the results obtained in Example 2, we are with the theorem.
Mean-entropy-skewness model formulation
In this section, we will first describe the assumptions and notations used in the con-

struction of the paper. Then the objective functions of the models will be constructed

in the next subsection. In the third subsection, we will discuss the constraints used in

our portfolio selection model. The fourth subsection will include three different math-

ematical models for different situations.
Assumptions and notations

Let us consider a financial market with n risky assets offering uncertain returns. An in-

vestor allocates his wealth among these risky assets.

For the ith risky asset (i = 1, 2,…, n), let us use the following notations:

xi = portion of the total capital invested in ith security
⌣pi = uncertain variable representing the closing price of the ith security at present

p
⌣

i
0
= uncertain variable representing the estimated closing price of the ith security in

the next year

di = the estimated dividends in the next year
⌣r i ¼ p⌣i

0þdi−p
⌣

i
p⌣i

= uncertain variable representing the return of the ith security

Ri
(12) = the average 12 month performance

Ri
(36) = the average 36 month performance
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ki = the constant transaction cost per change in a proportion, ki ≥ 0

yi ¼
1 if the ith asset is contained in the portfolio
0 if the ith asset is not contained in the portfolio:

�

Formulation of objective functions

It is impossible to predict future returns of stocks in any budding security market. The

arithmetic mean of historical data is in general considered as the expected return of

securities, which yield us a crisp value. However, for this technique, two main problems

need to be solved. Firstly, if historical data for a long period are considered, the influ-

ence of earlier historical data is the same as that of recent data, whereas recent data of

a security is more important than the earlier historical data. Secondly, if the historical

data of a security are not adequate, due to the lack of information, the estimations of

the statistical parameters are not adequate. For these reasons, the expected return of a

security is considered here as an uncertain variable instead of the crisp arithmetic mean

of historical data. Similarly, in an uncertain environment, the risk (entropy) and skew-

ness cannot be predicted exactly. Therefore, the entropy and skewness are also consid-

ered here as uncertain variables.

Let us consider the transaction cost ci to be a V-shaped function of the difference

between a given portfolio x0 ¼ x01; x
0
2;…; x0n

� �
and a new portfolio x = (x1, x2,…, xn) and

is incorporated explicitly into the portfolio return. Thus, the transaction cost of ith

risky asset can be expressed as

ci ¼ ki xi−x0i


 

; i ¼ 1; 2; 3;…; n:

Hence the total transaction cost is

Xn
i ¼ 1

ci ¼
Xn
i ¼ 1

ki xi−x0i


 

:

The expected return of portfolio x = (x1, x2,…, xn) with transaction cost is thus given by
Re xð Þ ¼ E ⌣r1−c1ð Þx1 þ ⌣r2−c2ð Þx2 þ…þ ⌣rn−cnð Þxn½ �:

The entropy of portfolio x = (x1, x2,…, xn) is given by

En xð Þ ¼ H ⌣r1x1 þ ⌣r2x2 þ…þ ⌣rnxn½ �:

The skewness of portfolio x = (x1, x2,…, xn) is given by
Sk xð Þ ¼ S ⌣r1x1 þ ⌣r2x2 þ…þ ⌣rnxn½ �:

We consider the portfolio selection problem as a tri-objective optimization problem.
As discussed earlier, the objectives we consider are

Max Re xð Þ
Min En xð Þ
Max Sk xð Þ:

8<
:
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Construction of the constraints

For the portfolio x = (x1, x2,…, xn), the expected short-term return is expressed as

Rst xð Þ ¼
Xn
i ¼ 1

R 12ð Þ
i xi−

Xn
i ¼ 1

ki xi−x0i


 

:

For the portfolio x = (x1, x2,…, xn), the expected long-term return is expressed as
Rlt xð Þ ¼
Xn
i ¼ 1

R 36ð Þ
i xi−

Xn
i ¼ 1

ki xi−x0i


 

:

Since investors plan their asset allocation on short-term, long-term, or both cases,

they should prefer a portfolio having at least a minimum short-term, long-term, or both

types of return. For that reason, we consider the following two constraints:

Rst xð Þ≥ ς;
Rlt xð Þ≥ τ;

where ς and τ will be allocated by the investor.

