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Abstract

The International Research Institute for Climate and Society (IRl) began providing user-oriented climate information,
including outlooks, in the late 1990s. Its climate products are intended to meet the needs of decision makers in
various sectors of society such as agriculture, water management, health, disaster management, energy, education
and others. They try to link the current state of the science in climate diagnostics and prediction to the dynamically
evolving practical needs of users worldwide. Because most users are not climate scientists, the manner in which the
information is provided is of paramount importance in order for it to be understandable and actionable. Non-technical
language that preserves essential content is required, as well as graphics that are intuitive and largely self-explanatory.
The climate information products themselves must be in demand by users, rather than ones that the producers believe
would be best. These requirements are consistent with IRI's mission of improving human welfare, particularly in
developing countries where decision makers may not initially know what climate information they need, and how best
to use it. This lack of initial understanding requires back-and-forth communication between the producers and users to
initiate and sustain uptake and beneficial use of the information. Backed by its climate prediction research, the IRI's
climate information products span time-scales of days to decades. Experience on the statistics of daily weather behavior
within seasons has been gleaned, as has the benefits of statistical and dynamical spatial downscaling of predictions. By
providing views in a progressive sequence of temporal scales, IRI's products help demonstrate that preparation for
interannual climate variability may be the best preparation for decadal variability and trends related to climate change.
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Background

The International Research Institute for Climate and Society
(IRI) began providing current and historical climate infor-
mation, including seasonal climate outlooks, in the late
1990s. During the 1980s and earlier 1990s, measureable
improvements in understanding of the climate system had
taken place in part because of increased availability of, and
ability to interpret observations of the climate system. IRI's
“map room”, available online since 1999 (The IRI’s climate
map room), contains observational information about the
state of the global oceanic and atmospheric climate both
currently and in recent history. Seasonal and monthly time
scales are emphasized, and user-friendly graphical formats
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and useful descriptions were a priority in designing the
displays.

Perhaps the most important aspect of an increased
understanding of the climate system is the ability to
make useful seasonal (e.g., an average or total over
3 months) climate forecasts. Such forecasts are primarily
based on the influence of patterns of the ocean sea
surface temperature (SST) on the large scale atmos-
pheric circulation—particularly the SST in the tropical
oceans. The most important oceanic influence on the
atmosphere is the El Nino/Southern Oscillation, or
ENSO. In 1997, IRI began issuing climate outlooks for
the globe, including forecasts for temperature and pre-
cipitation for the upcoming two consecutive 3-month
periods (Mason et al. 1999). Forecasts were initially
issued quarterly, but in 2001 began being issued each
month and for all four overlapping 3-month periods
between the first and second seasons. All of the IRI’s
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forecasts, past and present, are available online (The
IRI’s seasonal climate forecasts). In 2012, IRI developed
a more flexible forecast format that enabled users to
extract more detailed climate forecast information than
earlier. It also introduced a product providing a descriptive
partitioning of climate variability into three complementary
time-scales, based on a full century of observations.

Beginning in early 2002, probabilistic forecasts of the
state of the ENSO itself began being issued. These fore-
casts were deemed important because ENSO has known
effects on climate in specific regions during specific sea-
sons of the year. Although these effects are incorporated
into the climate forecasts, some users desire knowledge of
the ENSO outlook itself. These ENSO forecasts are avail-
able online (The IRI’s forecasts of ENSO).

This paper describes several of the main climate prod-
ucts provided to date by IRI, with illustrative examples
and explanations of their utility. Some focal points of
the research associated with the content of the products
are identified, and two products in current development
are then highlighted. Finally, some ideas are provided for
a path toward better fulfillment of the mission in the
years to come regarding new research and the resulting
provision of improved climate information for the bene-
fit of societies, especially in developing countries where
climate predictability and human need are both greatest
(Goddard et al. 2014).

Review

Climate information products, and the research behind them
a. Climate observation maproom

Many climate-sensitive users need to know what the
climate is doing right now, or what its state has been in
the recent or more distant past. The IRI’s global climate®
maproom is an extension of its Data Library (The IRIs
seasonal forecast verification site; Blumenthal et al. 2014),
which is a data repository containing over 300 datasets
from a variety of earth science disciplines and climate-
related topics. The maproom automatically displays the
latest updates of many climate fields, while also allowing
viewing of past seasons or months of the same variable.
Weekly, monthly and seasonal averages of various climate
variables are available, such as 2-meter atmospheric
temperature, precipitation, sea level pressure, lower and
upper atmospheric circulation, and SST. For example,
Figure 1 (top) shows the departure from normal (ie.,
anomaly) of seasonal total precipitation during March
2011, suggesting significant flooding in parts of Indonesia
and Southeast Asia in association with the La Nina of
2010-11. Both rain gauges and satellite data contribute to
the data used for this anomaly map, using the so-called
CAMS-OPI rainfall data from the Climate Prediction
Center (CPC) of the National Oceanic and Atmospheric
Administration (NOAA) (The CAMS-OPI gauge-plus-
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satellite rainfall data from the Climate Prediction Center
of NOAA). A version of the same map that uses only rain
gauges is shown in Figure 1 (bottom), which is generally
consistent but leaves large areas devoid of data around the
globe, suggesting the value of satellite-derived rainfall
measurements in the tropics where errors in satellite-
estimated rainfalls are smallest. Some derived variables are
also available, such as the standardized precipitation index
(SPI) for various time averages. Some variables are
expressed in terms of percentile as well as the anomaly
itself. Specialized map room capabilities include zooming
in on any user-selected rectangular region, an animation
of the seasonal march of the seasonal fraction of annual
precipitation, and a point-and-click option to see climato-
logical plots of the seasonal march of temperature and
precipitation and freeze days at the selected location. For
some variables, the change from one month to the next is
displayed, as seen in Figure 2 for the SST in May and June
1997, and the change from May to June, indicating the
rapid development of the 1997-98 El Nino episode whose
strong climate anomalies caused enormous societal im-
pacts worldwide.

