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Abstract

The mechanical properties of hydrogen functionalized graphene (HFG) sheets were predicted in this work by using
artificial neural network approach. The predictions of tensile strength of HFG sheets made by the proposed approach
are compared to those generated by molecular dynamics simulations. The results indicate that our proposed
computing technique can be used as a powerful tool for predicting the tensile strength of the HFG sheet.
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Background
Research in graphene has attracted significant interest in
recent years due to its remarkable mechanical [1] and
physical properties [2,3]. A single-layer graphene sheet
has the thickness of only one carbon atom which makes
it the thinnest material [4] with a large specific surface
area [5]. This feature of graphene makes it an ideal can-
didate for nanoelectromechanical systems (NEMS) [6]
and nanofluidic devices. These future applications re-
quire a critical understanding of the exceptional mech-
anical properties of graphene for its application in
NEMS and nanolevel biological devices. Theoretical
studies on graphene are a popular mode of research,
employing ab initio calculations or molecular dynamics
(MD) simulation technique.
Application of soft computing methods such as artifi-

cial neural networks (ANN), genetic programming, and
fuzzy logic can be used as an alternative method for
modeling complex behavior of materials such as gra-
phene. These methods require input training data which
can be obtained from the analytical tools such as MD
that is based on a specific geometry and temperature.
Based on the input, the proposed computing method
can then be able to generate meaningful solutions for
complicated problems [7-11]. Additionally, among the
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various soft computing methods described above, ANN
offers the advantage of a fast and cost-effective formula-
tion of a mathematical model based on multiple vari-
ables with no existing analytical models [12,13]. It is to
the best of author's knowledge that limited or no work
exists on the application of soft computing models on
the tensile properties of graphene sheets.
Hence, in the present work, we have proposed ANN

method to model the elastic characteristics of hydrogen
functionalized graphene (HFG). The values of tensile
strength of HFG generated by MD simulations are fur-
ther fed into the paradigm of ANN.

Nanoscale material modeling by MD simulation
The classical MD method is deployed to carry out the nu-
merical simulation. In this capacity, Newton's equations of
motion are computed by means of Brenner's second-
generation bond order (REBO) function [14] for the set of
atoms which are covalently bonded. The REBO potential
is able to accurately describe the properties of solid-state
and molecular carbon nanostructures [15,16] while main-
taining the accuracies of the ab initio and semi-empirical
methods in simulating large systems [15-21]. The math-
ematical form of the potential equations is defined as

EREBO ¼ V R rij
� �

−bijVA rij
� �

; ð1Þ

where VR(rij) and VA(rij) are the repulsive and attractive
pair terms and bij term is used to include the reactive em-
pirical bond order between the atoms.
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Figure 1 Mechanism of tensile loading in an HFG sheet by MD
simulation [15]. Atoms inside the red rectangle are subjected to
outward displacement to affect tensile loading.

Table 1 Data for training obtained by MD simulation

Temperature (K) Percentage of hydrogen
functionalization

Tensile
strength (GPa)

0 0 157

0 0.1 135

0 0.2 123

0 0.3 109

0 0.4 92

0 0.5 85

0 0.6 82

0 0.7 83

0 0.8 85

0 0.9 81

0 1 87

300 0 101

300 0.1 72

300 0.2 63

300 0.3 52

300 0.4 43

300 0.5 39

300 0.6 34

300 0.7 35

300 0.8 35

300 0.9 41
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The MD simulation procedure described here is similar
to our previous work as can be seen in [15]. The tensile
loading procedure of HFG sheet is shown in Figure 1. As
an illustration, the morphological characteristics of the
HFG sheet of length 100 Å under tension is depicted in
Figure 2. The data hence generated by our MD simulation
agrees very well with the literature [15,20], and hence, we
can validate the reliability of our MD simulation.

Methods
The data obtained by the MD simulation are shown in
Tables 1 and 2 which represent the data for training and
testing samples, respectively. The main inputs consid-
ered in our study are the percentage of hydrogen func-
tionalization and simulation temperature. The output of
our study is the tensile strength of HFG. In order to ex-
plicitly test the extrapolation capability of method, 20
Figure 2 Tensile loading applied on an HFG sheet [15]. The
graphene sheet maintains its stable shape (a) when no load is
applied, further application of tensile load results in breaking and
fragmentation as shown in (b).

300 1 43
samples are used for training and 11 are used for testing.
Training samples consist of values of tensile strength at
temperatures of 0 and 300 K, whereas testing samples
consist of values of temperature at 600 K.