Dividend is the payment made by a company to its shareholders. It is the portion of

corporate profits paid out to the investors. For the portfolio x = (x1, x2,…, xn), the an-

nual dividend is expressed as

D xð Þ ¼
Xn
i ¼ 1

dixi:

Clearly, investors would like to have a portfolio that yields them a high dividend.
Keeping in mind this fact, we propose the following constraint:

D xð Þ≥ d;

where d will be allocated by the investor.

The well-known capital budget constraint on the assets is presented by

Xn
i ¼ 1

xi ¼ 1:

The maximum and minimum fractions of the capital budget being allocated to each
of the assets in the portfolio depend upon factors like price relative to the asset in com-

parison with the average of the price of all the assets in the chosen portfolio, minimal

lot size that can be traded in the market, the past performance of the price of the asset,

information available about the issuer of the asset, trends in the business of which it is

a division, etc. That is, an investor will have to look upon a host of the basics affecting

the commerce. Different investors having different views may allocate the same overall

capital budget differently.

Let the maximum fraction of the capital that can be invested in a single asset i be Mi.

Then

xi≤Miyi∀i ¼ 1; 2;…; n:

Let the minimum fraction of the capital that can be invested in a single asset i be mi.
Then
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xi≥miyi ∀i ¼ 1; 2;…; n:

The investor would like to pick up the assets among all the assets in a given set that

in his subjective estimate are likely to yield the greatest performance. Thus it is not ne-

cessary that all the assets in the given set may configure in the portfolio. Investors can

thus consider the number of assets they can effectively handle in a portfolio.

Let the number of assets held in a portfolio be k. Then

Xn
i ¼ 1

yi ¼ k:

As no short selling is considered, we have
xi≥0 ∀i ¼ 1; 2;…; n:

If X is the set of feasible portfolios, then we have,

X ¼ fx ¼ x1; x2;…; xnf g such that

Rst xð Þ≥ ς; Rlt xð Þ≥ τ; D xð Þ≥d; xi≤Miyi; xi≥miyi;
Xn
i ¼ 1

yi ¼ k;
Xn
i ¼ 1

xi ¼ 1; xi≥ 0g: ð1Þ

Weighted portfolio selection model formulation

The portfolio selection model is thus formulated as

Max Re
Min En
Max Sk
x ∈X:

8>><
>>: ð2Þ

To convert the above tri-objective optimization problem into a preference-based single-
objective optimization problem, let us consider three single-objective optimization prob-

lems optimizing separately the three objectives of the model subject to the constraints of

the problem. The optimum values as well as the values of the remaining objective functions

in each of the three cases are calculated. Considering all the three problems, let the mini-

mum values of the three objectives be Remin, Enmin, and Skmin, respectively. Also, let the

maximum values of the three objectives be Remax, Enmax, and Skmax, respectively. Then the

above tri-objective portfolio selection model is transformed into the following model:

Max w1
Re xð Þ−Remin

Remax−Remin þ w2
Enmax−En xð Þ
Enmax−Enmin þ w3

Sk xð Þ−Skmin

Skmax−Skmin

� �
subject to

x ∈X
w1 þ w2 þ w3 ¼ 1

8>>>><
>>>>:

ð3Þ

where w1, w2, and w3 are weights or preferences to the objectives Re(x), En(x), and Sk(x),

respectively. w1, w2, and w3 will be allocated by the investor.

