Sayama Complex Adaptive Systems Modeling 2013, 1:2
http://www.casmodeling.com/content/1/1/2

® Complex Adaptive Systems Modeling

a SpringerOpen Journal

METHODOLOGY Open Access

PyCX: a Python-based simulation code
repository for complex systems education

Hiroki Sayama

Correspondence:
sayama@binghamton.edu Abstract

Collective Dynamnics of Complex We introduce PyCX, an online repository of simple, crude, easy-to-understand sample
Systems Research Group,

Departments of Bioengineering & codes for various complex systems simulation, including iterative maps, cellular

Systems Science and Industrial automata, dynamical networks and agent-based models. All the sample codes were

E”Q'”e?t””gft'”guh?mt?’t‘ N written in plain Python, a general-purpose programming language widely used in
niversity, State University or New

York, Binghamton, NY, USA industry as well as in academia, so that students can gain practical skills for both

complex systems simulation and computer programming simultaneously. The core
philosophy of PyCX is on the simplicity, readability, generalizability and pedagogical
values of simulation codes. PyCX has been used in instructions of complex systems

modeling at several places with successful outcomes.

Keywords: PyCX, Python, Complex systems simulation, Education, Iterative maps,
Cellular automata, Dynamical networks, Agent-based models

Background
Until nearly the end of the last century, dynamic simulations of complex systems—such
as cellular automata and agent-based models—were only available to researchers who
had sufficient technical skills to develop and operate their own simulation software. At
that time, there were very few general-purpose simulation software packages available
(e.g., (Hiebeler 1994; Wuensche 1994)), and those packages were rather hard to program,
unless one had a computer science background. The lack of general-purpose simulation
software easily accessible for non-computer scientists was a major limiting factor for the
growth of complex systems science, given the highly interdisciplinary nature of the field.

Over the last decade, several easy-to-use complex systems modeling and simulation
software packages have been developed and become widely used for scientific research,
including NetLogo (Tisue and Wilensky 2004), Repast (Collier 2003), Mason (Luke et al.
2004) (for agent-based models) and Golly (Trevorrow et al. 2005) (for cellular automata).
They have been playing a critical role in making complex systems modeling and simu-
lation available to researchers outside computer science. A number of publications used
these software packages as key research tools, and increasingly many online tutorials and
sample simulation models are becoming publicly available.

However, such existing software has several problems when used for teaching complex
systems modeling and simulation in higher education settings. These are all real issues we
have faced in classrooms and other educational settings over the last several years.

© 2013 Sayama; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons

L]
@ Sprlnger Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction

in any medium, provided the original work is properly cited.

Sayama Complex Adaptive Systems Modeling 2013, 1:2 Page 2 of 10
http://www.casmodeling.com/content/1/1/2

Firstly, and most importantly for college students, learning languages or libraries spe-
cific to particular simulation software used only in academia would not help the students
advance their general technical skills. Because most students will eventually build their
careers outside complex systems science, they usually want to learn something generaliz-
able and marketable (even though they want to study complex systems science and they
do appreciate its concepts and values).

Secondly, even for those who actively work on complex systems research, choices of
preferred software vary greatly from discipline to discipline, and therefore it is quite diffi-
cult to come up with a single commonly agreeable choice of software useful for everyone.
This is particularly problematic when one has to teach a diverse group of students, which
is not uncommon in complex systems education.

Thirdly, details of model assumptions and implementations in pre-built simulation soft-
ware are often hidden from the user, such as algorithms of collision detection, time
allocation and state updating schemes. As we all know, such microscopic details can
and do influence macroscopic behavior of the model, especially in complex systems
simulations.

Finally, using existing simulation software necessarily puts unrecognized limitations to
the user’s creativity in complex systems research, because the model assumptions and
analytical methods are influenced significantly by what is available in the provided soft-
ware. This is a fundamental issue that could hamper the advance of complex systems
science, since any breakthroughs will be achieved only by creating entirely novel ways of
modeling and/or analyzing complex systems that were not done before.

These issues in using existing simulation software for complex systems education leads
to the following very challenging riddle:

Which computational tool is best for teaching complex systems modeling and simulation,
offering students generalizable, marketable skills, being accessible and useful for everyone
across disciplines, maintaining transparency in details, and imposing no implicit limit to
the modeling and analysis capabilities?

Obviously, there would be no single best answer to this kind of question. In what fol-
lows, we present a case of our humble attempt to give our own answer to it, hoping that
some readers may find it helpful for solving their unique challenges in complex systems
education.