b. Seasonal climate forecasts
Climate forecasts for the coming season or seasons farther
into the future, if of sufficient quality, are useful to a myriad
of sectors of society. The IRI’s seasonal climate forecasts for
the globe have been made using mainly a two-tiered
process in which first a prediction” is made for the SST in
the global oceans, and then the SST prediction is used as a
driver of a forecast for the atmospheric climate—precipita-
tion and temperature (Mason et al. 1999). A mix of dynam-
ical and statistical models has been used to develop the
SST predictions, varying by tropical ocean basin®. For the
first forecast season, in addition to these evolving SST pre-
dictions, the observed SST anomalies from the most
recently completed calendar month have been used as
another, more conservative, persisted anomalous SST
prediction scenario. The strategy of establishing the SST
prediction first, and then the climate forecast afterwards,
comes out of more than a decade of research on how the
climate is influenced by SST (Bengtsson et al. 1993). Fol-
lowing the initial monumental revelations in the 1980s
about ENSO’s climate effects, additional studies at IRI dem-
onstrated the roles of more regional SST, such as that of
the western Indian Ocean on some portions of Africa
(Goddard & Graham 1999), and of particular variations of
El Nino-related SST (Goddard et al. 2006). The degrading
effects of imperfect SST predictions on model-generated
climate predictions have also been studied at IRI (Goddard
& Mason 2002; Li et al. 2008).

The format of the issued climate forecasts is probabilistic,
in which the probabilities for the precipitation or tempera-
ture to be above normal, near normal, and below normal,
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Figure 1 Example of IRl global rainfall observation maps. Departure from normal of precipitation is shown during March 2011 using (top) a
combination of gauge and satellite rainfall data, and (bottom) only gauge rainfall measurements. During this month, severe flooding took place
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are issued for each location for each forecasted season. The
three categories are defined such that each has been
observed in one-third of the cases for the given season over
a recent 30-year period. This set of three probabilities is
intended to provide a general idea of the shift in the
expected odds of the temperature or precipitation from the
historical climatological distribution. The probabilities are
based mainly on a set of ensembles of predictions from
several dynamical atmospheric general circulation models
(AGCM)?. Each AGCM produces its own ensemble of pre-
dictions, with each member run having slightly different
initial weather conditions®, but being influenced by the
same SST prediction so that the differing resulting pre-
dictions span a distribution that represents the relative
probabilities of the range of outcomes. Each AGCM
prediction is adjusted for its own systematic biases, based
on a collection of hindcasts, which are “predictions” for
the given season for many past years for which the ob-
served outcomes already exist. Biases that are adjusted

include ones of average prediction value, direction and
amount of deviation from the average value, and even the
spatial positions of the main features of the prediction.
The advanced regression method, called canonical correl-
ation analysis (CCA), is the main vehicle used to adjust for
model biases. The predictions of all of the ensemble mem-
bers from the several models are then brought together to
form a pool of over 100 members (a multi-model ensem-
ble), and a prediction probability distribution is then fairly
well sampled, and therefore reasonably representative.
Many studies have demonstrated that multi-model ensem-
bles often yield higher predictive skill and utility than the
set of ensemble members from any of the single constituent
models (Kharin & Zwiers 2002; Barnston et al. 2003; Palmer
et al. 2004; Hagedorn et al. 2005; Tippett & Barnston 2008).
At IR], research has been conducted to determine the best
methods to combine the predictions of several models into
a single net probability prediction, as for example how to
weight the predictions of the constituent models based on
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Figure 2 Example of map of specialized feature of SST. Anomaly of SST is shown for (top) May 1997 and (middle) June 1997, and (bottom)
the change from May to June. The 1997-98 El Nifio was undergoing rapid development.
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their performance in hindcasting over several decades
(Rajagopalan et al. 2002; Robertson et al. 2004).

In addition to the three-category probability global
forecasts, IRI issues forecasts for the probability of the
“extremes”, defined as the upper or lower 15% of the
distribution. In these forecasts, areas having probabilities
of 25-40%, 40-50%, and 50% and greater, as opposed to
the historically expected 15%, are indicated on the maps.
The extremes forecasts are intended for users whose
livelihoods are particularly sensitive to seasonal climate
conditions farther from average than indicated by prob-
ability forecasts of the upper or lower 33%. When the
probability for an extreme is elevated, the probability for
the standard category in the same direction from normal
is always higher than 33% as well, and usually by a
considerable amount.

The spatial resolution of the issued global gridded
forecasts field is 2.5° for precipitation and 2.0° for
temperature, matching the resolution of the global

observed verification data. Those verifying observations
come from the Climate Anomaly Monitoring System
(CAMS) (Ropelewski et al. 1985) and from the Climate
Prediction Center (CPC) Merged Analysis of Precipitation
(CMAP) (Xie & Arkin 1997) for temperature and precipi-
tation, respectively. These resolutions do not differ greatly
from those of the AGCMs, which have ranged from 2.8°
to 1°. The forecasts are issued as a single global map, and
also as more detailed maps for the individual continents.
Colors are used to indicate the direction of the probability
shift from the equal-odds, or climatological, forecast of
33.3% probability for each of the three categories. An
example of a probability forecast for Asia for October
to December 2011, issued in mid-September (Figure 3),
shows anticipated enhanced probabilities for above-
normal precipitation in Indonesia and extreme South-
east Asia and northern Australia, and for below-normal
precipitation in portions of southwestern Asia and the
Middle East.
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IRI Multi-Model Probability Forecast for Precipitation
for October-November-December 2011, Issued September 2011
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Figure 3 Forecast for precipitation for Asia for October-December 2011, issued in mid-September. Color shading indicates the probability
of the most likely category. The histograms show the probabilities of all three categories in selected regions (see the key). White areas over land

indicate no shift in the odds from climatological (33.3%, 33.3%, 33.3%) probabilities. Pink areas indicate where climatologically very low
precipitation amounts are expected during the season, and no forecast is given. Enhanced probabilities for above normal precipitation were
forecast in the Maritime Continent, and for below normal precipitation in central southwest Asia.

