
http://www.journalofinteractionscience.com/content/1/1/2
:2Heron et al. Journal of Interaction Science 2013, 1
RESEARCH Open Access
Open source and accessibility: advantages
and limitations
Michael Heron1*, Vicki L Hanson2 and Ian Ricketts2
Abstract

In this paper we discuss the open source process as it relates to accessibility software. Open source is a development
model that has shown considerable benefits in a number of application areas. However the nature of accessibility tools
and the intended users of such software products raise issues that must be addressed by the developer before users
encounter the tools in real world contexts. In this paper we discuss the nature of the open source process, how it
functions, and the motivations with regards to participation that developers self-report. We then explain the impact of
these elements of the open source process as they relate to adaptive accessibility software. We use some specific
examples of issues raised from the adoption of open source via a discussion of the ACCESS Framework, an accessibility
engine designed to provide cross-platform accessibility support through plug-ins.

Keywords: Open source, Human factors, Accessibility, Usability, Inclusivity, Gamification
Introduction
Running parallel to the more traditional models of com-
mercial software development is a philosophy known as
the open source movement. The movement is large and
diverse, but at the core centres around a basic agreement
that it is important for a software product to be distrib-
uted alongside the source code of its implementation. As
a natural consequence of this, the open source movement
is strongly involved in issues of copyright, redistribution
and the rights of individuals to make derivate and trans-
formative works from an original implementation. Open
source is a common practise in computing science and
many of the core technologies of the internet and desktop
have been developed and distributed under one or more
of the permissive licences generally accepted as conforming
to the principles of the movement.
However, for all its importance in the development

of computer artefacts, there is little literature avail-
able investigating the implications of providing open
source software for inexperienced users. Open source
software is not simply the same as commercial software
that is provided for free - the process of open source con-
tribution, whether it be software or knowledge, is an
* Correspondence: michael.heron@canterbury.ac.uk
1Canterbury Christ Church University, Canterbury, Kent CT1 1QU, United
Kingdom
Full list of author information is available at the end of the article

© 2013 Heron et al.; licensee Springer. This is a
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
unusual and relatively novel approach to building in-
formation artefacts.
The particulars of the open source development model

is such that it has numerous implications for those
looking to deploy particular kinds of software for specific
demographics. In this paper, we provide an overview of
some of the implications for one specific situation –
adaptive accessibility software. To frame this argument
properly we must first discuss how open source as a de-
velopment model functions and how the motivations of
those who contribute influence the end product. We
then highlight some of the implications of this process
with regards to a specific open source accessibility tool
developed by the authors.
Open source development
At its simplest, an open source application is one in
which the source-code that builds the application is dis-
tributed alongside, or instead of, the executable binaries
that comprise the program itself [1]. For more substan-
tial definitions, there are several organisations that have
claimed philosophical ownership over the term, such as
the Open Source Initiative (OSI) who have layered sev-
eral other principles onto the core definition [2]. Others
such as the GNU project have made the term part of a
larger movement within software development known as
n Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:michael.heron@canterbury.ac.uk
http://creativecommons.org/licenses/by/2.0

http://www.journalofinteractionscience.com/content/1/1/2
:2Heron et al. Journal of Interaction Science 2013, 1 Page 2 of 10
the ‘free software movement’ within which the openness
of the product becomes the key driving principle [3].
It is the nature of the terms under which a software

application is distributed (the licensing agreement) that
defines the freedom that users have with the software.
Some licences prohibit modification for profit, while
others act virally and require the adoption of the licence
in all derivative works. Some permit their use in all cir-
cumstances, others have restrictions for those using the
software for commercial purposes. The exact enumer-
ation of developer and user rights is primarily a concern
for those wishing to extend or modify the software ra-
ther than for those end users simply looking to take ad-
vantage of software that is freely downloadable.
The open source movement has attracted much ‘free’

labour to the cause of building open, transparent soft-
ware systems. Despite the peculiarities of the approach,
it has resulted in many substantial open source projects
becoming reliable, scalable technologies that have been
used at all levels of the digital economy. Open source
software is used for everything from individual servers
to the hardware that runs mission critical systems for
multinational corporations. Some of the more significant
examples of this kind of software include:

� technologies that underpin the infrastructure of the
Internet such as Apache, Perl, PHP and MySQL;

� operating systems used for both servers and
desktops such as Linux and Haiku;

� web browsers such as Firefox and Chrome;
� desktop application software such as OpenOffice,

GIMP and Blender; and
� web applications such as Mediawiki, phpBB and

Wordpress.

The collaborative movement has boasted from the
start many successful products competing directly with
closed-source, proprietary alternatives. Even so, some
authors (for example, [1]) have raised concerns about
the suitability of open source as a process for developing
commercial software.
The largest and most successful of open source pro-

jects are community outcomes, resulting from the
large-scale integration of the work of multiple contribu-
tors. The product of this contribution tends to follow
the usual long-tail pattern whereby a small minority
are responsible for the majority of content (such as is
noted in [4,5]).
In open source projects, individuals choose elements of

a common resource to implement or improve, and the
modifications are then folded into the original, often with
some kind of central authority acting as an intermediary
for approval [6], p. 53). Aside from a few core individuals,
contributors to such projects do not usually receive any
kind of financial reward for their efforts. Instead, the con-
text in which they operate more closely resembles that of
a traditional gift culture ([6], p. 81; [7]) in which one’s per-
sonal standing is increased not by the amount an individ-
ual has, but by the amount an individual gives away.
However, as a counterpoint to this, it should be noted that
many of those who work most closely with the open
source movement are remunerated as part of their job as
advocates within larger technology organisations.
This collaborative approach to development has since

extended beyond its roots in software source-code into
areas such as collaborative knowledge creation, of which
the most successful of these is the peer-produced know-
ledge resource known as Wikipedia. It is clear that col-
laborative production of resources has resulted in a
great deal of concern for companies built on more
traditional models of development (For some examples,
see [6,8], p. 183; [9]).

