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Abstract

Background: The purpose of this work was to demonstrate an approach to groundwater remedial design that is
automated, cost-effective, and broadly applicable to contaminated aquifers in different geologic settings. The approach
integrates modeling and optimization for use as a decision support framework for the optimal design of groundwater
remediation systems employing pump and treat and re-injection technologies. The technology resulting from the
implementation of the methodology, which we call Physics-Based Management Optimization (PBMO), integrates
physics-based groundwater flow and transport models, management science, and nonlinear optimization tools to
provide stakeholders with practical, optimized well placement locations and flow rates for remediating contaminated
groundwater at complex sites.

Results: The algorithm implementation, verification, and effectiveness testing was conducted using groundwater
conditions at the Umatilla Chemical Depot in Umatilla, Oregon, as a case study. This site was the subject of a
government-sponsored remedial optimization study. Our methodology identified the optimal solution 40 times faster
than other methods, did not fail to perform when the physics-based models failed to converge, and did not require
human intervention during the solution search, in contrast to the other methods. The integration of the PBMO and
Lipschitz Global Optimization (LGO) methods with standalone physically based models provides an approach that is
applicable to a wide range of hydrogeological flow and transport settings.

Conclusions: The global optimization based solutions obtained from this study were similar to those found by others,
providing method verification. Automation of the optimal search strategy combined with the reliability to overcome
inherent difficulties of non-convergence when using physics models in optimization promotes its usefulness. The
application of our methodology to the Umatilla case study site represents a rigorous testing of our optimization
methodology for handling groundwater remediation problems.
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Background
The increasing scarcity and degradation of potable water
resources is an issue of global concern. Sources of water
quality contamination include releases of chemical and
radionuclide contaminants from point-source and non-
point source origins. The costs of addressing water quality
issues on a global scale are substantial. Regulatory agencies
such as the U.S. Environmental Protection Agency (EPA)
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and counterpart agencies in other countries must consider
economic and human health costs with budgetary con-
straints in their efforts to clean up contaminated ground-
water and restore water resources to beneficial reuse. The
EPA documents this need to perform groundwater re-
mediation in an optimal manner in the “National Strategy
to Expand Superfund Optimization Practices from Site As-
sessment to Site Completion” (USEPA, 2012).
The objective of this research is to develop and dem-

onstrate an automated, cost-effective, and broadly ap-
plicable approach to groundwater remedial design
applicable to contaminated aquifers in different geologic
settings. This paper presents the development, scope
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and application of the simulation-optimization approach
for remediating contaminated groundwater including reli-
ability and efficiency verification to find globally optimized
solutions to groundwater remediation problems. The
approach is demonstrated using a well-studied, publically
documented site example that was the subject of a
government-sponsored remedial optimization study.
During the past two decades, researchers and engineers

have been seeking methods for optimizing the design of
ground water treatment systems. Table 1 provides an over-
view of existing algorithms and methods along with their
salient features. Recognizing the limitations of the previ-
ously used optimization approaches and the need for
efficient and effective groundwater remediation optimization
tools motivates this research. This new approach com-
bines flexible and efficient optimization techniques with
commonly used subsurface groundwater flow and trans-
port simulation models.
Table 1 Key features and limitations of previous
optimization tools

Tool identification Key features and limitations

GWM: Ground-Water Management
Process for the U.S. Geological
Survey (USGS) MODFLOW-2000
(Ahlfeld, et al., 2005)

● Performs optimization using
Linear Programming (LP) or
Sequential Linear Programming
(SLP).

● Tightly integrated to the
MODFLOW code.

● Handles only confined flow and
mildly non-linear unconfined
flow situations.

MGO: Modular Groundwater
Optimizer (Zheng and Wang, 2003)
based on MODFLOW and the
MT3DMS code (Zheng and Wang,
1999) for contaminant transport
simulation

● Performs optimization using
heuristic global optimization
methods, including Genetic
Algorithm (GA) and Tabu
Search (TS).

● Tightly integrated to the
MODFLOW and MT3DMS
codes.

● Computationally burdensome
and cumbersome to use even
for relatively straightforward
practical situations.

SOMOS: Simulation/Optimization
Modeling System (Peralta, 2004)

● Performs optimization using
a combination of GA, TS, and
Artificial Neuron Network
(ANN) in conjunction with
groundwater flow and solute
transport modeling.