Genetic algorithm
After development of the genetic algorithm (GA) by Holland in 1975, it has been ex-

tensively used/modified to solve complex decision making problems in different fields

of science and technology. A GA normally starts with a set of potential solutions (called

initial population) of the decision making problem under consideration. Individual
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solutions are called chromosome. Crossover and mutation operations happen among

the potential solutions to get a new set of solutions, and the process continues until ter-

minating conditions are encountered. The following functions and values are adopted

in the proposed GA to solve the problem [36]. The different parameters on which this

GA depends are the number of generation (MAXGEN), population size (POPSIZE),

probability of crossover (PCROS), and probability of mutation (PMUTE).

Chromosome representation

An important issue in applying a GA is to design an appropriate chromosome repre-

sentation of solutions of the problem together with genetic operators. Traditional bin-

ary vectors used to represent the chromosome are not effective in many nonlinear

problems. Since the proposed model is highly nonlinear, hence, to overcome the diffi-

culty, a real-number representation is used. In this representation, each chromosome

Vi is a string of n number of genes Gij (i = 1, 2,…, POPSIZE, j = 1, 2,…, n) where these

n number of genes respectively denote n number of decision variables xj.

Initial population production

For each chromosome Vi, every gene Gij is randomly generated between its boundary

(LBj, UBj) where LBj and UBj are the lower and upper bounds of the variables xj (j = 1,

2,…, n and i = 1, 2,…, POPSIZE), respectively.

Evaluation

Evaluation function plays the same role in GA as that the environment plays in natural

evolution. Now, evaluation function (EVAL) for chromosome Vi is equivalent to the ob-

jective function f (x1, x2,…, xn). The following are the steps of evaluation:

1. Find EVAL(Vi) = f (x1, x2,…, xn), where the genes Gij represent the decision variable

xj, j = 1, 2,…, n and f is the objective function.

2. Find total fitness of the population: F ¼ XPOPSIZE

i ¼ 1

EVAL V ið Þ:

3. The probability pi of selection for each chromosome Vi is determined by the

formula pi ¼ 1
F EVAL V ið Þ:

4. Calculate the cumulative probability Yi of selection for each chromosome Vi by the

formula Y i ¼
Xi
j ¼ 1

pi:

Selection

The selection scheme in GA determines which solutions in the current population are

to be selected for recombination. Many selection schemes, such as stochastic random

sampling roulette wheel selection, have been proposed for various problems. In this

paper, we adopt the roulette wheel selection process. This roulette wheel selection

process is based on spinning the roulette wheel POPSIZE times each time we select a

single chromosome for the new population in the following way:

(a) Generate a random (float) number r between 0 and 1.

(b) If r < Y1, then the first chromosome is V1; otherwise, select the ith chromosome Vi

(2 ≤ i ≤ POPSIZE) such that Yi − 1 ≤ r < Yi.
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Crossover

A crossover operator is mainly responsible for the search of new strings. Crossover

operates on two parent solutions at a time and generates offspring solutions by recom-

bining both parent solution features. After selection of chromosomes for new popula-

tion, the crossover operator is applied. Here, the arithmetic crossover operation is used.

It is defined as a linear combination of two consecutive selected chromosomes Vm and

Vn, and resulting offspring's V
0
m and V

0
n are calculated as

V
0
m ¼ cVm þ 1−cð ÞVn;

V
0
n ¼ cVn þ 1−cð ÞVm;

where c is a random number between 0 and 1.

Mutation

A mutation operator is used to prevent the search process from converging to local

optima rapidly. It is applied to each single chromosome Vi. The selection of a chromo-

some for mutation is performed in the following way:

1. Set i ← 1.

2. Generate a random number u from the range [0, 1].

3. If u < PMUTE, then we select the chromosome Vi.

4. Set i ← i + 1.

5. If i ≤ POPSIZE, then go to step 2. Then the particular gene Gij of the chromosome

Vi selected by the abovementioned steps is randomly selected. In this problem, the

mutation is defined as Gmut
ij random number from the range (LBj, UBj).