Motivation to contribute
It is not immediately apparent why a process built on
voluntary, unremunerated participation can result in ser-
viceable products. Only a minority of individuals en-
gaged in open source development are employed and
financially compensated by the larger companies dedi-
cated to open source initiatives [10]. Participants are giv-
ing their time and often marketable skill-sets to projects
whereby any financial return (if any such return exists)
accrues to other individuals or organizations. Several
reasons for this have been proposed as a result of studies
into motivation of open-source software development:

� Perfecting expertise ([6,11]; Lakhani & Wolf,
[12]; [13])

� Enhancing reputation ([14]; Lakhani and Wolf, [12];
[6,13])

� Fun and enjoyment ([13]; Lakhani & Wolf, [12]; [15])
� Expectation of reciprocity [6]
� Job Market Signalling [6,16]
� Altruism [17]
� Belief in a principle of development [6,18]
� To fulfil a personal need [6,19]

All of these authors have stressed different motivations
to different degrees. Most studies have treated the open-
source phenomenon as a unified whole, but it does not
hold that motivation will be identical across different do-
mains of participation [20]. Oreg and Nov [21] discuss
how the context of the collaboration impacts on the mo-
tivation of participants. These studies have focussed pri-
marily on those who volunteer often specialised skill-sets
to a project, and their results are not necessarily transfer-
able to the more open participation of projects such as
Wikipedia.

http://www.journalofinteractionscience.com/content/1/1/2
:2Heron et al. Journal of Interaction Science 2013, 1 Page 3 of 10
The expectation of generalized reciprocity also under-
lines much of the nature of open-source participation.
The expectation is not that there is a mapping between
contributor and beneficiary, but that at some point the
contributor will benefit from the work of someone else
in the community [16,22].

Open source participation
Having dealt with the issue of why people participate,
the next issue to be addressed is how. The nature of
open source development prohibits the use of a trad-
itional, top-down management structure due to the ex-
ponentially increasing co-ordination and transaction
costs [23]. Instead, open source projects are traditionally
defined by three key principles:

� The ability of individuals to self-select their
contributions ([6], p. 31-32, 57-58; [24])

� The ability of individuals to choose their level of
participation ([25], p. 70)

� The ease at which individual contributions can be
integrated into the whole ([6], p. 32; [11], p. 77-82).

The first principle allows for a high degree of effi-
ciency in the allocation of individuals to tasks. In an
open-source project, participants are not assigned a task
to complete by the project leaders. Instead, they identify
an area of the project in which they are interested, and
in which they feel they have the competencies to make
an improvement ([6], p. 31; [11]). This method ensures
that no individual is given a task for which they have no
competency, or are allocated a duty which they find per-
sonally onerous. Critics of the open source model claim
that this leads to uneven distribution of attention across
an application. It is argued that the high-profile, high-
prestige tasks get disproportionate attention compared
to the low-profile, low-prestige tasks such as application
documentation. Additionally, there are concerns that
while open-source as a method thrives in ‘interesting’
problem spaces, that it has issues producing applications
of a more mundane nature [14].
The strength of this approach though comes in the het-

erogeneous makeup of the developer pool for open source
applications. What seems to be an insurmountable task to
one developer may be trivial to another simply because
their skill-sets, experience and mental models are espe-
cially amenable to that scenario ([6], p. 32). This principle
is summed up informally by Raymond [6], p. 3 as Linus’
Law: ‘Given enough eyeballs, all bugs are shallow’.
Coupled to this is the ability of an individual to choose

their level of participation in the project. An individual
may choose to develop entire new features, or focus on
fixing small bugs in existing features as they desire.
Allowing highly granular levels of participation ensures
that individuals are never allocated tasks that exceed
their level of motivation to contribute (Tapscott &
Williams, [25], p. 70). An individual may have the skill-set
and the mental model needed to implement a specific
piece of code, but they also need the will to do so. In order
for an open-source application to support this, it has to
permit people to participate at all levels of the process,
from finding bugs to fixing bugs to suggesting features to
implementing features.
The nature of open-source development is meritori-

ous in most cases – those central authorities that
exist have risen to their positions largely as a result
of their standing as initiators and sustainers in a pro-
ject, and through demonstrated authorial credibility
([11], p. 78-84, 321; [6], p. 84-92; [26]). Individuals
who have demonstrated the ability to leverage this cred-
ibility include Linus Torvalds, Jimmy Wales and Richard
Stallman. Their ability to influence development and con-
tribution persists as long as their credibility remains. Lead-
ership is thus an on-going, emergent property of the
process of development.
In cases where a leader loses this credibility, ownership

of the project may be removed by ‘forking’ the code. A
rival development team begins their own parallel devel-
opment from a common code-base which becomes a
‘fork’ of the original with its own contributors and de-
sign philosophies. Such actions are not usually looked
upon positively in the open source community ([6], p. 85;
[11], p. 171) due to the way they fracture loyalties and
contributors. The threat of a fork though serves a purpose
as the ultimate moderator of authority and a mechanism
for ensuring multiple development directions can poten-
tially be explored.

Advantages and limitations of open source
Outside the context of research there are many compel-
ling reasons for an author to release their software as
open source – amongst these are the expectations that
offering code for free will increase market share [27] and
the belief that building a development base around the
tool will increase long-term sustainability [28] as well as
increase the personal reputation and future employabil-
ity of the author [29]. For those not looking to commer-
cialise their software products, open source offers a
range of potential benefits.
Related to this is that many software projects are de-

veloped because the author has a need for them [6,30]
or because the author seeks a particular creative outlet.
These projects then get released to the larger develop-
ment community and to end users. This increased pool
of interested parties results in further successive im-
provements being made to the software. Each party may
be acting in their own self-interest by contributing, but
all benefit exponentially from the process.