J

To date, two studies have assessed the skill of IRI’s stand-
ard seasonal forecasts, one for the first four years (Goddard
et al. 2003) and one for the first 11 years (Barnston et al.
2010). The skill of the extremes forecasts over 12 years has
also been examined (Barnston & Mason 2011). All three
evaluations suggest significant predictive skill, and thus
potential utility, of the forecasts for specific regions, each
region having its own seasons of measured usable skill.
These “forecasts of opportunity” are known and are built
into the forecast probabilities such that in places/seasons
known to have little or no skill, the climatology forecast
(33.3% probability for each of the categories) is issued,
shown as white areas on the forecast maps. In some re-
gions and seasons, a useful forecast is possible primarily
when ENSO is not it a neutral state—i.e., when an El Nino
or La Nina is expected. During ENSO-neutral times the
climatology forecast may be issued at the same location
and season, or in some cases an enhanced probability for
the near-normal category may be issued. It is worth noting
that forecasts favoring the near normal category historically
have not been as skillful as forecasts favoring below or
above normal (Van den Dool & Toth 1991), likely due to
the fact that the strongest probability forecasts occur in the

form of opposing directions of deviation from climato-
logical probabilities (of 33.3%) between the below and
above normal categories, while the near normal category
usually has a relatively weaker deviation. Temperature has
been somewhat more skillfully predicted than precipita-
tion, both because its anomaly areas tend to be more co-
herent (less “noisy”) and more closely related to associated
large-scale atmospheric circulation patterns, and also be-
cause it has been more predictably influenced by trends—
e.g. a slow warming related to climate change. This last
factor makes possible additional skill because the three
categories are defined on the basis of a past 30-year
period, so that trends show up as predictable biases in one
direction with respect to a climatology based on these past
observations',

The IRI keeps a running evaluation of its probabilistic
climate forecasts, including probabilistic accuracy, skill,
and a number of other fundamental attributes, using a var-
iety of verification measures. This set of forecast evalua-
tions is available online (The IRI's seasonal forecast
verification site), accompanied by detailed definitions and
explained meanings of each verification measure. The
range of verification measures, and their descriptions, has
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come partly as a result of extensive research at IRI on the
nature, and advantages and disadvantages of each measure
(Mason 2004; Mason 2008). The probabilistic verification
measure known as relative operating characteristics, or
ROC (Mason 1982), which deals with “hits” versus “false
alarms” for one of the forecast categories, underwent par-
ticularly intensive research at IRI (Mason & Graham 1999),
where an extension of ROC applicable to all forecast cat-
egories together rather than one at a time was developed
(Mason & Weigel 2009; Weigel & Mason 2011).

As an example of one verification measure, the geograph-
ical distribution of the likelihood score, defined as the geo-
metric average of the forecast probability assigned to the
correct (later observed) category, is shown in Figure 4 for
temperature forecasts issued in mid-December for the
January-March season. Higher probabilities for the correct
category are seen in the tropics, as is generally the case for
all of the verification measures for both temperature and
precipitation. An important diagnostic for probability fore-
casts, known as reliability (Murphy 1973; Wilks et al. 2006),
evaluates the correspondence between the full range of
issued forecast probabilities and their associated relative
frequency of observed occurrence, and shows forecast char-
acteristics such as probabilistic bias, forecast over-(under-)
confidence, and forecast sharpness. A probability forecast is
said to be reliable when, for example, if all of the cases
when the probability of above normal precipitation is fore-
cast to be 50% are collected, the observations are found to
be in the above normal category 50% of the time.

Such a reliability analysis is shown in Figure 5 for pre-
cipitation forecasts, averaged over the globe for all seasons
and made 0.5 months ahead of the beginning of the first
month. Since the orange and green lines (representing
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reliability for the below-normal and above-normal categor-
ies, respectively) are close to the dotted diagonal line,
favorable reliability is concluded. Forecast sharpness,
describing the extent to which the forecasts deviate from
climatological forecasts of 33.3%, is shown in the histogram
below the main plot. The sharpness is seen to be small,
indicating a relative dearth of probability forecasts with
strong shifts from climatological odds. While this lack of
sharpness may not give users the degree of confidence
necessary to make some important decisions, the fact that
the reliability lines are close to the diagonal line indicates
that such weak probability shifts are appropriate and may
be all that is possible, given the inherent uncertainty in
precipitation forecasts in the physical ocean—atmosphere
system and our current state-of-the-science in climate
modeling. A good reliability record implies that when a
strong shift in the probabilities does occuy, it carries cred-
ibility. Because predictability is greater in the Tropics than
over the globe as a whole, reliability for the Tropics alone
shows greater forecast sharpness than that seen in
Figure 5.