Termination

If the number of iteration is less than or equal to MAXGEN, then the process goes on;

otherwise, it terminates.
Proposed GA procedure

Start

{

t ←0

while (all constraints are not satisfied)

{

initialize Population (t)

}

evaluate Population (t)

while(not terminate - condition)

{

t ← t + 1

select Population (t) from Population (t − 1)

crossover and mutate Population (t)
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evaluate Population (t)

}

print optimum result

}.
Case study: Bombay Stock Exchange (BSE)
Bombay Stock Exchange is the oldest stock exchange in Asia with a rich heritage of

over 133 years of existence. What is now popularly known as BSE was established as

‘The Native Share & Stock Brokers' Association’ in 1875. It is the first stock exchange

in India which obtained permanent recognition (in 1956) from the Government of

India under the Securities Contracts (Regulation) Act (SCRA) 1956. With demutuali-

zation, the stock exchange has two of world's prominent exchanges, Deutsche Borse

and Singapore Exchange, as its strategic partners. Today, BSE is the world's number

one exchange in terms of the number of listed companies and the world's fifth in hand-

ling of transactions through its electronic trading system. The companies listed on BSE

command a total market capitalization of US$1.06 trillion as of July 2009.

The BSE index, SENSEX, is India's first and most popular stock market benchmark

index. SENSEX is tracked worldwide. It constitutes 30 stocks representing 12 major

sectors. It is constructed on a ‘free-float’ methodology, and is sensitive to market move-

ments and market realities. Apart from SENSEX, BSE offers 23 indices, including 13

sectoral indices.
Case study

We have taken monthly share price data for 60 months (March 2003 to February 2008)

of just five companies which are included in the BSE index. Though any finite number

of stocks can be considered, we have taken only five stocks to reduce the complexity of

representation.

The Table 1 shows the stocks along with their returns in the form of trapezoidal

uncertain numbers, the average short-term returns, the average long-term returns, and

the dividends. We also have ki = 0.001. We consider, x0i = 0 for i = 1, 2, 3, 4, 5.
Example

With respect to the above data, we consider the following tri-objective portfolio selec-

tion model:
ble 1 Stocks information

ock Return (⌣ri) Short-term returns
(R 12ð Þ

i )
Long-term return

(R 36ð Þ
i )

Dividends
(di, %)

liance energy (−0.008, 0.020, 0.042,0.067) 0.0324 0.031 63

T (−0.003, 0.029, 0.057, 0.087) 0.0524 0.044 85

el (−0.002,0.021, 0.051, 0.083) 0.0510 0.037 125

ta steel (0.009, 0.023, 0.038, 0.052) 0.0307 0.032 155

I (−0.010, 0.022, 0.045, 0.079) 0.0387 0.035 140



Table 2 Solution

Case 1 Case 2 Case 3 Case 4

w1 1/3 0.6 0.2 0.2

w2 1/3 0.2 0.6 0.2

w3 1/3 0.2 0.2 0.6

Re(x) 0.03830 0.03878251 0.03787975 0.0389781

En(x) 0.0667776 0.06823548 0.06466012 0.06811745

Sk(x) 0.000000321 0.000002439285 0.0000002561417 0.000001260730

Dividend (%) 110.2186 113.1965 112.4341 110.2661

x1 0 0 0 0

x2 0.4922520 0.3969638 0.4552814 0.4865646

x3 0.1805016 0.3313681 0.3565393 0

x4 0 0 0.1881792 0.1981891

x5 0.3272464 0.2716681 0 0.3152462
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Max Re xð Þ
Min En xð Þ
Max Sk xð Þ
subject to
Rst xð Þ ≥ 0:039; Rlt xð Þ ≥ 0:038; D xð Þ≥1:1;
x ¼ x1; x2; x3; x4; x5ð Þ; yi∈ 0; 1f g
xi≤0:6yi; xi≥0:1yi;

X5
i ¼ 1

xi ¼ 1;
X5
i ¼ 1

yi ¼ 3:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4Þ

Solution

To solve the above example, the GA is used with the parameters POPSIZE = 50,

PCROS = 0.2, PMUTE = 0.2, and MAXGEN = 100. A real-number presentation is used

here. In this representation, each chromosome x is a string of m (here, m = 5) number

of genes; these represent decision variables. For each chromosome x, every gene (here,

x1, x2, x3, x4, x5) is randomly generated between its boundaries until it is feasible. In this
Figure 1 Portfolios.