http://www.journalofinteractionscience.com/content/1/1/2
:2Heron et al. Journal of Interaction Science 2013, 1 Page 4 of 10
Within the context of academia there are also philo-
sophical issues such as adhering to the principles of
open research. Providing full access to freely modifiable
source code can be difficult when coupled with the re-
strictions associated with proprietary software. Addition-
ally, publishing the algorithms and software diagrams
may show the general shape of a solution, but there are
implementation subtleties that make it difficult for others
to recreate the software in a way that allows for replicating
and corroborating of empirical results. These and related
issues argue strongly in favour of the release of open
source research code along with publications.
These advantages however come with a suite of limita-

tions that can limit the usefulness of open source as a
process when applied in certain environments.
End user documentation, by virtue of the fact that the

audience of such material is not part of the ‘developer
culture’ offers less opportunity for meeting the motiva-
tions of open source developers. It does little for enhan-
cing personal reputation, offers few opportunities for
perfecting expertise, gives little benefit for job signalling,
and is rarely considered to be fun or enjoyable. Poor
quality end-user documentation is not a specifically
open source concern, but becomes especially critical
when one considers that open source software is
expected to evolve as time goes by. In all but the most
rigorously managed open source projects, software is al-
ways in a draft state.
Related to this, the nature of authorial leadership as

discussed above means that a ‘philosophical vision’ for
where a project is going can result in significant changes
being pushed version to version. It is relatively common
for open source software to change dramatically between
updates, often with little regard for how it impacts on
common routines of established users. One good ex-
ample of this comes from when the GNOME windows
manager software was switched over, by default, to using
a new and unfamiliar metaphor for exploring a desktop,
as discussed in http://www.osnews.com/story/7548. One
quote from that article in particular is of relevance:

“'That's why the Gnome team chose to use the spatial
mode as the default: expert users who want file
hierarchies can change that within 20 seconds. Novice
users, on the other hand, should never need to see a
file hierarchy. It just makes sense this way.”

The constantly evolving nature of open source soft-
ware means that documentation must be updated to re-
flect each change in the user experience. Developers
often over-estimate the computer literacy of novice users
[31], and as such even when the documentation is being
well maintained it often fails to be presented in a way
that is tractable for novices.
For academic research software in particular, long-term
support is not something that is feasible to provide to the
community. Even those research grants that stipulate an
open source release of software rarely include budgeting
for long term support and maintenance. The expectation
is that the community will handle that – in some spheres,
that is a reasonable expectation. For software aimed at
novice users, that is unlikely to be optimal.
Open source software is provided ‘as is’ – technical

support for the majority of open source projects is lim-
ited to what time the developer can spend addressing
questions, and the collaborative help available through
the use of online forums, wikis and discussion groups.
Documentation in the form of manuals may be ex-

tremely limited, and erratically updated [32] as outlined
above. Instead, support is most often provided informally
as part of an online community. Such support can often
be highly critical and combative, as is evidenced in the fol-
lowing extract from an arbitrary web-support forum1:

Seriously people.

If YOU cannot be bothered to do the simple and
obvious task of Reading FAQs, SEARCHING for and
reading related topics do… then do NOT expect US to
answer you!

If YOU cannot fathom that you are meant to supply
details when you aska question - incuding the basics
such as URLs… then do NOT expect US to bother
attempting to help

(http://www.google.com/support/forum/p/Webmasters/
thread?tid=029f6d5729b35a89&hl)

Such posts are not uncommon, and while they reflect a
perhaps understandable general frustration with those
who display a lack of concern or understanding of neti-
quette, novice users run the danger of being on the receiv-
ing end of disproportionately aggressive and personal
criticism for doing nothing worse than asking a question
on a forum specifically intended to ask for help.
Additionally, the language used in many forums can be

problematic in its technicalities. One of the older users in
one of our studies wrote: ‘I find online help useless as it’s
written in American/technical language which, though
using English words, makes no sense whatsoever’. There
can be a considerable mismatch between the language
used as a matter of course within an open source forum,
and the language used by those seeking assistance.
Those applications that are well supported are usually

done so on a service model where the product itself is
free, but the technical support is billed. For a user un-
familiar with new technology, this can be prohibitively

http://www.osnews.com/story/7548
http://www.google.com/support/forum/p/Webmasters/thread?tid=029f6d5729b35a89&hl
http://www.google.com/support/forum/p/Webmasters/thread?tid=029f6d5729b35a89&hl

:2
http://www.journalofinteractionscience.com/content/1/1/2
Heron et al. Journal of Interaction Science 2013, 1 Page 5 of 10
expensive unless subsidized by an employer or other or-
ganisation. Coupled to this is the fact that open source
software often suffers from usability issues [33,34], and
this creates a pair of linked problems that are likely to
cause substantial complications in providing software
support to non-technical users.
Certain kinds of technical architectures lend them-

selves more easily to developing a community of open
source documentation support than others. A simple
forum with a search box will be sufficient for many
projects, but when users may not know what it is
they don’t know a more structured approach is re-
quired. Centralised indexing requires time and effort
that may not be available, so providing community
indexing facilities such as tagging and rating can help
bridge the gap. Inculcating the virtues of the open source
movement itself into the community can likewise help.
Building a sense of the value of reciprocity means that
those who work out their own problems are likely to
report back to the community the problem they had
and the solution they discovered. This would aid in
alleviating the frustration of the situation described
in http://xkcd.com/979/.
While searching for information online is unlikely to

be a problem for most demographics, there are others
that are less likely to seek out such information in the
first place, more wary of the information that they find,
and more distrustful of software generally. Steps must be
taken to build credibility and sustain that credibility
whilst also ensuring that the act of seeking help is not
rewarded with aggression.
Finally, open source software by virtue of its under-

lying philosophy introduces security considerations – a
different profile of security is required. The concept of
‘security through obscurity’, while flawed as a single meas-
ure, is commonly employed in a system known as ‘defence
in depth’ where multiple layers of countermeasures exist
to flummox attempts to violate the integrity of software or
data. The impact of open source on security remains
a controversial topic [35], but the risks associated
with exposing end users to security risks in accessibility
and universal access domains [36] must be assessed,
analysed and addressed.