PyCX

Through several years of experience in complex systems education, we have come to
realize that using a simple general-purpose computer programming language itself as a
complex systems modeling platform is our current best solution to address most, if not all,
of the educational challenges discussed above. By definition, general-purpose computer
programming languages are universal and can offer unlimited opportunity of modeling
with all the details clearly spelled out in front of the user’s eyes.

Identifying a programming language that would be easily accessible and useful in a wide
variety of disciplines had been difficult even a decade ago.? Fortunately, several easy-to-
use programming languages have recently emerged and become very popular in various
scientific and industrial communities, including Python and R. For our educational needs,
we chose Python, a programming language now widely used in industries as well as in

Sayama Complex Adaptive Systems Modeling 2013, 1:2
http://www.casmodeling.com/content/1/1/2

academia, so that students can gain practical skills for both complex systems simulation
and computer programming simultaneously.

Using the Python language itself as a modeling and simulation platform, we have devel-
oped “PyCX’; an online repository of simple, crude, easy-to-understand sample codes for
various complex systems simulation.” The target audiences of PyCX are researchers and
students who are interested in developing their own complex systems simulation soft-
ware using a general-purpose programming language but do not have much experience
in computer programming. We carefully designed the sample codes so that our audience
can understand, modify, create and visualize dynamic complex systems simulations
relatively easily.

The core philosophy of PyCX is therefore placed on the simplicity, readability, generaliz-
ability and pedagogical values of simulation codes. This is often achieved even at the cost
of computational speed, efficiency or maintainability. For example: (1) every PyCX sample
code is written as a single .py file, which is a plain text file, without being split into multiple
separate files; (2) all the dynamic simulations follow the same scheme consisting of three
parts (initialization, visualization and updating); (3) we do not use the object-oriented
programming paradigm because it is sometimes difficult for non-computer scientists to
grasp; and (4) we do use global variables frequently to make the code more intuitive and
readable. These choices were intentionally made based on our experience in teaching
complex systems modeling and simulation to non-computer scientists and their feedback.

A simple example of PyCX sample codes (“abm-randomwalk.py’, an agent-
based simulation of particles moving in independent random walk in a two-
dimensional open space) is shown below. For a dynamic simulation like this one,
the user needs to define three functions (init for initialization, draw for visualiza-
tion, and step for updating) and then call pycxsimulator.GUI().start() to run the
simulation.

import matplotlib
matplotlib.use (' TkAgg’)

import pylab as PL
import random as RD
import scipy as SP

RD.seed ()

populationSize = 100
noiselevel = 1

def init():
global time, agents

time = 0

agents = []

for 1 in xrange (populationSize) :

Page 3 of 10

Sayama Complex Adaptive Systems Modeling 2013, 1:2 Page 4 of 10
http://www.casmodeling.com/content/1/1/2

newAgent = [RD.gauss(0, 1), RD.gauss (0, 1)]
agents.append (newAgent)

def draw() :
PL.cla()
x = [ag[0] for ag in agents]
y = [ag[l] for ag in agents]

PL.plot(x, y, ’'bo’)

‘scaled’)
PL.axis([-100, 100, -100, 100])
PL.title(’'t = ’ + str(time))

PL.axis

[
[
(
(

def step():
global time, agents

time += 1

for ag in agents:
ag[0] += RD.gauss (0, noiseLevel)
ag[l] += RD.gauss (0, noiseLevel)

import pycxsimulator
pycxsimulator.GUI () .start (func=[init, draw, step])

There are a few limitations in using Python for complex systems education. The first
limitation is that the software installation and maintenance is a little more difficult than
other more sophisticated software environment.© We believe, though, that the long-
term educational benefit from learning a general-purpose programming language will
outweigh the short-term learning difficulty for the majority of students.

The second limitation is that it is relatively difficult to build an interactive GUI (Graphi-
cal User Interface) in Python. To alleviate this problem, we provide a simple universal GUI
and a coding template for dynamic simulations. The user can define just three functions
(for initialization, visualization and updating) in the “realtime-simulation-template.py”
file to implement a dynamic simulation, and then the “pycxsimulator.py” module will

automatically generate a minimalistic GUI with three buttons (“Run/Pause’, “Step Once”
and “Reset”; Figure 1). These two files must be placed within the same folder.