One reasonably might ask if the quality of IRI’s forecasts
is among the best available. IRI is one of a moderately
large number of sources of today’s state-of-the-art global
seasonal climate forecasts. Most of the other centers,
funded by and principally serving an individual country or
region using their own single global coupled ocean—
atmosphere model, include those in Australia, Brazil,
Canada, China, European Center, France, Japan, Korea,
Russia, UK, and United States, among a few others.
Objective global model climate predictions from all of
these sources are collected into a grand multi-model
ensemble prediction, disseminated quarterly by the World
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Figure 4 Verification of IRI's forecasts for January-March temperature from 1998 to 2013. Here the likelihood verification measure is
shown, which is the geometric average of the probabilities issued for the later-determined correct category. Scores greater than 0.333 indicate
positive skill, and scores of 0.4 or more suggest useful levels of skill for many applications.
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Figure 5 Reliability analysis for 0.5-month lead forecasts of
global precipitation. Forecast data for all seasons are used during
1997-2013. The green curve pertains to forecast probabilities for
above-normal precipitation, the orange curve forecast probabilities
for below-normal precipitation, and the gray curve for near-normal
precipitation. For above and below normal, least squares regression
lines are shown, weighted by the sample sizes represented by each
point. Points representing probability intervals that are forecast in a
relatively greater proportion of the time are shown using larger
symbols. The diagonal y = x line represents perfect reliability. The
colored marks on the axes show the overall means of the forecast
probabilities (x-axis) or observed relative frequencies (y-axis). The
lower panel shows the frequency with which each interval of
probability was forecast, where interval widths are 0.05 (e.g, 0.175-0.225
is labeled as 0.20), except that the climatological (0.333) probability is
also explicitly shown.

Meteorological Organization (WMO) in a document called
the Global Seasonal Climate Update (GSCU). The IRI’s
forecasts are not included in the GSCU for political rea-
sons: Although IRI is located in the US, its forecasts are
not the official US product; the predictions from the model
run at NOAA/CPC represent the official US contribution.
While the IRI's forecasts are not an official product of any
one country, they nonetheless are well known to many
around the globe. The comparative quality of the forecasts
from all of the above-mentioned countries (and from IRI)
has never been systematically examined. However, individ-
ual model seasonal hindcast skill maps provided in the
GCSU document reveal that while the different models
may have slightly differing overall average skills, the models
vary most widely regarding which regions, and during
which seasons, they provide most useful predictive skill.
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Many of the models tend to have highest skill in those
regions and seasons of the expected influences of ENSO,
as they are capable of reproducing the observed large-scale
responses to anomalous tropical Pacific SST. This is
equally true of IRI’s forecasts. However, there is indirect
evidence from a number of independent studies that the
predictions from the model at the European Center for
Medium Range Forecasts (ECMWF), a multi-national cen-
ter with very high performance computing facilities, may
have the highest average predictive skill of any mentioned
above, by a slight but noticeable margin. Still, the predic-
tions from the models of most of the other countries, and
the forecasts from IRI, are regarded as state-of-the-art in
that they deliver reasonably competitive skill when aver-
aged over all regions and seasons.

Together with the provision of climate information
since the late 1990s, IRI has actively conducted research
focusing on specific aspects of climate predictability,
toward enabling improvements to the seasonal forecasts.
A set of experiments was run using a state-of-the-science
atmospheric model—the European Center/Hamburg (EC
HAMA4.5) model from Max Planck Institute in Hamburg,
Germany—in which the climate was hindcasted over
several past decades using both observed and predicted
SST to influence the hindcasts during those decades. One
purpose of the experiments was to determine the benefits
to the probability forecasts resulting from the number of
ensemble members used. (Recall that today’s climate pre-
dictions come from prediction models run many times,
where each run, producing one prediction ensemble mem-
ber, is influenced by the same underlying SST prediction
but given slightly differing initial atmospheric weather
conditions—the positions and strengths of the weather fea-
tures”.) One outcome of these experiments, also confirmed
at other major global climate producing centers, is that the
number of ensemble members run affects the precision of
the final predicted probability distribution, such that high
quality predictions require large ensemble sizes. Another
benefit of the experiment was improved definitions of the
relationships between SST anomalies and their consequent
climate anomalies. Better knowledge of SST-climate rela-
tionships increases understanding of predicted climate
anomaly patterns and also makes possible attribution of
some of the observed climate anomalies (Barnston et al.
2005). The same set of experiments also permitted evalua-
tions of the effects of different SST prediction methods on
the skill of the resulting climate predictions (Li et al. 2008),
and the importance of the spatial resolution (the smallness
of the model grid squares) on prediction quality.

IRI conducted research toward developing a climate
prediction model that predicts SST and the climate simul-
taneously—a single-tier design as opposed to the predom-
inantly two-tier design used in IRI’s issued climate
forecasts (DeWitt 2005). The effort culminated in a well
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performing model for both climate and SST (e.g., ENSO)
predictions (Tippett et al. 2012; Barnston et al. 2012), and
one that was later recruited to participate in a National
Multi-model Ensemble Experiment along with several
other North American single-tier climate models (Kirtman
et al. 2014).