Accessibility software
A particular category of software employed by users
with physical or cognitive impairments is known as
accessibility software. These are tools aimed at chan-
ging the way in which a user works with a system with the
intention of reducing barriers to interaction. Issues that
are known to create interaction difficulties include blind-
ness or partial sight, colour blindness, deafness, and the
physical inability to work with input devices such as key-
boards and mice. In some cases, a distinct impairment
may be possible to identify and correct for. In others, a
more subtle interaction of minor ailments may make it
difficult to identify a single causative factor and subse-
quently complicate the search for an appropriate solution.
Most operating systems come complete with a suite of

accessibility tools that are primarily toggles or sliders
that can be set to improve the user experience for those
with conditions that can be easily identified. These range
from magnifiers that can be used by those with sight im-
pairments, to adjustments to the speed and accuracy of
the mouse. These accessibility tools are ‘fire and forget’
and do not require long term monitoring or analysis of
user input.
There exists however a category of accessibility software

that seeks to perform on-going adaptation of a user’s en-
vironment based on an analysis of their input via various
methods. Previous work aimed at addressing issues
with keyboard interactions includes Koester, Lopresti and
Simpson [37]; Trewin [38]; Trewin [39]; Heron, Hanson &
Ricketts [40]. Adaption to mouse interactions has been
discussed in Trewin, Keates and Moffat [41]; Wobbrock,
Fogarty, Liu; Kumuro and Harada [42]; Heron et al [40].
These tools seek to provide regular adjustments to a user’s
context with the intention of correcting issues as they are
algorithmically detected.
With the former category of software, there are few

significant risks posed by open source as a development
strategy that are not common to all systems. For the lat-
ter, the nature of the open source process itself intro-
duces a number of elements that must be addressed and
dealt with. Adaptive correction requires a relatively deep
analysis of user interaction, which in turn requires the
software to be able to hook into streams of input from
user devices – keyboard and mouse primarily, but re-
search tools in specialised contexts may incorporate less
standard streams (See [36] for a discussion of some of
these). An accessibility tool aimed at improving key-
board interactions needs to read each of the keys that a
user enters regardless of the application within which
they may be working. In short, a keyboard accessibility
tool must function as a sophisticated key logger. It is
possible to scramble key input before it gets to the tool,
but in doing so certain kinds of accessibility adaptations
become impossible to implement. Trewin [38] would be
possible with scrambled keyboard input, but Trewin [39]
by comparison would not.
Accessibility tools may also require access to context-

ual information about the user’s environment. They may
need to know within what application a user is working.
A tool designed to identify double click errors for ex-
ample is unlikely to be able to do so accurately if it can-
not tell the difference between a word processor and
a computer game. The accessibility issues within com-
puter games (as discussed in [43]) will require their

http://xkcd.com/979/

http://www.journalofinteractionscience.com/content/1/1/2
:2Heron et al. Journal of Interaction Science 2013, 1 Page 6 of 10
own specific adaptations that cannot be easily gener-
alised to the rest of the system.
To be able to perform a full range of adaptations, soft-

ware must have access to unmodified input streams
from any relevant input device; must be able to track
user context; and usually must store historical data of
user interactions even if only for a short time. The only
feasible way in which such adaptive software can make
meaningful corrections is to draw in these different
sources of information and aggregate them into some
form that can be analysed.
The installation of such software then requires either a

controlled environment kept separate from a user’s ‘real
life’, or a tremendous amount of trust on the part of a
user. Developers of such accessibility software then must
operate under a significant duty of care burden and en-
sure that the development route that they go through
does not significantly negatively impact on the future
user-base of the tool. These are primarily issues that a
developer must consider rather than something that
would inform the decision making of the majority of
end-users.

Issues of accessiblity: the ACCESS framework
To illustrate why open source must be carefully evalu-
ated in the development of accessibility software, a case
study of an adaptive accessibility tool will be provided.
This tool was developed internally within the University
of Dundee and then released as an open source project
(available at https://github.com/drakkos/ACCESS). The
nature of the tool highlights several of the issues associ-
ated with open source adaptive accessibility tools.
The tool itself is called ACCESS (Accessibility and

Cognitive Capability Evaluation Support System) and is
designed as a software framework that provides adaptive
accessibility support across a user’s computer. ACCESS it-
self contains no usability corrections. It instead delegates
the responsibility for identifying and then correcting inter-
action issues to the plug-ins that can be incorporated at
run-time. The framework works across multiple operating
systems and provides a common API for plug-ins to
interact with the deployment platform regardless of
the environment in which they were written. The tech-
nical specifics of this are irrelevant to the case study, but
are fully discussed in Heron [44].
The framework reads all keyboard and mouse input

from the user, and keeps track of the applications within
which they are working. It allows for plug-ins to make
changes to the system settings of the underlying operating
system, and similarly allows them to read in the current
state of system settings. It has routines for executing ex-
ternal applications, reading input from invoked com-
mands, and provides a socket architecture that allows for
plug-ins to communicate with external applications.
All of these facilities are used by the plug-ins that have
been developed for the Framework – examples of these
include a plug-in that dynamically adjusts the double-
click threshold in response to user double-clicking diffi-
culties; a plug-in that records all user input and allows it
to be played back for analysis and testing; a context sen-
sitive ‘post it note’ system that changes its contents de-
pending on what application is currently active, and
several others. The range of support tools that can be
developed is considerable, and it is the access to the
user’s interaction patterns that makes this breadth of
functionality possible.
Currently, all plug-ins were developed internally by the

primary author of this paper, and were deployed only in
research scenarios for evaluation [40]. However, the design
of this tool introduces numerous complexities for making
it available on a wider basis, and these stem from the im-
plications of releasing it under an open source licence.