Implemented Sample Codes

We have implemented a number of sample codes for typical complex systems simulations,
including iterative maps, cellular automata, dynamical networks and agent-based models.
All of those codes were concisely written in plain Python. They are freely available from
the project website.” To run those sample codes, the user will need the following software
modules, which are also available for free and widely used for scientific computation in
academia and industries:

e Python 2.74
e NumPy and SciPy for Python 2.7¢

Sayama Complex Adaptive Systems Modeling 2013, 1:2 Page 5 of 10
http://www.casmodeling.com/content/1/1/2

Populations

0 20 40 60 80 100120140160180

Figure 1 Minimal GUI (Graphical User Interface) generated by the “pycxsimulator.py” module.

A three-button minimal GUI window is displayed at the top, together with the large main window showing
the simulation result that is dynamically updated in real time. The main window also comes with several
matplotlib-default GUI buttons for zooming and saving images, etc. (bottom). Simulations of cellular
automata, dynamical networks and agent-based models are to be operated using this simple GUI.

e matplotlib for Python 2.7¢

e NetworkX for Python 2.7 (this module is needed for dynamical network simulations
only) (Hagberg et al. 2008)¢

In most operating systems, running a PyCX sample code is just double-clicking on the
file. Below is a selected list of simulations included in the most recent version of PyCX
(version 0.2):

e Basic dynamical systems (logistic map, cobweb plot, bifurcation diagram,
Lotka-Volterra equations; Figure 2)

e Cellular automata (local majority rule, droplet rule, Game of Life, Turing pattern
formation, excitable media, host-pathogen interaction, forest fire; Figure 3)

’A

3

?ll’ i ‘\
] W || MW

b 7 T 0% e o 8 T3 1o 15 20 25 38 35 40

Figure 2 Screen shots of basic dynamical systems in PyCX. (a) Logistic map, (b) cobweb plot,
(c) bifurcation diagram, (d) Lotka-Volterra equations.

Sayama Complex Adaptive Systems Modeling 2013, 1:2 Page 6 of 10
http://www.casmodeling.com/content/1/1/2

Figure 3 Screen shots of cellular automata in PyCX. (a) Local majority rule, (b) droplet rule, () Game of
Life, (d) Turing pattern formation, (e) excitable media, (f) host-pathogen interaction, (g) forest fire.

e Dynamical networks (basic network construction and analysis, network growth by
preferential attachment, local majority rule on a network, synchronization on a
network based on the Kuramoto model (Strogatz 2000), disease spreading on a
network, cascade of failures on a network; Figure 4)

e Agent-based models (random walk of particles, diffusion-limited aggregation,
predator-prey ecosystem, garbage collection by ants (Resnick 1997), aggregation of

ants via pheromone-based communication; Figure 5)

Actual use in the classrooms
PyCX has been used in instructions of complex systems modeling and simulation at

several occasions, including:

Nede phases
.

N\

Figure 4 Screen shots of dynamical networks in PyCX. (a) Network growth by preferential attachment,
(b) local majority rule on a network, (€) synchronization on a network based on the Kuramoto model
(Strogatz 2000), (d) disease spreading on a network, (e) cascade of failures on a network.

Sayama Complex Adaptive Systems Modeling 2013, 1:2 Page 7 of 10
http://www.casmodeling.com/content/1/1/2

00 t=|200 100 ‘ t =200 .
80
50 g
o 35
...& 2 l-.‘ %
L]
0 o, :‘:N; & L] 1
. L] ‘ (1] '
. t, e 40p
-50 i
20f ’
1060 50 0 50 w0 % 20 40 %0 80 100
c 300 Populations
t=202
100 2501
80 . - :
AR B 200}
- ¢ °
N b ': ®
. o * . o 150
N L
L] ‘ . . ¢
40 . e
.
L ¢ .. * L]
. . L] 100
20} ® 1
* e 0, .
. % .
) . o ¢
o X . ; 50|
() 20 40 60 80 100
% 50 100 150 200 250
d t = 400 e t=23
50 .' mEm L L | L} LI LI | 50 hid W ° T w T Lid
] N | L mo .I [| L [] - = - [] o ’ o L]] —
| n o o L |] - L]
. n n L : I . | I i- .- | | L i .l. :‘ o .l o
40+ .- I il .l N l. .I _n.I ' .l: 40 | :. = :0 L] ",
°n n " l.rl f'llll' g K : et 2
j— .l - - |} .:. L}) - b L] L}
.. n 3 . - ® O | | L = e L] M ..]
-m . | N |] .. * e mm e L] L]
301 =8 Ll | II LY u i 30} . 2% 3. °° 5
= L S mm faem ol - o LI
I ..I I | .n- +.l°. I u il h.] :;. H .. .- = -
] D- n |] n L .
20 m .5‘.l . I-l. .:l l'-t 20+ %o Pl 4 .33. 1
- 5 .0] - - l.. .. | '..I . = . L] = =
n n
m -I ‘. I. -E an III | | O.J g. :.. ..‘ G] ..l
| | n o o AN e N EN n -4 L] L)
10f =1, . ."°Io| | B ..-_' 0p *° o 3 % o " 3
I .I 1 - n .. .-- |} | " . . ae L} - .
| B | e . - .-. n n . L p ° .I = .’: * o8
lo.'_':'-'l. 'lﬁ.n'- 3 P .‘. M
0 | 1 L m i W f o 0 L] [Y i [] 1]