SEA: Successive Equimarginal
Approach, a hybrid of the
gradient-based method
and the deterministic
heuristic-based method
(Guo, et al., 2007)

● Performs optimization using
SEA to alleviate some of the
computational burden of MGO.

● Integrated with MODFLOW
and MT3DMS.

● Cumbersome to use requires
frequent user intervention and
may not lead to a global
optimum.
DoD/ESTCP Simulation-optimization demonstration
project
This approach is tested using a study problem posed as
part of the joint U.S. Department of Defense (DoD)/Envir-
onmental Security Technology Certification Program
(ESTCP) Groundwater Remediation Optimization Study
(Minsker et al. 2004); the groundwater contamination
remediation design at the Umatilla Chemical Depot in
Umatilla, Oregon. The site has a pre-existing and oper-
ational remedy-in-place (RIP) installed to remediate the
Royal Demolition Explosive (RDX) and 2,4,6-Trinitrotoluene
(TNT) contaminated groundwater plumes. The RIP
consists of a groundwater pump and treat remediation
system.
The original research teams used three optimization ap-

proaches during the DoD/ESTCP study. The DoD/ESTCP
report presents these approaches in their entirety in Ap-
pendix D, Volume II. The design approaches consisted of
Subject Matter Expertise (SME); the Modular Ground-
water Optimization (MGO) (Zheng and Wang 2002), and;
the Simulation/Optimization Modeling Optimization Soft-
ware System (SOMOS) (Systems Simulation/Optimization
Laboratory SSOL 2002). The team from the University of
Alabama applied the MGO approach, the team from Utah
State University applied the SOMOS approach, and the
group from GeoTrans applied an SME-based subjective
engineering approach. The publically available project web
site (http://www.frtr.gov/estcp) provides the DoD/ESTCP
study reports, groundwater flow and transport models,
and modeling files of the final solutions to this problem.
The Umatilla research problem formulation used for

testing is ESTCP Formulation 1. The goal of the formula-
tion aims to reduce the projected clean up times of RDX
and TNT at minimal cost, subject to constraints on the
total allowable pumping and injection, treatment capacity,
and the number of new wells needed. The experimental
design of the DoD/ESTCP study directed the investigators
to consider the existing flow and transport models as “up-
to-date and acceptable for design purposes”. The ground-
water flow model code is USGS MODFLOW-96
(McDonald and Harbaugh 1988; Harbaugh and McDonald
1996). The model code MT3DMS4 (Zheng and Wang
1999) for multispecies contaminant transport. The object-
ive function calculator provided by ESTCP evaluates the
cost associated with a remedial design and its perform-
ance. U.S. Army Corps of Engineers USACE (1996) devel-
oped and provided the MODFLOW-96 groundwater flow
and MT3DMS4 solute transport models to the ESTCP
study group.
The algorithm developed in this study - Physics-Based

Management Optimization (PBMO) – is an automated
simulation-optimization based method. Examination of
the optimal design solution from PBMO with those from
the ESTCP study demonstrates its effectiveness. The

http://www.frtr.gov/estcp
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PBMO solution acceptance metric is a cost equal to or
lower than developed by the MGO team. MGO provided
one of the lowest costs with the least amount of compu-
tational effort of the automated approaches. Using the
same physically based models and objective function cal-
culator in all the studies isolates the performance of the
demonstrated optimization algorithms.

Umatilla chemical depot, Umatilla Oregon site
background and description
Briefly, Umatilla is a 19,728-acre military reservation
established in 1941 as an ordnance depot for the storage,
renovation, and demilitarizing of conventional munitions,
and for the storage of chemical munitions. As of 1994, the
Umatilla site only stored chemical munitions awaiting de-
struction. A washout plant operated at the site in the
1950s and 1960s. Discharges to unlined lagoons consisted
of an estimated 85 million gallons washout water laden
with RDX and TNT. The water table is present about 47
feet beneath the bottoms of the lagoons. The resulting soil
and groundwater contamination caused the placement of
Umatilla on the EPA National Priorities List (NPL) in
Figure 1 Initials conditions at end of 2002 extraction well and infiltra
1984. Section 3.1.1 of the study report (Minsker et al.
2004) provides additional description of the Umatilla site
and historical summary.
The Record of Decision (U.S. Army Corps of Engineers