User support and the ACCESS framework
As discussed above, some critics of the open source
model believe that it thrives most in interesting problem
spaces – documentation is rarely considered to be one
of these, and the end-user documentation issues that
currently exist in ACCESS demonstrate that this is the
case. As a research tool developed within a particular
funding context, the only author time available for fur-
ther documentation must come at the cost of pursuing
new research or future possibilities for expansion. Docu-
mentation in its usual form is unlikely to yield any re-
search outputs, and this can greatly influence the extent
to which end-user document can be written, polished
and updated as the system is changing.
As ACCESS evolves, new capabilities will be intro-

duced, new plug-ins will be developed, and each of those
plug-ins will likely have their own interaction subtleties
that other researchers may not document. User docu-
mentation that is available now will require constant up-
dating to reflect changes made, and the time to do that
documentation is not part of the research funding. As
discussed above, this is likely a task for which individuals
will not regularly self-select. However, there exist possi-
bilities by which individuals can be encouraged to self-
select their contributions in the ways that benefit the
project most. The growing interest in the subject of
gamification (As defined in [45]) offers intriguing future
possibilities for the highly visual rewarding of those who
contribute to parts of the system that are not otherwise
seen as high prestige. The awarding of prominent badges
for contribution, in the style of game achievements [46]
could potentially drive contributor attention to other-
wise ill served elements of the system. Future plans for
ACCESS will look to incorporate such a framework for
contributor recognition in the hope that it has a positive

https://github.com/drakkos/ACCESS

http://www.journalofinteractionscience.com/content/1/1/2
:2Heron et al. Journal of Interaction Science 2013, 1 Page 7 of 10
impact on the diversity of areas to which developer at-
tention is directed.
Most open source projects, certainly those that begin

life as research software, cannot realistically provide a co-
herent strategy for user documentation and long term
support. Instead, it has to be something that is based pri-
marily on hope – that those collaborating will go against
the usual norms and produce the necessary documenta-
tion and supportive community required. These commu-
nities in turn must be heavily moderated and aggressively
policed – deputizing trusted ‘elder members’ of the user-
base in this respect can go a long way towards creating
the right kind of environment where those with queries
are not sent away unhappy.
Within ACCESS, we cannot expect that the target

users will be comfortable with ‘fiddling around until it
works’, and as new operating systems come into use the
framework will need to be updated to reflect the chan-
ging context in which users function. Considering the
demographic groups for which ACCESS is designed, this
is an important issue that requires careful management
for when the tool is eventually delivered to end-users.

Open source and the plug-in architecture
As discussed above, ACCESS delegates the responsibility
for identifying usability issues to plug-ins. This means
that each plug-in has access to a huge amount of sensi-
tive information. Opening up the framework to an open
source development model means that new and innova-
tive plug-ins can be developed by interested parties. It
also means that the feature set of the framework itself
can be modified and expanded to support the needs of
researchers and other stakeholders in accessibility soft-
ware. However, the power inherent in a plug-in creates a
very real danger to users. It would be trivial in the
framework discussed in this paper to develop a context
sensitive key and mouse logger, pulling in likely pass-
words when the user was within a web browser and then
sending those passwords off to a remote location. Plug-
ins can be developed openly and then distributed
through the Internet, meaning that they could realistically
end up being a significantly dangerous vector of attack for
malware. Many of these issues are further discussed in
Bahr et al. [36].
The plug-in model is effectively employed in many open

source software packages, where extra or enhanced func-
tionality is available for download. The Firefox browser is
one notable example, as is the Netbeans development en-
vironment. In many ways, the development of self-
contained apps for various smartphone ecosystems can
also be considered a system of distributed plug-ins aimed
at enhancing the functionality of a platform both sep-
arately and as an integrative element in a larger, more
holistic experience.
For ACCESS and its intended user base, there is too
much risk is simply allowing anyone to install any plug-
in they find on the Internet beacause a substantial
amount of potentially sensitive interaction data is being
drawn into the plugins. Data pulled into plugins can in-
clude usernames, passwords and credit card numbers.
Allowing any plugin to read input indiscriminately and
manipulate it without restriction represents a significant
security risk within a plugin obtained from an unscrupu-
lous source. If a framework is open enough, there is no
way a technically unsophisticated user can tell what any
given plug-in is doing even if the source code is freely
available. Some method of ensuring the trustworthiness
of plug-ins is required to ensure that advantage is not
taken of inexperienced members of the user-base.
Ceding a little development efficiency in exchange for

a centralised repository of ‘trusted plug-ins’ is an effect-
ive mechanism for limiting the possibility of damage.
There are other technical solutions, such as running
plug-ins in a sandbox. A sandbox is a security measure
used to limit the access of a piece of software to certain
sensitive parts of a running system. This is inappropriate
with regards to adaptive accessibility software which will,
as a matter of course, need very low level access to the
operating system in order to perform evaluative or cor-
rective actions although in other domain spaces such as
mobile apps it is more appropriate [47].
Digital signing of plug-ins, ensuring that new plugins

are made available only once they have been approved
by some central authority offer a good deal of flexibility
in resolving these issues. This is only viable as a solution
as long as users are installing the ‘official’ version of the
core engine. A discussion of the issues relating to the
dangers of violating the integrity of a trusted platform
can be found in Felt, Finifter, Chin, Hanna, Wagner [48].
If the core engine of an application is open-source,

there is little to stop an individual making their own
modified version of the engine and distributing it under
a different (or even the same) name. Individuals are al-
ways free to fork an open source project if so desired,
meaning control of the source-code can never be a guar-
anteed right. It cannot be assumed that the core engine
installed by a user is the ‘official’ version. A rogue ver-
sion of the core engine could use a different source to
authenticate the signing of plug-ins, or remove the
signing entirely. Luckily, there is some evidence to sug-
gest that the typical user-base for such tools tends to be
more wary of software from unknown organisations, and
that if an application purports to be associated with a
known brand that they will investigate the veracity of
that claim. 61.18% of respondents to a questionnaire dis-
tributed as part of this study (N = 296, M = 121, F = 175,
average age = 68.8) indicated that they were wary of in-
stalling new software that came from unknown publishers,

http://www.journalofinteractionscience.com/content/1/1/2
:2Heron et al. Journal of Interaction Science 2013, 1 Page 8 of 10
and 53.95% indicated that they felt a brand was important
in building confidence in new software. 49.34% indicated
that they would investigate the claims of an application to
be associated with a particular brand. Software available
for free was trusted less amongst this group than commer-
cial software – 9.54% agreed they would trust a piece of
commercial software from an organisation they did not
recognise, compared to only 6.91% who would trust free
software from an organisation they did not recognise,
where t(266) = 4.45, p < .000.
These are results that are consistent with focus group

comments made during the testing of the ACCESS
framework discussed above. ACCESS itself was devel-
oped through the IBM Open Collaboration Project and
as part of the accessibility research within the school of
Computing at Dundee University. These are brands that
can be used to inspire confidence in end-users. Ensuring
that such a tool is associated with a well-known and
trusted brand can potentially go a long way to ensuring
that rogue core engines are not installed, but it cannot
eliminate the risk entirely.
It is important too that all opportunities are taken to

raise awareness of the dangers of installing software
from untrusted sources. Modern versions of the installa-
tion routine for the BitTorrent application contain the
following warning:

A number of websites have created their own versions
of the BitTorrent client and plug-ins that attempt to
charge money for the applications and infect your
computer with malicious code. To protect yourself, be
sure to only download our software from www.
bittorrent.com or one of our authorized distribution
partners: www.download.com, www.sourceforge.net,
www.tucows.com, and www.jumbo.com.