(] 10 20 30 40 50 (] 10 20 30 40 50
Figure 5 Screen shots of agent-based models in PyCX. (@) Random walk of particles, (b) diffusion-limited
aggregation, (c) predator-prey ecosystem, (d) garbage collection by ants (Resnick 1997), (e) aggregation of
ants via pheromone-based communication.

Sayama Complex Adaptive Systems Modeling 2013, 1:2 Page 8 of 10
http://www.casmodeling.com/content/1/1/2

¢ Binghamton University Graduate Courses

— BME-510: Modeling Complex Biological Systems (2009, 2010)
— SSIE-518X/523: Collective Dynamics of Complex Systems (2011-)
— BME-523X/523: Dynamics of Complex Networks (2012-)

e New England Complex Systems Institute Summer/Winter Schools"

— CX202: Complex Systems Modeling and Networks (2008-)
— CX 102: Computer Programming and Complex Systems (2010-)

e NWO (Netherlands Organisation for Scientific Research) Complexity Winter School
(2011)!
e NetSci High Summer Workshop (2012))

In a typical curriculum, we ask students to bring in their own laptops to the classroom,
and spend the first three to six hours for software installation and general introduction to
Python, covering basics of its syntax and data structures. The rest of the curriculum can
be custom-designed based on the students’ interests and needs, by combining appropriate
simulation sample codes as curricular units.

While each curricular unit can be taught in various ways, we have found the following
instruction format most effective so far:

1. Describe the key concepts of the phenomenon being modeled, as well as the basic
model assumptions.

2. Run the simulation sample code, show the results and have a brief discussion on
the observations.

3. Open the code in an editor® and give a line-by-line walk-through, explaining how
the model is implemented in detail and addressing any technical questions as
needed.

4. Have a couple of in-class exercises that require students to understand and then
modify the code to implement some model variations.

5. Summarize the learning experience of the curricular unit and have open Q&A’s

and/or try further model extensions.

In this format, each unit can be covered within 30 minutes to one hour, depending on
how much details will be discussed. The basic goal of these activities is to make students
feel comfortable in investigating into sample codes of their interest and then actively
modifying them as a template for their own simulation models.

A systematic evaluation of PyCX’s educational impacts is beyond the scope of this short
article. However, we have gained several tangible outcomes, including:

e 100% “thumbs-up” user rating scores on SourceForge.net !

e Many highly positive testimonials from those who took courses with PyCX or who
used PyCX (some testimonials are available on the project website)

e Several publications of papers on Python-based computer simulation by students and
faculty who took courses with PyCX (Hao et al. 2010; Mischen 2010; Yamanoi and
Sayama 2012)

Sayama Complex Adaptive Systems Modeling 2013, 1:2 Page 9 of 10
http://www.casmodeling.com/content/1/1/2

Conclusion
We have presented PyCX, an online repository of sample codes of complex systems simu-
lations designed primarily for higher education. It uses the Python programming language
itself as a modeling and simulation platform, aiming at overcoming several limitations that
arose from using existing complex systems simulation software for educational purposes.

PyCX has both new and old aspects. Its technical aspect is new because it is based on a
rapidly growing programming language Python and its powerful add-on modules such as
NetworkX for network modeling. In the meantime, its core philosophy remains very old,
advocating that everyone should be writing codes of his or her own simulation models
in order to explore highly unique, novel modeling frameworks and analysis methods, just
like what complex systems researchers used to do in the twentieth century. We believe
that, by raising the level of basic computer programming literacy among various disci-
plines through PyCX and other similar projects, the complex systems science community
will be able to remain highly creative and innovative in its exploratory endeavors.