USACE 1994) – the legal document governing the remedi-
ation approach - specified a pump and treat system with
reinjection of treated groundwater as the remedial alterna-
tive. The treatment system commenced operations in
January 1997; this action is the RIP. The system comprised
three active extraction wells [EW-1, EW-3 and EW-4],
three active infiltration/recharge basins [IF-1, IF-2 and IF-3],
and a granular activated carbon (GAC) treatment sys-
tem with a capacity of 1,300 gallons per minute (gpm).
Figure 1 provides the locations of the system components.
The extraction well (EW-2) installed 100 feet northwest of
EW-4 is not part of the RIP, but is available for inclusion as
merited.
The initial RIP included an existing industrial lagoon

designated IFL. However, suspicions that infiltrating
water could spread the TNT plume rather than flushing
the unsaturated zone of contamination resulted in dis-
continuing its use. By mid-July 1999, the RIP system had
tion.
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extracted, treated and recharged approximately 1.27 bil-
lion gallons of groundwater and removed an estimated
3,000 kilograms (kg) (6,614 pounds) of RDX and 400 kg
(882 pounds) of TNT. The simulated RDX and TNT
contaminant plumes, shown in Figure 2, represent the
extent of contamination in the shallow aquifer at the
end of 2002. The maximum RDX and TNT concentra-
tions at that time were 28.2 and 86.7 micrograms per
liter (μg/L), respectively.

Methods
Strategic planning for groundwater remediation, water re-
sources planning and dewatering for mineral and resource
mining requires tools that incorporate the complex con-
straints associated with the environment and support de-
cision making with varying levels of uncertainty. This can
include uncertainty in the conceptual site model, subsur-
face characterization (e.g. geologic material location and
properties), chemical transport (e.g. reactions, natural at-
tenuation, biodegradation), and funding levels (e.g. annual
and total life cycle project) (ITRC, 2007).
Figure 2 Initials conditions at end of 2002 new well search regions ca
for MGO.
Physics-based models: MODFLOW, MT3D, MOD
FLOW-SURFACT, and; MODHMS (HydroGeoLogic, Inc.
HGL 2012) are highly effective at integrating remedial tech-
nology selection and application with competing remedi-
ation goals among regulators, site owners/custodians, and
other stakeholders. The reasons for this are:

1. Comprehensive: Physics-based models incorporate
realistic and measurable physical parameters
required for accurately describing the fate and
transport of dissolved contaminants within aquifers.
Optimal solutions based on physics-based models
are more reliable than those from “lumped”
parameter or ad hoc approximations.

2. Efficient and Effective: Physics-based models are
superior to lumped parameter or ad hoc models in
accounting for changes in contaminant mass within
aquifers. Increased accuracy yields solutions that
better manage the use of remedial technologies and
optimize costs and, therefore, be in complete control
of the utilization of available funding.
ndidate infliction basins and hydrogeologic yield zones defined
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3. Flexible: Physics-based models can readily
incorporate extended physical analysis to enable the
development of optimal planning scenarios for
processes that are outside of historical (data)
observations, whereas models built on regression,
interpolation, or extrapolation methods may not be
representative.

Groundwater remediation problems amenable to
physics-based decision optimization include the develop-
ment of cost-effective and sustainable remedial designs;
RIP evaluation and operation and maintenance (O&M)
optimization; the development of optimized exit strategies
to minimize life-cycle costs; the development of site com-
pletion/closure strategies; and water quality management
issues for riparian and lacustrine settings, wetlands, and
estuaries. This approach provides decision support to pro-
gram and project managers regarding the best methods
for remediating a site with contaminated groundwater.
Cost minimization is the overall optimization objective.

In the case of groundwater remediation, well locations and
their extraction or injection rates are the decision variables,
and the simulated hydraulic heads and contaminant con-
centrations in groundwater are the state variables. Decision
variables are the design elements of the problem studied.
State variables represent the resultant simulated system.
The objective function is a systematic accounting of costs
which include the number, operation, and maintenance of
the design elements (decision variables) and account for
the changes in the modeled system (state variables) re-
sponse from the candidate design. Computed over the life
cycle of the simulation, the objective function represents
the total remediation cost. The incorporation of constraints
ensures the solution is practical and implementable. Con-
straints capture mechanical or physical process limitations
(such as maximum pumping rates, and treatment train
capacities) or interim and final values of state variables at
discrete or continuous regions of the modeled domain. As-
sessment of candidate solutions is conducted by examining
the cost value and the constraint compliance. A single
model function evaluation is the cycle of the decision vari-
able selection, process simulation, model objective function
evaluation and constraint evaluation of a candidate design.
Optimization is the automatic, guided process of the deci-
sion variable selection and application through repeated
model function evaluations to arrive at the optimal object-
ive function value that satisfies all constraints. The auto-
matic adjustment of decisions variables terminates (ideally)
at the global optimum (least cost).
PBMO’s approach provides decision support for