Table 3 Individual mean, entropy, and skewness of the stocks

Stock Return Entropy Skewness

Reliance energy 0.03025 0.0417492 −4.8197 × 10−7

L&T 0.04250 0.0504081 −1.4632 × 10−5

Bhel 0.03825 0.0384751 2.0318 × 10−6

Tata steel 0.03050 0.0243972 0

SBI 0.0340 0.0489424 4.62 × 10−7
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problem, arithmetic crossover and random mutation are applied to generate new

offsprings.

As discussed in the ‘Weighted portfolio selection model formulation’ section, opti-

mizing the three single objectives Re(x), En(x), and Sk(x) separately subject to the con-

straints in (4), we obtain the minimum and maximum values of the objectives with the

same parameters. In each case, only the best solution is considered.

With reference to model (3), the problem (4) is transformed into the following

model:

Max
w1

Re xð Þ−0:0346375
0:03957812−0:0346375

þ w2
0:06896848−En xð Þ

0:06896848−0:05826382

þ w3
Sk xð Þ− −0:000000199502ð Þ

0:000000384282− −0:000000199502ð Þ

2
664

3
775

subject to
Rst xð Þ≥0:039; Rlt xð Þ≥0:038; D xð Þ≥1:1; x ¼ x1; x2; x3; x4; x5ð ÞX5

i ¼ 1

xi ¼ 1; xi≤0:6 yi; xi≥0:1yi;
X5
i ¼ 1

yi ¼ 3; yi∈ 0; 1f g;w1 þ w2 þ w3 ¼ 1:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð5Þ

For different preassigned values of w1, w2, and w3, the above problem is solved. We

have considered only the best solutions. The solutions obtained are shown in Table 2.

In case 1, where an investor gives same importance to all the three objectives, the

portfolio states that the investor should invest 45%, 45%, and 10% of the money to the

second, third, and fourth stocks, respectively. In case 3, where the importance is given

towards minimization of risk, the investor should invest 39.6%, 18.8%, and 41.6% of the

total money to the second, fourth, and fifth stocks, respectively. Similarly, we can ex-

plain the other two cases.

In case 2, where more importance is given to return, the investor gets a return of

0.03957813 which is higher than that of the other three cases {0.03893750, 0.03586275,

and 0.03830000}. In case 3, where more importance is given to risk, the investors' risk

(0.09320499) is lower than in all other cases {0.09551172, 0.09846223, and 0.09487761}.

Similarly, in case 4, we get the best result for skewness. In case 1, where equal impor-

tance is given to all objectives, the outputs are intermediate. We represent the portfo-

lios obtained in cases 1, 2, 3, and 4 graphically in Figure 1.
Table 4 Solution of the model in (5.4.1)

x1 x2 x3 x4 x5 E

0.000000 0.3840023 0.5159977 0.000000 0.1000000 0.03945701



Table 5 Solution of the model of Ning et al

x1 x2 x3 x4 x5 E

0.000000 0.4125000 0.4875000 0.000000 0.1000000 0.03957813
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Some questions may arise on the appropriateness of the portfolios obtained in Table 2

under different circumstances (cases 1, 2, 3 and 4). For example, question may arise on

the absence of reliance energy in all the obtained portfolios. To explain that, the indi-

vidual mean, entropy and skewness of the stocks are calculated by Example 2 and are

shown in Table 3. It is seen that reliance energy has the lowest rerun among the five

stocks. It is also possessing negative skewness. So, the absences of reliance energy on

the portfolios in cases 1, 2 and 4 are obvious. In case 3, where more importance is