Climate prediction, unlike many problems in astron-
omy or solid body physics, does not involve one correct
prediction, but instead a wide envelope of possible out-
comes. Although there is just one eventual observation,
it is unable to be predicted accurately in advance due to
the inherently chaotic, nonlinear nature of the ocean—
atmosphere system. This probabilistic aspect creates chal-
lenges to many forecast users, as many of the resulting
forecasts involve only a slight to moderate tilt of the
odds away from the historical, or climatological, prob-
ability distribution that exists by default without any
current forecast information. Making the best use of
probabilistic forecasts has been a focus of IRI’s research.
One aspect of this issue is the presentation of the fore-
cast information, given a choice of formats with which
to represent probability forecasts over a spatial domain.
One option is to provide three maps for each forecast,
each showing the spatial distribution of the probability
for one of the three categories (below-, near-, and
above-normal). Another option, and the one that IRI
adopted, is to present a single map with color shading
indicating which category is most likely, as well as the
probability of that dominant category (Figure 3). Prob-
ability histograms are inserted at some locations to help
communicate the three probability levels. Experiments
related to choices in forecast map presentation have
indicated that for any map format, understanding is not
easy for some users, and there is a learning curve requir-
ing careful study of the map legend and the provided
explanation (Ishikawa et al. 2011). It remains a challenge
to present probabilistic information in a simple, user-
oriented format, given that some users lack the time or
patience to learn to assimilate information that initially
seems overly complex or confusing. Thus, as one com-
ponent of partnering with users and their representative
organizations, capacity development workshops are
designed to methodically educate and train both weather
service personnel and end users who benefit from know-
ing how best to use climate information (Mantilla et al.
2014). A free and easily downloadable climate prediction
tool developed at IRI, called the Climate Predictability
Tool (CPT), allows users to apply sophisticated multi-
variate linear regression methods (e.g., CCA or principal
components regression) to get downscaled (localized)
prediction probabilities and maps (Korecha & Barnston
2007; Recalde-Coronel et al. 2014) without having to
comprehensively learn the mathematics or create their
own software. In the particularly fruitful case of the
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South African Weather Service, a sustained collaborative
relationship with IRI has included not only the use and
uptake of CPT, but sharing of statistical and dynamical
forecast methodologies and even specific AGCMs, and
adoption of best practices in the scientific and operational
aspects of climate prediction (Landman 2014). Such bene-
ficial linkage to meteorological centers in other countries
is being built on a more global scale through IRI’s contri-
butions to the WMO’s recent programmatic effort in the
form of the Global Framework for Climate Services
(GFCS) (Hewitt et al. 2012), whereby prediction tools such
as CPT are being provided along with the appropriate
training. CPT has now been added as a prediction tool in
a sizable list of developing countries.

A more substantive aspect of the probabilistic nature
of climate forecast comes with the use of forecast infor-
mation in decision making in sectors of society such as
agriculture, water management, health, energy and disas-
ters (e.g., floods, hurricanes, droughts, extreme cold or
heat). Making decisions under conditions of forecast
uncertainty involves decision theory and aspects of higher
mathematics for which many users lack tools for direct
use. IRI personnel have had success in partnering with
users and their representatives in developing countries in
Africa, Asia and Latin America to help make optimum
use of probabilistic climate forecasts for risk management
and decision making (Goddard et al. 2010; Lyon et al.
2014). Some examples of these beneficial applications are
highlighted in subsection ¢ below.

Recently, as an extension of the 3-category probability
forecast format, IRI developed a more flexible forecast
format that enables users to extract information for those
parts of the forecast distribution of greatest interest to
them, such as the probability of extremely dry conditions
(e.g., the driest 10%), in the wettest 40% of the distribution,
or any others. Additionally, the forecast probability distri-
bution for a specific location is given in terms of the
temperature or precipitation in its own physical units as
opposed to the probabilities of the three categories without
a direct indication of the boundaries between those cat-
egories, which requires consulting a separate web page. An
example of the flexible format version of a temperature
forecast is shown in Figure 6, where the map shows the
probability of exceeding the climatological 50™ percentile,
or median, and the two insets show the forecast probability
distribution (one as an actual probability density function
and the other as a cumulative density function) in °C for a
location in northern Brazil where a locally strong shift
toward above-normal temperature is forecast. The map
can be controlled to show the probability of exceeding
(or not exceeding) a large set of user-selected percentiles.
Providing flexibility in the forecast format allows users to
glean from the forecast what matters most to them, which
varies widely depending on the application.
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For a known set of regions and season, the single most
important determinant of the seasonal climate outlooks
is the expected ENSO state during the targeted season.
Therefore, many users are interested in an outlook for
ENSO itself. Since the early 2000s the IRI has provided
information, including recent observations and forecasts,
of the ENSO state. This information has been encapsu-
lated into a graphical product called the ENSO Quick
Look, which itself contains forecast summaries and a
display of current predictions of dynamical and statis-
tical models whose skills have been evaluated (Tippett
et al. 2012; Barnston et al. 2012). Figure 7 illustrates an
ENSO Quick Look issued near the end of 2012, follow-
ing a period when a possible weak El Nifio failed to
materialize and neutral conditions were then expected.
A technical narrative about the ENSO condition and
outlook is also issued each month.

Beginning in late 2011, the Climate prediction Center (CPC)
of the National Oceanic and Atmospheric Administration

(NOAA) and IRI began sharing jointly some of the
monthly production tasks pertaining to ENSO diagnostic
and forecast products, including the ENSO Diagnostic
Discussion and a long-lead ENSO probability outlook
based on human judgment (Figure 7, lower left panel) and
on a set of objective model predictions summarized on the
IRI/CPC ENSO prediction plume (lower right panel). Ac-
cordingly, the plume diagram and the ENSO Diagnostic
Discussion now bear the names of both institutions.

¢. Specialized or tailored forecasts

Many decision makers need outlooks for aspects of climate
different from seasonal total precipitation and average
temperature for a large grid square such as one of those
used in IRI’s global climate forecasts. Perhaps the most
common request is for forecasts for shorter periods em-
bedded within the 3-month season, such as the individual
months or even week-to-week variations. Another com-
mon need is for forecasts for a particular location, whose
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climate may differ from that of the embedding grid square
due to local geographical features such as mountains or
bodies of water. Finally, some users want to forecast a non-
climate variable directly, such as crop yield, without neces-
sarily first predicting rainfall and then using the rainfall
forecast as a predictor of the crop yield. IRI has carried out
research on each of the above problems, which are gener-
ally considered forms of downscaling.