If such software is downloaded in good faith from a dis-
reputable site, then a user’s computer can be entirely
compromised with no easily identified outward signs of
infection (for some examples, http://news.bbc.co.uk/1/hi/
technology/7907635.stm, http://www.eweekeurope.co.uk/
news/web-users-prone-to-fake-av-2-13384). Users can be
scammed into believing that they are liable for criminal
damages (as in http://torrentfreak.com/malware-extort-
cash-from-bittorrent-users-100411/), or strong-armed into
buying software to fix purported malware infections.
The solution that we are exploring for ACCESS incor-

porates a strong degree of control over authorisation of
new features, and also on distribution of the application it-
self. Most licences stipulate that any user is permitted to
modify and distribute the software provided there is ap-
propriate attribution. An open source licence of this type
cannot be ethically used to distribute adaptive accessibility
software if in doing so it potentially opens up its intended
user-base to danger. It cannot be assumed that disreput-
able individuals will honour the provisions of a licence in
any case, but the onus is on the developer to ensure the li-
cence they pick does not enable abuse. At best licences
stop ethical developers making changes, and provide some
mechanisms by which abuses can be policed.
One approach that has been shown to address this issue

is to distribute the code framework under one name, and
trademark a brand name for the operational version, as
was done for Google’s Chrome web-browser. The code for
Chrome is freely available, but Google circumvents the
problem of multiple versions of their application being re-
leased by placing the brand name under trademark pro-
tection. This gives a legal recourse in the event of rogue
developers appropriating the code. The financial burden
that is implied by aggressively protecting such a trademark
puts it beyond the resources of most hobbyist developers
and externally funded researchers. It is also dependant on
the trademark name being the one that gains mass trac-
tion in the minds of users – Google can easily ensure this
by leveraging their tremendous Internet presence. Smaller
organisations or individuals usually do not have such re-
sources available.
There are unfortunately no universally applicable rules

that allow for the developer of an open source accessibility
tool to prevent abuse. Awareness of the issues and design-
ing software with the potential consequences in mind
allows for the risks to the end-user to be minimised.
Specifically with relation to ACCESS, an analysis of the
risks allowed us to make the following design decisions
which have influenced future plans for the deployment of
the tool to end users:

1. Associate the software with a trusted brand if possible,
such as a university, charity, or software publisher.

2. Ensure a single, certifiable location from which the
‘official’ installer can be downloaded.

3. Incorporate digital signing of plug-ins so as to
ensure they are reviewed before being made
available to end users.

4. Make available the necessary technical architecture to
support genuinely collaborative community support.

5. Inculcate a good ‘civic‘mind-set for support by
recruiting the most helpful of contributors as
moderators.

6. Provide public recognition for contributions that are
considered ‘high value’ for the project in the form of
visible achievements.

While these design decisions do not eliminate the risks
of open source distribution they do help manage it whilst
still allowing for the benefits associated with open source
development to be effectively harnessed and directed in
the right kinds of ways to the right kinds of areas.

http://www.bittorrent.com
http://www.bittorrent.com
http://www.download.com
http://www.sourceforge.net
http://www.tucows.com
http://www.jumbo.com
http://news.bbc.co.uk/1/hi/technology/7907635.stm
http://news.bbc.co.uk/1/hi/technology/7907635.stm
http://www.eweekeurope.co.uk/news/web-users-prone-to-fake-av-2-13384
http://www.eweekeurope.co.uk/news/web-users-prone-to-fake-av-2-13384
http://torrentfreak.com/malware-extort-cash-from-bittorrent-users-100411/
http://torrentfreak.com/malware-extort-cash-from-bittorrent-users-100411/

http://www.journalofinteractionscience.com/content/1/1/2
:2Heron et al. Journal of Interaction Science 2013, 1 Page 9 of 10
Conclusion
The nature of adaptive accessibility tools means that much
sensitive data must be made available to those that de-
velop them. When working within a closed-source model
under the auspices of a known and trusted organisation,
the managerial hierarchies and legal responsibilities can
serve to ensure that abuses are minimised if not necessar-
ily entirely eliminated. Within a for-profit company, on-
going support can be justified as a legitimate business
expense, and good documentation can reduce the cost
of supporting software that is released.
The open source model however does not permit for

easy solutions to issues of providing long term support or
comprehensive user documentation. The need to open up
the source code and to allow for the distributed develop-
ment and then integration of systems allows for a highly
efficient development model. In the area of adaptive ac-
cessibility tools this creates dangers if the process is not ef-
fectively managed or the risks not fully understood. The
highly sensitive nature of data routinely analysed by adap-
tive accessibility tools requires that developers consider
the duty of care that goes along with releasing such tools
into the wider community. Brand association, conscious
shaping of community norms and management and mod-
eration of plug-ins can go some way towards managing
the risks, but they cannot be entirely eliminated.
Some of the factors that encourage individiuals to con-

tribute to open source projects have their basis in reputa-
tion, recognition, and signalling for job markets. Appealing
to these desires via achievements and other gamification
techniques could potentially serve as a way by which some
of the inherent problems of self-selection could be effect-
ively addressed. Qualitative and quantitative results within
this context are not currently available by which their ef-
fectiveness could be assessed, but these form one of the
routes available for those looking to direct attention to-
wards specific parts of their open source projects.