The PyCX project is still continuously evolving. We would highly appreciate com-
ments, suggestions and contributions from researchers and educators who are interested
in participating in it.

Endnotes

aNote that C, C++ and Java were too technical for most of non-computer scientists. Other
commercial languages such as MATLAB and Mathematica were relatively easy to code,
but neither freely available nor widely accepted across disciplines.

Phttp://pycx.sf.net/

“But this problem can be remedied by using a pre-packaged Python software suite such
as Enthought (http://www.enthought.com/).

dhttp://python.org/

¢http://scipy.org/

fhttp://matplotlib.org/

ghttp://networkx.lanl.gov/

Phttp://www.necsi.edu/education/school.html
ihttp://www.nwo.nl/en/research-and-results/programmes/complexity
Ihttp://www.bu.edu/networks/

ke usually use IDLE, Python’s default text editor, for our instructions.
Ihttp://sourceforge.net/projects/pycx/reviews/ (as of November 19, 2012)

Competing Interests
The author declares that he has no competing interests.

Acknowledgements
We thank Chun Wong for his invaluable contribution in developing the GUI for real-time dynamic simulations.

Received: 22 November 2012 Accepted: 10 December 2012 Published: 13 March 2013

References

Collier, N: Repast: An extensible framework for agent simulation. 2003. http://repast.sf.net/.

Hagberg, AA, Schult DA, Swart PJ: Exploring network structure, dynamics, and function using NetworkX. In
Proceedings of the 7th Python in Science Conference. Edited by Varoquaux, G, Vaught T, Millman J; 2008:11-15.

Hao, C, Gupta A, Paranjape R: Pooling unshared information: building expertise and social ties in decision-making
groups., Paper presented at the 70th Academy of Management Annual Meeting, Session # 1727: Decision Making in
Organizations. Montreal, Canada; 2010.

http://pycx.sf.net/
http://www.enthought.com/
http://python.org/
http://scipy.org/
http://matplotlib.org/
http://networkx.lanl.gov/
http://www.necsi.edu/education/school.html
http://www.nwo.nl/en/research-and-results/programmes/complexity
http://www.bu.edu/networks/
http://sourceforge.net/projects/pycx/reviews/
http://repast.sf.net/

Sayama Complex Adaptive Systems Modeling 2013, 1:2 Page 10 of 10
http://www.casmodeling.com/content/1/1/2

Hiebeler, D: The Swarm simulation system and individual-based modeling. In Proceedings of the Decision Support
2001: Advanced Technology for Natural Resource Management. Toronto; 1994. http://www.santafe.edu/media/
workingpapers/94-11-065.pdf.

Luke, S, Cioffi-Revilla C, Panait L, Sullivan K: Mason: A new multi-agent simulation toolkit. In Proceedings of the 2004
SwarmfFest Workshop (Vol. 8); 2004.

Mischen, PA: Information sharing and knowledge sharing in interorganizational networks., Paper presented at the
Computational Social Science Society Annual Conference. Tempe, AZ; 2010.

Resnick, M: Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds. Cambridge, MA: MIT Press; 1997.

Strogatz, SH: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled
oscillators. Physica D 2000, 143:1-20.

Tisue, S, Wilensky U: NetLogo: A simple environment for modeling complexity. In Proceedings of the Fifth International
Conference on Complex Systems. Boston, MA; 2004:16-21.

Trevorrow, A, Rokicki T, et al.: Golly Game of Life simulator. 2005. http://golly.sf.net/.

Wuensche, A: Discrete dynamics lab (DDLab) - Software and Manual. 1994. http://ddlab.com/.

Yamanoi, J, Sayama H: Post-merger cultural integration from a social network perspective: A computational
modeling approach. Comput Math Organ Theory 2012. in press.

doi:10.1186/2194-3206-1-2
Cite this article as: Sayama: PyCX: a Python-based simulation code repository for complex systems education.
Complex Adaptive Systems Modeling 2013 1:2.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://www.santafe.edu/media/workingpapers/94-11-065.pdf
http://www.santafe.edu/media/workingpapers/94-11-065.pdf
http://golly.sf.net/
http://ddlab.com/

	Abstract
	Keywords

	Background
	PyCX
	Implemented Sample Codes
	Actual use in the classrooms
	Conclusion
	Endnotes
	Competing Interests
	Acknowledgements
	References