Spatial downscaling can refer simply to calibrating the
climate forecast in a grid square to an exact location
within the square by considering the climatic difference
between the location and the average over the square. A
linear calibration might be all that is necessary to obtain
the local forecast. A more complex version of spatial
downscaling is required when the climatic difference
between the location and the average over the grid
square is caused by significant local features such as the
terrain or land surface conditions. In this case, a simple
calibration may not suffice, because the direction of the
climate anomaly in the grid square may not carry over
to the exact location of interest. An example would be
when a grid square is located mainly over the windward
part of an mountain range, but we are interested in fore-
casting for a town on the inland, or leeward, side of the
mountain range—a location whose rainfall anomaly
tendency may be in the opposite sense to that of the
average over the grid square. Resolving the often oppos-
ing anomalies may be done either statistically, as tested
in South Africa (Landman et al. 2009), or through use of
a regional dynamical model, as was done for semi-arid
northeast Brazil in an IRI project in the early 2000s (Sun
et al. 2005), or likewise in recent work focusing both
there and in Chile, in the context of water management
issues (Robertson et al. 2014).

Forecasting for portions of a season, often known as
temporal downscaling, is challenging because the accur-
acy of daily weather forecasts extends only to about 10
to 14 days in advance. Meanwhile, the benefit of sea-
sonal climate forecasts relies on averaging over a large
amount of time in order that the weak but consistent in-
fluence of SST patterns may stand out above the “noise”
of the unpredictable daily weather fluctuations. However,
it is possible to identify correlations between seasonal
climate and the climate during subseasonal periods, and
even the character of the day-to-day weather. A com-
mon example of the latter that is of interest to the agri-
cultural community is the occurrence of “dry spells”
within a season, where a dry spell is defined as a se-
quence of at least a certain number of days (e.g., 4 or 5)
without any meaningful rainfall (e.g, 1 mm or more).
Although the number of dry spells during a season is
expected to be inversely related to the seasonal rainfall
total, the relationship is not always straightforward,
because the degree and typical time scale of subseasonal
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rainfall variation becomes important. In addition to dry
spell occurrences, the number of non-dry days over the
course of a season may be of greater interest than the
seasonal rainfall total (Robertson et al. 2009).

Rainfall or temperature forecasts may be desired in
order to prepare for something of societal significance
such as the threat of a malaria epidemic in Botswana
(Thomson et al. 2006), meningitis in western Africa
(Garcia-Pando et al. 2014), corn yield in Kenya (Hansen
et al. 2009) or some countries in South America, or
water resources in the Philippines (Brown & Carriquiry
2007; Lyon & Camargo 2009). Stakeholders may consider
the climate forecast to determine the consequent probabil-
ities of outcomes within their application, and make their
decision accordingly. IRI has striven to increase awareness
on the parts of potential beneficiaries that climate informa-
tion is useful to their welfare and success, and to make the
relevant climate information easily accessible, understand-
able and usable to them (Hansen et al. 2014; Dinku et al.
2014). A particularly good example of this building of
awareness and demand has been in IRI's partnership with
the International Red Cross/Red Crescent organizations
(Coughlan De Perez and Mason 2014).

Interestingly, some IRI research has demonstrated that
using SST anomaly patterns to predict rainfall, and then
predicting an applied variable (such as crop yield or disease
epidemic) from the rainfall, sometimes does not predict
the applied variable as well as predicting the applied vari-
able directly from SST without considering rainfall as an
intermediary. Such bypassing of rainfall led to better pre-
dictions of wheat yields in Australia (Hansen et al. 2004)
despite that rainfall is likely the most important mediating
variable. A similar finding emerged in the prediction of
wildfire activity in Indonesia (Ceccato et al. 2014), and
maize yield in Colombia in a recent set of experiments.
Bypassing rainfall in the prediction chain may be beneficial
because the rainfall is a “noisier” field than vyield, or
because the rainfall is expressed as a seasonal total rather
than at the subseasonal temporal scale of greater import-
ance to the crop vyields or fire activity. Another possible
explanation is that the final result depends on climate vari-
ables additional to precipitation (e.g., temperature and/or
humidity), whose most likely values are implicit in the SST
patterns. Bypassing intermediate variables in a multi-step
prediction process simplifies the prediction task, and is ap-
pealing when the ultimate goal is the final benefit to society
rather than predicting the climate variables per se.

d. Toward decadal and longer forecasts

Forecasts of seasonal or subseasonal temperature and
precipitation, while important to many users, represent
only part of the range of time scales that are in demand.
With increasing awareness and concern about climate
change, many policy makers are interested in outlooks
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going out to 5 or 10 years and longer (Meehl et al. 2009;
Goddard et al. 2012). The long-term projections from a
large set of climate models have been analyzed, consoli-
dated and published by the Intergovernmental Panel on
Climate Change (IPCC) (Solomon et al. 2007), given sev-
eral specific future greenhouse gas scenarios. These projec-
tions, accompanied by their estimated uncertainties, are
available in print and on the web. However, many users
cannot adequately understand the projections, and particu-
larly the implications of their uncertainties, without taking
time to study them extensively—time they may not have.
The IRI has involved itself in several research projects
relating to climate prediction on decadal and longer time
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scales. While these embryonic study areas carry the chal-
lenge of a relative lack of data with which to verify the
prediction models, the observational record has shown
decadal variability over the last century and also a clear
warming trend, especially when averaged over the globe,
between the 1970s and the 2010s. Best practices in
establishing probabilistic predictions on the decadal time
scale and even for end-of-century climate, and methods
to verify such predictions, have been at the center of
IRI’s research on these longer time scales.