Endnotes
1 This web forum is not aimed at novices in particular.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors were involved in the planning, design, conduct, writing and
reviewing of this paper. All authors read and approved the final manuscript.

Acknowledgements
The research described in this paper was conducted as part of an IBM Open
Collaborative Research project between IBM Research and the University of
Dundee. Additional funding was provided by a Royal Society Wolfson Merit
Award to the second author and by grant RCUK EP/G066019/1 “RCUK Hub:
Inclusion in the Digital Economy”.
Special acknowledgements go to Dr. Norman Alm, Professor Peter Gregor,
Professor Alan Newell, and Dr. Janet Hughes, all of the University of Dundee,
for their suggestions, advice and guidance. Thanks go to Dr. Shari Trewin of
IBM and Pauline Belford for their very helpful feedback and suggestions.
Author details
1Canterbury Christ Church University, Canterbury, Kent CT1 1QU, United
Kingdom. 2University of Dundee, Dundee City DD1 4HN, United Kingdom.

Received: 5 March 2013 Accepted: 5 March 2013
Published: 7 May 2013

References
1. Gurbani, VK, Garvert, A, & Herbsleb, JD. (2005). A case study of open source

tools and practices in a commercial setting (5-WOSSE: proceedings of the
fifth workshop on open source software engineering volume 30th ed.,
pp. 1–6). New York, NY, USA: ACM.

2. Kirschner, B. (2008). Building a balanced scorecard for open source policy and
strategy: a case study of the Microsoft experience (ICEGOV ’08: proceedings of
the 2nd international conference on theory and practice of electronic
governance, pp. 226–231). New York, NY, USA: ACM.

3. Chopra, S, & Dexter, S. (2007). Free software and the political philosophy of
the cyborg world. SIGCAS Comput. Soc., 37(2), 41–52.

4. Singh, V, & Twidale, MB. (2008). The confusion of crowds: non-dyadic help
interactions (Proceedings of the 2008 ACM conference on Computer supported
cooperative work, CSCW ’08, pp. 699–702). New York, NY, USA: ACM.

5. Sowe, S, Stamelos, I, & Angelis, L. (2008). Understanding knowledge sharing
activities in free/open source software projects: an empirical study. Journal
of Systems and Software, 81(3), 431–446.

6. Raymond, ES. (2001). The cathedral & the bazaar: musings on Linux and open
source by an accidental revolutionary (revisedth ed.). Sebastopol, CA, USA:
O’Reilly and Associates.

7. Wu, CG, Gerlach, JH, & Young, CE. (2007). An empirical analysis of open
source software developers’ motivations and continuance intentions.
Information Management, 44(3), 253–262.

8. Harmon, A, & Markoff, J. (1998). Microsoft on trial: the new threat; an internal
memo shows microsoft executives’ concern over free software. http://www.
nytimes.com/1998/11/03/business/microsoft-trial-new-threat-internal-memo-
shows-microsoft-executives-concern-over.html.

9. Giles, J. (2005). Internet encyclopaedias go head to head. Nature, 438(7070),
900–901.

10. Feller, J, Fitzgerald, B, Hissam, SA, & Lakhani, KR. (2005). Perspectives on free
and open source software (pp. 3–22). Cambridge, MA: MIT Press.

11. Moody, G. (2002). Rebel Code: Linux and the Open Source Revolution (newth
ed.). Cambridge MA, USA: Perseus Books.

12. Lakhani, KR, & Wolf, RG. (2005). Why hackers do what they do: understanding
927 motivation and effort in free/open source software projects (Social Science
928 Research Network Working Paper Series).

13. Von Krogh, G. (2003). Open-source software development. MIT Sloan
Management Review, 44(3), 14–18.

14. Bezroukov, N. (1999). Open source software development as a special type
of academic research (critique of vulgar Raymondism). First Monday, 4(10).

15. Moglen, E. (1999). Anarchism triumphant: free software and the death of
copyright. Centro di studi e ricerche di diritto comparato et straniero.
Available online at http://moglen.law.columbia.edu/publications/anarchism.
html. Journal name: First Monday.

16. Hars, A, & Ou, S. (2001). Working for free? - motivations of participating in
open source projects (HICSS ’01: proceedings of the 34th annual Hawaii
international conference on system sciences (HICSS-34)-volume 7).
Washington, DC, USA: IEEE Computer Society.

17. Benkler, Y, & Nissenbaum, H. (2006). Commons-based peer production and
virtue. Journal of Political Philosophy, 14(4), 394–419.

18. Hertel, G, Niedner, S, & Herrmann, S. (2003). Motivation of software
developers in open source projects: an internet-based survey of
contributors to the linux kernel. Research Policy, 32(7), 1159–1177.

19. Hippel, E. (2001). Innovation by user communities: learning from open-source
software. MIT Sloan Management Review, 42(4), 82–86.

20. Moore, TD, & Serva, MA. (2007). Understanding member motivation for
contributing to different types of virtual communities: a proposed framework
(SIGMIS-CPR ’07: proceedings of the 2007 ACM SIGMIS CPR conference on
computer personnel doctoral consortium and research conference, pp.
153–158). ACM: New York, NY, USA.

21. Oreg, S, & Nov, O. (2008). Exploring motivations for contributing to open
source initiatives: the roles of contribution context and personal values.
Computers in human behavior. Amsterdam, The Netherlands: Elsevier
Science Publishers.

http://www.nytimes.com/1998/11/03/business/microsoft-trial-new-threat-internal-memo-shows-microsoft-executives-concern-over.html
http://www.nytimes.com/1998/11/03/business/microsoft-trial-new-threat-internal-memo-shows-microsoft-executives-concern-over.html
http://www.nytimes.com/1998/11/03/business/microsoft-trial-new-threat-internal-memo-shows-microsoft-executives-concern-over.html
http://moglen.law.columbia.edu/publications/anarchism.html
http://moglen.law.columbia.edu/publications/anarchism.html

http://www.journalofinteractionscience.com/content/1/1/2
:2Heron et al. Journal of Interaction Science 2013, 1 Page 10 of 10
22. Wasko, M, & Faraj, S. (2000). “ it is what one does”: why people participate
and help others in electronic communities of practice. The Journal of
Strategic Information Systems, 9(2–3), 155–173.