given to entropy, the selected portfolio contains L&T, Tata steel and Bhel. Tata steel

and Bhel are the two stocks with lowest risks. Again, though L&T has a higher risk, it

also has very high return. So, the portfolio in case 3 is not compromising too much to-

wards entropy and is maintaining the characteristic of multiobjective optimization. This

is also to note that if the constraint xi ≥ 0.1yi is not considered, then some of the portfo-

lios would contain non-zero x1.
Comparative study

We compare the results in Table 2 with other relevant literature to demonstrate how

the results from the proposed technique compare with the literatures of uncertainty

theory in the portfolio selection problem. Thus, the models in [33], [37], and [38] which

apply uncertainty theory in portfolio selection are considered with the same data set as

that in Table 1. We also used the following set of constraints (X) for each case:

We also used the following set of constraints (X) for each case:

X ¼ fRst xð Þ≥0:039; Rlt xð Þ≥0:038; D xð Þ≥1:1; xi≤0:6yi; xi≥0:1yi;
X5
i ¼ 1

xi ¼ 1;
X5
i ¼ 1

yi ¼ 3g:

Model of Yan

We considered the following model [33]:

Maximize E ⌣r1x1 þ ⌣r2x2 þ ⌣r3x3 þ ⌣r4x4 þ ⌣r5x5½ �
Subject to the constraints
V ⌣r1x1 þ ⌣r2x2 þ ⌣r3x3 þ ⌣r4x4 þ ⌣r5x5½ �≤0:002
x ∈X

)
:

Here E stands for mean (return) and V stands for variance (risk). The solution is

shown in Table 4.
Table 6 Solution of the model of Liu and Qin

x1 x2 x3 x4 x5 E

0.000000 0.2333333 0.6000000 0.000000 0.1666667 0.03853333
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Model of Ning et al

We considered the following model [37]:

Maximize E ⌣r1x1 þ ⌣r2x2 þ ⌣r3x3 þ ⌣r4x4 þ ⌣r5x5½ �
Subject to the constraints
TVaR ⌣r1x1 þ ⌣r2x2 þ ⌣r3x3 þ ⌣r4x4 þ ⌣r5x5½ �≤−0:008
x ∈X

)
:

Here E stands for mean (return) and TvaR stands for tail value at risk. The solution
is shown in Table 5.

Model of Liu and Qin

We considered the following model [38]:

Maximize E ⌣r1x1 þ ⌣r2x2 þ ⌣r3x3 þ ⌣r4x4 þ ⌣r5x5½ �
Subject to the constraints
SAD ⌣r1x1 þ ⌣r2x2 þ ⌣r3x3 þ ⌣r4x4 þ ⌣r5x5½ �≤0:0144
x ∈X

)
:

Here E stands for mean (return) and SAD stands for semi-absolute deviation (risk).
The solution is shown in Table 6.

In the discussions done in the first and second sections, we see that using entropy as

a measure of risk/uncertainty is analytically better than the other conventional mea-

sures. Again, if we compare Tables 4, 5, and 6 with Table 2, we see that the perform-

ance of the proposed model is clearly at par or better than the established models.

Conclusions
This paper has introduced a new framework of mean-entropy-skewness portfolio selec-

tion problem with transaction cost under the constrains on short-and long-term

returns with transaction costs, dividends, number of assets in the portfolio, and the

maximum and minimum allowable capital invested in stocks. Uncertainties of future

return of stocks are characterized by uncertain variables. The efficiency of the portfo-

lios is evaluated by looking for risk contraction on one hand and expected return and

skewness augmentation on the other hand. An empirical application has served to illus-

trate the computational tractability of the approach and the effectiveness of the pro-

posed algorithm. A comparative study with other relevant literatures proves the

usefulness of the proposed model. In addition to the GA, some other meta-heuristic al-

gorithms such as tabu search, simulated annealing, ant colony optimization, and par-

ticle swam optimization may be employed to solve the nonlinear programming

problem.
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