The IRI does not attempt to translate or simplify the
IPCC projections for public consumption, in part because
it has another message about climate change projections
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that it wishes to emphasize. That message pertains to a
preferred way to view climate change projections in rela-
tion to year-to-year climate variations—namely, that these
shorter-term variations (climate variability) in most cases
are expected to continue to overwhelm the slower, longer-
term changes into the coming several decades. The
relatively greater magnitude of interannual variability as
compared with climate change has prevailed over the
past century and even the past several decades in which
warming has been observed, and is expected to continue
into the future even if the rate of climate change becomes
greater than it has been in the last several decades.

To demonstrate the relative magnitudes of the variability
on interannual, decadal, and trend-like time scales, the IRI
has developed a page on the web called the time scales
map room (The IRIs time scales map room). The total
observed variability is partitioned into the three general
frequency bands based on the data during the 20™ century,
using digital filtering methods, and the relative contribu-
tions from each time scale are shown (Greene et al. 2011).
The analyses are useful because the time scale(s) of pri-
mary concern varies by application, and further by context.
For example, the risk of crop loss due to insufficient
seasonal rainfall is generally elevated during years having
below average rainfall due to climate controls varying on a
year-to-year basis, such as ENSO or the tropical SST in
any ocean basin. However, decades that themselves are
drier than normal may also have noticeable additional
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impact. An understanding of how variations on different
time scales combine to produce the observed climate his-
tories can help plan strategies for adaptation or risk mitiga-
tion. For example, Figure 8 shows the global distribution of
the proportion of contribution of interannual, decadal and
trend variability to the total variability for temperature for
the January-March season. Focusing on a particular loca-
tion, such as central Colombia, Figure 9 shows the filtered
time series of the temperature over the 20™ century for
each of the three time scales and indicates the approximate
percentages of variance contained in each. In the case of
central Colombia there is substantial trend variability
toward the end of the century and some decadal variability
between about 1950 and 1985, in addition to the more
dominant interannual variability. Figure 8 shows that al-
though some locations have larger decadal and trend com-
ponents of variability than seen in this location, in many
locations interannual variability dominates more strongly
than seen here. Additionally, the interannual scale gener-
ally dominates to a greater extent for precipitation than for
temperature, because trends are weaker for precipitation in
most cases (not shown).

A logical conclusion suggested by the relative dominance
of the interannual time scale is that while decadal and
trend variability may be important, particularly cumula-
tively in the case of consistent upward trends (e.g. with
continued warming after 20+ years into the future), being
prepared for the year-to-year ups and downs of tem

Longitude 73.75W Latitude 3.75N

dan Jan Jan Jan Jan
1920 1040 1060 1980 2000
Time
Longitude 73.75W Latitude 3.75N

L .
-
1 | 1 1 1 I 1 | 1 | | | 1 1 I | 1 | | |
Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan
1920 1940 1060 1980 2000 1920 1940 1260 1880 2000
Time Time

Longitude 73.75W Latitude 3. 75N

Figure 9 Example of time scale partitioning for a specific location and season. Here the temperature time series for the January-March
season is partitioned for a grid point in central Colombia among (top left) interannual, (top right) decadal and (bottom) trend-related variance.
The three time scales account for 63%, 17% and 20% of the variability of the total time series, respectively. Clicking on this location in the map
shown in Figure 8 triggers the display of these three plots. The total (raw) time series is shown in the panel showing the trend.
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perature or precipitation remains the dominant concern
for many applications. One impact of decadal variability
and/or trends is that extremes in one direction from the
average become more likely than extremes in the opposite
direction. Being prepared for extremes in either direction
is always prudent with or without decadal variability and
trends related to climate change, and is all the more im-
portant with the two later components with the probability
for extremes in one direction becoming greater. Seasonal
climate predictions ideally incorporate all three time scales
together. The fact that most of the IRI’s seasonal forecasts
show much larger areas having enhanced probabilities for
above normal than below normal temperature indicates
that upward trends are indeed represented, given that the
boundaries between the near-normal category and each of
the two other categories are based on a recent but com-
pleted (and thus, too cold to accurately represent today)
30-year period. Because interannual variability is the
predominant time scale, and because it is essentially unpre-
dictable beyond about one year in advance, climate fore-
casts for more than a year into the future would consist of
predictable decadal variability and trends. The resulting
forecasts, besides having variable expected skill (Meehl
et al. 2009), might often be too weak to be of interest to
most users, and therefore they are not usually produced.
The predictions of the IPCC target much longer averaging
periods, such as for the 30 years at the end of the 21*
century, and become more meaningful when accompanied
by their substantial uncertainty estimates. Even in the case
of very long period averaging, the unpredictable interan-
nual variability would inevitably cause temperatures for a
given season at the end of the century to vary considerably
among adjacent years, and such interannual variability is
as important for very long-term planning (e.g., urban
development) as the warmer average climate.