Nanoscale material modeling by ANN approach
In this paper, we proposed ANN approach. In this ap-
proach, data obtained from MD is fed into the paradigm
Table 2 Data for testing obtained by MD simulation

Temperature (K) Percentage of hydrogen
functionalization

Tensile
strength (GPa)

600 0 51

600 0.1 35

600 0.2 32

600 0.3 25

600 0.4 20

600 0.5 19

600 0.6 15

600 0.7 18

600 0.8 18

600 0.9 21

600 1 22
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Figure 3 Comparison between predicted values and simulated values on training data.
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of ANN for training of network. ANN network consist
of three layers: input, hidden, and output layers. Input
layer consist of two neurons since there are two inputs
[22-31]. The number of neurons in the hidden layer is
chosen based on trial-and-error method. The output
layer comprise of single neuron, i.e., output of the sys-
tem. The neurons of one layer to the neurons of pre-
and-after layer are connected through weighted links.
Weights are initialized and are multiplied by input

values specified by each neuron. The neuron estimate
summation of weighted inputs and passes it to the trans-
fer function (A) which produces an output Yp.

Yp ¼ A ∑n−1
i¼0wixi−δ

� �
; ð2Þ
Figure 4 Comparison between predicted values and simulated values
where wi is weight, xi is the ith input variable, and δ is
the threshold or offset of the neuron. The activation
function used is sigmoid logistic function given by

A xð Þ ¼ 1
1þ e−x

: ð3Þ

The difference between the output value of network
and actual value for a sample i is given by

Errorm ¼ 1
2
∑M
m¼1 Aci−Mið Þ2; ð4Þ

where Aci and Mi are actual and predicted values for ith
sample, respectively, and M is the number of neurons in
on testing data.
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the output of network. The average error for the whole
network is given by

Errorm ¼ 1
2
∑M
m¼1∑

M
m¼1 Aci−Mið Þ2; ð5Þ

where N is the total number of samples. The Levenberg-
Marquardt algorithm [32] that works on the principle of
the second derivative is used to optimize the Errorp. The
simpler form of Hessian matrix is used and the algo-
rithm iterates weights using formulae

xkþ1 ¼ xk− JT J þ μI
� �−1

JT e; ð6Þ

where j is the Jacobian matrix that consists of the first de-
rivatives of the network errors, e is a vector of network er-
rors, μ is the learning rate, and I is the identity matrix.
The weights are updated by LMA until the threshold error
is achieved. The computation of weights is iterative and it
consumes time.
In the present work, feed-forward network of three

layers is implemented in MATLAB R2010b. The number
of neurons in hidden layer is determined based on the
minimum value of root-mean-square error (RMSE) of
the model on the training data set. A trial-and-error ap-
proach is adopted to select the number of neurons in
the hidden layers. It was found that for number of neu-
rons six, the RMSE is minimum, and therefore, the
ANN model with single hidden layer of six neurons is
selected. The performance of the selected ANN model is
discussed in the ‘Performance comparison of proposed
approach’ section.

Results and discussion
The predictions obtained from the proposed approach is
compared to those generated using MD simulations
based on square of correlation coefficient (R2) given by

R2 ¼ ∑n
i¼1 Ai−�Aið Þ Mi− �Mið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 Ai−�Aið Þ2∑n

i¼1 Mi− �Mið Þ2
q

0
B@

1
CA; ð7Þ

where Mi and Ai are predicted and actual values, re-
spectively, �Mi and �Ai are the average values of predicted
and actual, respectively, and n is number of training
samples.
The results obtained from the simulation studies and pre-

dicted by using proposed approach on training and testing
data is shown in Figures 3 and 4, respectively. The graph
shown in Figure 3 indicates that the proposed approach has
impressively well learned the non-linear relationship be-
tween the input and output process parameters with high
correlation values. The result of testing phase shown in Fig-
ure 4 indicates that the values predicted by MD-ANN ap-
proach are well in agreement with the simulated values.
Conclusion
The performance of the proposed MD-ANN approach is
evaluated in the ‘Performance comparison of proposed
approach’ section. The results conclude that the MD-
ANN model have shown excellent generalization ability
with high statistical values of R2 on testing data. The
high generalization ability of the MD-ANN model is
beneficial for MD experts who are currently looking for
high fidelity models that predict the tensile strength of
graphene under uncertain input process conditions, and
therefore, the cost of having to run additional MD simu-
lations can be avoided. The model can be used offline
for prediction and can be further optimized to determine
the optimum input process parameters that maximize
the tensile strength of nanomaterials.
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