groundwater remediation, water resources planning and
dewatering for mineral and resource mining via flexible
integration of physics-based (groundwater flow and trans-
port) models and optimization algorithms. Modular design
promotes flexibility via independence of the physics
model and optimization method. Linking the appropriate
physics-based simulator with the best optimization algo-
rithm(s) enables the solution to a wide range of problems
types. Figure 3 shows how the modular design links the
global optimization algorithms with the appropriate
physics-based simulators to develop an optimal strategy.
In this work, the first (top) half of the medallion repre-
sents the HGL_OPT optimization algorithms which in-
clude the Lipschitz Global Optimization (LGO©) solver
suite (Pintér 1996, 2002, 2009, 2013). The second (bottom)
half represents the physically based numerical ground-
water flow and transport simulators USGS MODFLOW-
96 and MT3DMS4B (in this study); however any process
simulator with a text interface is implementable.
Subsurface simulators represent the physical processes

of flow and transport in a mathematical form. Problem-
specific, physics-based models represent the groundwater
processes/conditions under investigation. From an opti-
mization perspective, these simulation models can be
“black-boxes”, that is models that receive input to produce
an output without revealing the process. Since these
groundwater flow and transport processes can occur in
saturated or variably saturated conditions, in porous or
fractured media, the numerical model used for the simula-
tion will have a linearity category; the simulation can be
linear, mildly non-linear (assumedly or provably convex),
or highly non-linear (assumedly or provably non-convex).
The system under consideration can be either single phase
(water) or multiphase (water-NAPL-gas). The transport
processes can be represented simply by using advective
particle tracking, as a single non-reactive solute that
undergoes dispersion and diffusion, or as a multicompo-
nent system whose constituents interact with each other
and the surrounding environment and are subject to hys-
teresis. The equations that govern these processes are
Lipschitz-continuous, whose state-space representation
can range from elliptic to parabolic or nearly hyperbolic
when advection dominated. When no or low diffusion and
dispersion are present relative to advection, steep fronts or
shocks occur in the solutions. A complication for efficient
optimization approach design arises when that the deci-
sion variables used in a candidate model evaluation during
optimization change the model linearity category. Typic-
ally, the simulation of groundwater flow with slight draw-
down is linear to mildly non-linear (because the saturated
aquifer thickness does not change appreciably), whereas
the simulation of significant groundwater drawdown or
coupled groundwater flow and transport are most often
highly non-linear. For the model scenario considered in
this study, the flow system will range from linear far from
the remediation system and contaminant plumes to highly
non-linear in the contaminant plumes and near the re-
mediation wells. The objective function is non-linear.



Figure 3 PBMO process flow diagram.
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The USGS numerical simulator, MODFLOW-96, solves
the following 3-D governing partial-differential equation
for transient, saturated groundwater movement through
porous media to yield a spatial distribution of the po-
tentiometric head as a function of time:

∂
∂x

Kxx
∂h
∂x

� �
þ ∂
∂y

Kyy
∂h
∂y

� �
þ ∂
∂z

Kzz
∂h
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� �
−qs

¼ Ss
∂h
∂t

ð1Þ

Where Kxx, Kyy and Kzz are the values of hydraulic
conductivity [L/T] along the x, y, and z coordinate axes,
respectively, assumed to be parallel to the major axes of
hydraulic conductivity; h is the potentiometric head [L];
qs is a volumetric flux per unit volume of the aquifer
and represents sources (injection wells) and/or sinks (ex-
traction wells) of water [1/T]; Ss is the specific storage of
the aquifer material [1/L]; and t is time (T).
Injection wells represent the infiltration/recharge ba-

sins. The initial ESTCP study used some terms inter-
changeably: injection, infiltration, and recharge. For
clarity with the initial study language, we maintain that
terminology in this paper to refer to the return of
treated groundwater to the subsurface. The distribution
of heads (one of the state variables), the source/sink data
and, the candidate decision variables used or generated
from the MODFLOW-96 simulation provide input to
MT3DMS to solve the partial differential equation
describing the fate and transport of contaminant species
k in 3-D, transient groundwater flow systems. The
governing equation is:

∂ θCk
� �
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¼ ∂
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−

∂
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þ
X
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Where θ is the porosity of the aquifer material [-]; Ck is
the dissolved concentration of species k [M/L3]; xi,j is the
distance along the respective coordinate axis, x, y or z [L];
Dij is the hydrodynamic dispersion coefficient tensor [L2/T];
vi is the seepage or linear pore water velocity [L/T]; Ck

s is



Deschaine et al. Environmental Systems Research 2013, 2:6 Page 7 of 21
http://www.environmentalsystemsresearch.com/content/2/1/6
the concentration of the source or sink flux for species k
[M/L3], and; ∑ Rn is the chemical reaction term [M/(L3T)].
Darcy’s Law couples the transport and flow equations.

vi ¼ −
Ki

θ

∂h
∂xi

ð3Þ

McDonald and Harbaugh (1988) provide details on
MODFLOW. Zheng and Wang (1999) provide details for
MT3DMS.
To provide an optimization solver with the capability

and efficiency to address this range of model types, PBMO
is developed and implemented leveraging a suite of
optimization algorithms that efficiently solve the various
formulations expected to occur in the optimal decision
support approaches presented here.
HGL_OPT is the master optimization driver. It com-

prises machine learning, objective function estimating
methods, and SME-developed heuristics specifically useful
for quickly developing high quality solutions to complex
problems such as contaminant flow and transport remed-
ial design (Deschaine 1992 and Deschaine 2003; Deschaine
and Pintér 2003; and Deschaine et al. 1998, 2001, and
Deschaine et al. 2011). These solutions can be used to
focus (or initialize) the LGO-specific global and local
optimization solvers.
The optimization algorithms included in the optimizer

suite include linear programming (LP), sequential linear
programming (SLP), sequential linear approximation
(SLA), sequential quadratic programming (SQP), gener-
alized reduced gradient (GRG), outer approximation
(OA), Branch and Bound (BB), Globally Adaptive Ran-
dom Search (GARS), and Multi-start Random Search
(MS). Specifically, LP solves linear models; OA, SLP,
SLA, SQP, and GRG serve to deal with mildly non-linear
models; BB, GARS, and MS―in proper combination
with SLA, SQP, and GRG―serve to handle highly
nonlinear models.
Currently, the optimization system can handle model

formulations with up to a few hundred binary (yes/no)
decision variables, several thousand continuous vari-
ables, and a several thousand general constraints (in
addition to variable bound constraints). The actual con-
figuration can be adjusted to user demands. For ex-
ample, it is possible to optimize models with 200
decision variables and 5,000 general constraints, or vice
versa. Even larger model sizes can also be handled if the
computer random-access memory (RAM) and the com-
piler used support this. The BB solver of LGO employs a
mild assumption of Lipschitz continuity, which allows an
efficient and a robust search for a global optimal value
through a systematic partitioning and exploration of the
entire feasible region. The GARS and MS solvers assume
basic model function continuity. The optimization suite
solves the following general model:

i. Minimize the [arbitrary linear or nonlinear]
objective function f(x)

ii. Subject to bound constraints and [arbitrary linear or
nonlinear] constraints:

x ∈D :¼ xl ≤ x ≤ xu; g xð Þ≤0f g ð4Þ

where x is a decision vector, an element of the real n-space
Rn; f(x) is a continuous objective function, f: Rn R, (R=R1);
D is a non-empty set of admissible decisions, a subset of
Rn. As shown by (4), the set D is defined by l, u which is
an explicit, finite n-vector bound of x (a “box”) in Rn; and
g(x) which is an m-vector of additional continuous con-
straint functions, g: Rn Rm.
The assumption is that Lipschitz continuity holds as

expressed by the inequality

f j x1ð Þ−f j x2ð Þ
��� ���≤Lj x1−x2k k ð5Þ

where [Lj] is the Lipschitz constant. This equation
means that the variability of the values computed by the
objective function calculator is bounded with respect to
the variability of the system input variables [x] by the
Lipschitz constant. This condition is an expected prop-
erty of all physically based models.
Effective development and specification of a problem for

groundwater remediation projects requires SME under-
standing of the physical processes and their constraints.
The options under consideration include selecting which
of the physics-based processes that need modeled (such as
aquifer quality remediation via bioremediation or pump-
and-treat) along with the constraints that the solution
must satisfy. The formulation below is directly applicable
and extensible to a wide range of groundwater dewatering
and remediation problems. The basic elements of the
mathematical formulation consist of an objective function
and constraints.