Conclusion: Our achievements, and the way forward
The IRI’s climate information products and services are
designed to help decision makers in many societal sec-
tors and also forecasters in hydrometeorological agencies
in developing countries. Although interest in, and uptake
of, the information has occurred and has resulted in
some verifiable societal benefits, some aspects of IRI’s
goals have not yet been adequately met. One problem is
that some users who are interested and willing to invest
time into using climate information are unable to do so
because of existing rules or constraints regarding how to
conduct their activities, such as a rigidly defined set of
procedures authorized by their federal government that
cannot be easily changed. Another problem is that some
potential users who would be permitted to use climate
information are not willing to spend the needed time
learning about how climate forecasts can help them
better achieve their goals. Moreover, among users who
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are willing and able to use climate information and fore-
casts, a recurrent problem is that they may not sufficiently
understand the probabilistic nature of climate forecasts,
and implications for their proper use in making decisions.
There are two directions in which this lack of understand-
ing may manifest itself: On the one hand, they may
minimize the meaning of the probabilistic information
and regard the most likely forecast category to be the
forecast in an unqualified sense; and secondly, they may
understand the probabilistic information but interpret it
too pessimistically, so as to believe it is virtually worthless,
when over a long period of time it would more clearly be
economically advantageous if used consistently properly.
This second misunderstanding may develop when the
observations do not occur in the category having the
greatest forecast probability in the initial one or two tri-
als of using the forecasts. Both of these misconceptions
have proven able to be ameliorated through repeated
communication, preferably face-to-face and in instances of
imminent application (e.g., during times of local forecast
issuance, with stakeholders present and needing to make
decisions such as what crop varieties to plant and when to
plan them).

Users frequently express interest in forecasts having more
temporal or spatial detail than is scientifically possible, such
as spatially detailed week-to-week scenarios within the
coming season. Again, communication can help rectify
such an unrealistic expectation.

Although IRI has worked hard to make the observational
and forecast information understandable, many browsers of
the web pages express confusion and need help in learning
the correct meaning of the information. Sometimes they
are not willing or able to read metadata relating to the
product, while in other cases they do attempt to read the
relevant material but still find the graphical charts or maps
unintelligible. The users most able to absorb and use the
climate information appropriately have been from the
developed world, and often in private businesses such as
energy or agricultural businesses or even weather derivative
enterprises. However, a recent survey of subscribers to our
forecasts indicated that while many of them are from Eur-
ope and the United States, a moderate percentage of them
are from Central or South America and in the agricultural
sector, using the map room and/or the ENSO and climate
forecasts for short-term planning purposes. This finding
clearly represents a concrete success. Likewise, the uptake
and sustained use of CPT (see the subsection on seasonal
climate forecasts above) by meteorological offices for mak-
ing objective climate predictions in a moderately large set
of developing countries in Africa, the Caribbean, Latin
America and a few others (Mantilla et al. 2014) is consid-
ered a measurable success. Although success is relative, and
it is difficult to assess some aspects of IRI's success levels
using objective criteria, it is clear that IRI’s efforts to link
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climate science with society have been improving human
welfare in an increasing number of developing countries.

An increasingly common issue among users is their
interest in forecasts on longer, decadal to climate change
time scales. This brings out a need to more carefully
explain the interplay of different time scales in anticipating
near- and longer-term climate conditions to be expected.
New and continuing research on this subject is needed,
and IRI fully expects to rise to the occasion. The time
scales map room product is just a beginning for what
could and should become a more seamless suite of prod-
ucts for climate on sub-seasonal to century time scales.
An example of such an innovative product would be a sea-
sonal forecast that explicitly breaks down the interannual,
decadal and trend components in separate maps to reveal
the contributions from each time scale. While the interan-
nual component would usually be expected to dominate,
there might be some seasons and locations in which one
of the other components plays a significant role. Another
potential product would be an explicit forecast for the
average climate over the coming 10 years, based on
increasing knowledge of the drivers of decadal climate
variability. Regardless of what shape its future climate
information products take, IRI intends to be a beacon of
enlightenment to help quell the insatiable needs, questions
and confusion of societies that potentially could make use
of climate information to their economic advantage and
for their general welfare.

Endnotes

*Maprooms other than that of global climate are also
available. Those applying climate in a specialized,
context include those of food security, fire, and the
International Federation of Red Cross and Red Crescent
Societies. Also, besides the global scale climate, regional
scale and ENSO-specific maprooms may be selected”. In
this paper, the term “prediction” is used when produced
entirely by an objective method, or set of methods, such
as by one or more prediction models, and not altered by
human forecasters. Alternatively, “forecast” is used when
some form of human judgment also enters into the final
product. “Prediction” is also used when referring to the
overall discipline or field of predicting the climate®. In
all three tropical ocean basins, the Coupled Forecast
System SST prediction from the NCEP, and the con-
structed analogue SST prediction also from NCEP, are
used. In the tropical Pacific Ocean, the Lamont-Doherty
Earth Observatory intermediate coupled model (version
5) is also used. In the tropical Indian Ocean, a CCA pre-
diction is also used, using the predicted tropical Pacific
SST prediction and the recently observed Indian Ocean
SST as predictors®. The set of AGCMs used by IRI has
evolved since 1997. The six AGCMs used at the time of
this writing include: (1) ECHAMA4.5 (from Max Planck
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Institute, Hamburg, Germany, run at IRI, 24 ensemble
members); (2) CCM3.6 (from NCAR, Boulder Colorado
US, run at IRI, 24 members); (3) CFSv2 (from NCEP,
College Park, Maryland, US, run at NCEP, 24 members,
1-tiered output used; (4) COAPS (from Florida State
University, Tallahassee, Florida, US, run at FSU, 12 mem-
bers); (5) GFDL (from Princeton, New Jersey, US, run at
GFDL, 30 members) and (6) COLA2.2.6 (from Fairfax,
Virginia, US, run at COLA, 36 members)’. The weather
conditions are not predictable beyond about 10-14 days,
but serve as a randomizing agent for the seasonal climate
predictions; hence, using initial weather conditions as
actually observed is unnecessary®. Not all climatologists
agree that this trend-based source of skill is “fair”. Among
those who do not, most think that skill should be based
more exclusively on the ability to distinguish year-to-year
variations within a given decade.
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