23. Benkler, Y. (2002). Coase’s penguin, or, linux and the nature of the firm. The
Yale Law Journal, 112(2), 369–446.

24. Anthony, D, Smith, S, & Williamson, T. (2005). Explaining quality in internet
collective goods: Zealots and good samaritans in the case of wikipedia.
Electronically. http://web.mit.edu/iandeseminar/Papers/Fall2005/anthony.pdf.

25. Tapscott, D, & Williams, AD. (2006). Wikinomics: how mass collaboration
changes everything. New York: Portfolio Hardcover.

26. Reagle, J. (2007). Do as i do: authorial leadership in wikipedia (WikiSym ’07:
Proceedings of the 2007 international symposium on Wikis, pp. 143–156).
New York, NY, USA: ACM.

27. Fitzgerald, B. (2006). The transformation of open source software. MIS
Quarterly, 30(3), 587–598.

28. Nyman, L, Mikkonen, T, Lindman, J, & Fougère, M. (2011). Forking: the
invisible hand of sustainability in open source software. In proceedings of SOS
2011: towards sustainable open source. Tampere, Finland: Tampere University
of Technology.

29. Hann, IH, Roberts, J, Slaughter, S, & Fielding, R. (2002). First Evidence of
Economic Incentives, Proc. 2nd Workshop on Open Source Software
Engineering. Pittsburgh USA: Carnegie Melon University.

30. Bonaccorsi, A, & Rossi, C. (2003). Why open source software can succeed.
Research Policy, 32(7), 1243–1258.

31. Knight, J, & Jefsioutine, M. (2002). Relating usability to design practice
(Proceedings of the 1st European UPA conference on European usability
professionals association conference - volume 3, pp. 2–12). Swinton, UK, UK:
British Computer Society.

32. Levesque, M. (2004). Fundamental issues with open source software
development. First Monday, 9(4).

33. Nichols, DM, & Twidale, MB. (2002). Usability and open source software.
First Monday, 8.

34. Raymond, ES. (2006). The luxury of ignorance: an open source horror story.
http://www.catb.org/esr/writings/cups-horror.html.

35. Schryen, G. (2011). Is open source security a myth? Communications of the
ACM, 54(5), 130–140.

36. Bahr, ML, & Gacey, H. (2011). Cyber risks to secure and private universal
access. In C Stephanidis (Ed.), Universal access in human-computer
interaction. Design for all and eInclusion, volume 6765 of lecture notes in
computer science (pp. 433–442). Berlin Heidelberg: Springer.

37. Koester, HH, Lopresti, E, & Simpson, RC. (2007). Toward automatic
adjustment of keyboard settings for people with physical impairments.
Disability and Rehabilitation. Assistive Technology, 2(5), 261–274.

38. Trewin, S. (2002). An invisible keyguard (Assets ’02: proceedings of the fifth
international ACM conference on assistive technologies, pp. 143–149).
New York, NY, USA: ACM.

39. Trewin, S. (2004). Automating accessibility: the dynamic keyboard (Assets ’04:
proceedings of the 6th international ACM SIGACCESS conference on
computers and accessibility, pp. 71–78). New York, NY, USA: ACM.

40. Heron, MJ, Hanson, VL, & Ricketts, I. (2013). Accessibility support for older
adults with the ACCESS framework. International Journal of Human
Computer Interaction. doi:10.1080/10447318.2013.768139.

41. Trewin, S, Keates, S, & Moffatt, K. (2006). Developing steady clicks: a method of
cursor assistance for people with motor impairments. Assets ’06: proceedings of
the 8th international ACM SIGACCESS conference on computers and
accessibility (pp. 26–33). New York, USA: ACM.

42. Wobbrock, JO, Fogarty, J, Liu, SYS, Kimuro, S, & Harada, S. (2009). The angle
mouse: target-agnostic dynamic gain adjustment based on angular deviation
(Proceedings of the 27th international conference on Human factors in
computing systems, CHI ’09, pp. 1401–1410). New York, NY, USA: ACM.

43. Heron, MJ. (2012). Inaccessible through oversight: the need for inclusive
game design. Computer Games Journal, 1(1), 29–38.

44. Heron, MJ. (2011). , The ACCESS Framework: reinforcement learning for
accessibility and cognitive support for older adults. Dundee, Scotland: PhD
thesis, Dundee University.

45. Deterding, S, Dixon, D, Khaled, R, & Nacke, L. (2011). From game design
elements to gamefulness: defining “gamification” (Proceedings of the 15th
international academic MindTrek conference: envisioning future media
environments, MindTrek ’11, pp. 9–15). New York, NY, USA: ACM.

46. Hamari, J, & Eranti, V. (2011). Framework for designing and evaluating game
achievements (Proc. DiGRA 2011: think design play, DiGRA).
:2.

doi:10.1186/2194-0827-1-2

47. Miller, C. (2011). Mobile attacks and defense. IEEE Security and Privacy, 9(4),
68–70.

48. Felt, AP, Finifter, M, Chin, E, Hanna, S, & Wagner, D. (2011). A survey of mobile
malware in the wild (Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices, SPSM ’11, pp. 3–14). New York,
NY, USA: ACM.

Cite this article as: Heron et al.: Open source and accessibility:
advantages and limitations. Journal of Interaction Science 2013 1
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://web.mit.edu/iandeseminar/Papers/Fall2005/anthony.pdf
http://www.catb.org/esr/writings/cups-horror.html
http://dx.doi.org/10.1080/10447318.2013.768139

	Abstract
	Introduction
	Open source development
	Motivation to contribute
	Open source participation
	Advantages and limitations of open source
	Accessibility software
	Issues of accessiblity: the ACCESS framework
	User support and the ACCESS framework
	Open source and the plug-in architecture

	Conclusion
	Endnotes
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