Minimize : f xð Þ ¼
XN
i¼1

δi; αi; qið Þ ð6aÞ

subject to:

XN
i¼1

qi≥Q
� ∀i∈I ð6bÞ

qi≤q
�
i ∀i∈I ð6cÞ

cj≤c�j ∀j∈J ð6dÞ
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hk≥h�k ∀k∈K ð6eÞ

t≤T max ð6fÞ

Here, the objective function f(x) is a simplified version
of life cycle cost for illustrative purposes. It consists of
the flow rate from extraction wells [qi], a unit cost to
process and treat the water [αi]; and it assesses if an ex-
traction well is pre-existing or not by examining for ∀ i
locations and assigning a (0,1) multiplier if a well instal-
lation required (δi=1) or is pre-existing (δi=0). The actual
formulations of the objective function for optimal design
problems often involve quite extensive and detailed cost
information and functions such as used in this study.

The constraint
XN
i¼1

qi≥Q
� ∀i∈I requires the installed sys-

tem pumps at least some minimum volume of water Q.
The qi ≤ q�i constraint sets upper limits on a flow at
each of the ith candidate well. The cj ≤ c�j constraints

ensure aquifer remediation to a certain acceptable re-
sidual level for all j locations. The hk ≥ h�k constraints
set minimum allowable water table elevations in the
aquifer at all k locations. The t ≤ Tmax constraint limits
the allowable time for the activity to achieve the speci-
fied goals. These general constraints, like the cost func-
tion, can be modified and adapted as dictated by the
needs of the project. For example, one can use this
framework to incorporate constraints for differential
land subsidence due to dewatering by using differencing
constraints and adding constraints on the maximum
slope of the water table or land surface. Similar ap-
proaches are effective for assessing depressurization and
geotechnical stability.
The goal of constrained global optimization is to find at

least one point x* within the feasible region that satisfies f
(x*) ≤ f(x) for all x or to show that such a point does not
exist. If no solution exists, then the decision makers
realize it is an infeasible problem formulation. This en-
ables the problem be reformulated. It is critical to deter-
mine if a feasible solution does not exist when solving a
complex decision problem. This is a valuable capability of
the physics-based optimization methodology. Many other
optimization methods, specifically including heuristic
techniques, cannot determine that a problem is infeasible:
as a result, users can waste precious time and money
searching for solutions with no hope of finding a feasible
solution.

Umatilla optimization problem formulation
The three optimization problem formulations considered
in the DoD/ESTCP study were:
Formulation 1: Minimize the cost to remediate RDX
and TNT in 20 years or less using the current
treatment plant maximum operating flow rate of
1,300 (gpm) as an upper limit on the total
groundwater extraction rate;

Formulation 2: Same as Formulation 1, except the
maximum treatment flow rate increased to 1,950
(gpm);

Formulation 3: Minimize the aggregate remaining mass
of RDX and TNT in 20 years using the current
treatment plant flow rate.

The PBMO approach addresses all these types of
optimization formulations. This exercise focuses on find-
ing a solution to the problem as stated by Formulation
1. Appendix D, Volume II of the DoD/ESTCP report
(Minsker et al. 2004) provides the mathematical formu-
lation of the problem statement in detail.
The objective function for Formulation 1 is specified

as follows:

MINIMIZE
�
CCW þ CCB þ FCL þ FCE þ VCE

þVCG þ VCS
� ð7Þ

where:
CCW: Capital costs of new wells

CCW ¼ 25� IEW2ð Þd þ
XNY

i¼1

75� NWið Þd ð8Þ

Ny is the modeling year when cleanup is achieved [yr]
as defined by [CRDX] ≤ 2.1 μg/L and [CTNT] ≤ 2.8 μg/L as
measured by the nodal concentration value in the top
layer.
NWi is the total number of new extraction wells (ex-

cept well EW-2) installed in year i. New wells may only
be installed in years corresponding to the beginning of a
5-year management period. Capital costs do not apply to
pre-existing extraction wells.
IEW2 is a flag indicator; 1 when well EW-2 first comes

into service, 0 otherwise.
75 is the cost of installing a new well [K$].
25 is the cost of putting existing well EW-2 into ser-

vice [K$].
d indicates the application of the discount function to

yield Net Present Value (NPV) defined as

NPV ¼ c

1þ rð Þy−1 ð9Þ

c is the cost
r is the annual discount rate [1/yr]
y is the value of i in the summation



Table 2 Number of candidate extraction well locations in
each of the three search boxes

Location Coordinates Size Number of potential
extraction well locations(1)

Box 1 (40,53) to (63,73) 24×21 127,260

Box 2 (82,63) to (91,83) 10×21 22,155

Box 3 (82,90) to (90, 96) 9×7 2,016

Includes single and double well location combinations per box.
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CCB: Capital costs of new infiltration basins

CCB ¼
Xny
i¼1

25� NBið Þd ð10Þ

NBi is the total number of new infiltration basins
installed in year i. New recharge basins may only be in-
stalled in years corresponding to the beginning of a 5-
year management period. The infiltration flux is evenly
distributed throughout the basin.
25 is the cost of installing a new recharge basin inde-

pendent of its location [K$/yr].
Table 3 Optimal pumping strategies found using SME, MGO a
existing RIP design

Name Location
(Layer, Row, Column) RIP

Stress pe

EW-1 (1,60,65) −128 −28

EW-2 (1,83,84)

EW-3 (1,53,59) −105

EW-4 (1,85,86) −887 −66

New-1 (T&E) (1,48,57)

New-2 (T&E) (1,49,58) −23

New-3 (MGO) (1,48,59)

New-4 (MGO) (1,48,55)

New-5 (PBMO) (1,48,57)

New-6 (PBMO) (1,52,61)

IF-L *

IF-1 * 233 282

IF-2 * 405 405

IF-3 * 483 482

IF-4 *

IF-A *

IF-B *

IF-C *

Total cost in net present value ($) $3,836,285

*See Figure 2 for location.
(a negative flow rate indicates pumping; positive indicates injections).
FCL: Fixed cost of labor

FCL ¼
XNY

i¼1

237ð Þd ð11Þ

237 is the fixed annual O&M labor cost [K$/yr].
FCE: Fixed cost of electricity (lighting, heating, and the

like).

FCE ¼
XNY

i¼1

3:6ð Þd ð12Þ

3.6 is the fixed annual electric cost [K$/yr].
VCE: Variable electric costs of operating wells (extrac-

tion and injection)

VCE ¼
XNY

i¼1

XNweli

j¼1

CWij � IWij

� �d ð13Þ

Nweli is the total number of extraction/injection wells
active in year i.
nd PBMO for formulation 1 at Umatilla compared with

Pumping/injection rate (gpm)

Formulation 1 solutions

SME design MGO PBMO

riod 1 Stress period 2 Stress period 1 Stress period 1

0 −350 −307.5 −292.5

−360 −219.5 −292.5

0

−100

0 −360

−360

−283

−292.5

−292.5

585

380 390

790 780

585

$2,230,905 $1,664,395 $1,644,085



Table 4 Breakdown of the capital and O&M costs of RIP,
SME, MGO and PBMO designs

Cost components RIP
existing
design

SME
strategy

MGO
optimal
strategy

PBMO
optimal
strategy

Capital costs of new
wells (CCW)

$ - $ 133,764 $ 150,000 $ 150,000

Capital costs of new
infiltration basins (CCB)

$ - $ 19,588 $ - $ -

Fixed costs of
labor (FCL)

$ 2,805,552 $ 1,263,086 $ 882,410 $ 882,410

Fixed costs of
electricity (FCE)

$ 42,616 $ 19,186 $ 13,404 $ 13,404

Variable costs of electricity
for operating wells (VCE)

$ 251,405 $ 91,952 $ 48,394 $ 48,402

Variable costs of changing
GAC units (VCG)

$ 16,338 $ 14,301 $ 11,700 $ 11,382

Variable costs of
sampling (VCS)

$ 720,374 $ 689,028 $ 558,487 $ 558,487

Objective function value $ 3,836,285 $ 2,230,905 $ 1,664,395 $1,644,085

Figure 4 Well location configurations generated by various technique
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CWij is the electrical cost for well j in year i. Costs dif-
fer for wells depending on the extraction rates of well j
in year i, Qij:

CWij ¼ 0:01 Qij

� �
for 0 gpm < Qij≤400 gpm

CWij ¼ 0:025 Qij

� �
−6 for 400 gpm < Qij≤1000 gpm

IWij is a flag indicator; 1 if well j is active in year i, 0
otherwise.
VCG: Variable costs of changing GAC units

VCG ¼
XNY

i¼1

γ �cið Þ �mi½ �d ð14Þ

�ci is the average influent concentration [μg/L] (RDX
plus TNT) into the treatment plant from all of the ex-
traction wells in the year i calculated as:
s: RIP, PBMO, MGO and SME (using trial and error).
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�ci ¼

XNweli

j¼1

Qij�cij

XNweli

j¼1

Qij

ð15Þ

�cij is the average influent concentration [μg/L] (RDX
plus TNT) from well j in the year i
γ �cið Þ is the cost of mass removed [K$/kg] as a function

of average influent concentration into the treatment
plant in year i, calculated as:

γ �cið Þ ¼ −0:5 �cið Þ þ 225
1000

ð16Þ

mi is the mass of contaminant removed [kg] during
year i calculated as:

mi ¼
XNweli

j¼1

Qij�cij � β ð17Þ

β is a conversion factor to produce the result in units
of [kg/yr].
Figure 5 Comparison of selected optimization techniques.
VCS: Variable cost of sampling.

VCS ¼
XNY

i¼1

150� Ai=IAð Þ½ �d ð18Þ

IA is the initial plume area in layer 1 of the model
based on the extent of RDX and TNT as measured in
January 2003 where RDX and TNT exceeded their
respective cleanup goals (2.1 and 2.8 μg/L, respect-
ively) [m2]
150 is the annual sampling cost (as of January 2001)

and considers both labor and analysis costs [K$/yr]
Ai is the modeled plume area in layer 1 in year i. This

is evaluated at the beginning of a 5 year management
period [m2]. Ai is defined as:

Ai ¼
XNcol

j¼1

XNrow

k¼1

ΔxjΔyk � ICjk

	 
 ð19Þ

Ncol is the number of grid cell columns in the x
direction
Nrow is the number of grid cell rows in the y direction
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Δxj is the width of the jth grid cell column [m]
Δyk is the width of the kth grid cell row [m]
ICjk is a flag where:

Cjk
RDX is the concentration of RDX in the grid cell with

indices j and k

Cjk
TNT is the concentration of TNT in the grid cell with

indices j and k
The Formulation 1 constraints are:

1) The modeling period consists of four 5-year
management periods beginning with January 2003 (i or
year = 1).

2) Modifications to the system may only occur at the
beginning of each management period.

3) Remediation in the top layer of the model must be
achieved within 20 years (e.g., RDX ≤ 2.1 μg/L and
TNT ≤ 2.8 μg/L everywhere in top model layer).

4) The total pumping rate, adjusted for the average
amount of uptime, cannot exceed the treatment
capacity of 1,300 (gpm) in any stress period. Evaluation
of this constraint occurs at the beginning of each
Figure 6 Extent of RDX and TNT for PBMO and MGO optimal solutions
5-year management period. It is computed as:

Q��
α
≤1300 gpm ð20Þ

Here
α is a coefficient that accounts for the amount of
average uptime (α=0.9)
Q* is the total modeled flow rate during a 5-year
management period.

5) The hydrology dictates the upper sustainable flow
limit on extraction wells. Extraction wells in Zone 1
may pump at a maximum rate of 400 (gpm),
whereas extraction wells in Zone 2 may operate to a
maximum of 1,000 (gpm). See Figure 2 for
definitions of Zones 1 and 2:

If Zone j; kð Þ ¼ 1;

then q
jk�

.
α

≤ 400 gpmð Þ

else q
jk�

.
α
≤ 1; 000 gpmð Þ

ð21Þ

where:
after year 1.
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Zone(j,k) is a function of the jth grid cell column and
kth grid cell row that returns 1 if model grid (j,k)
corresponds to Zone 1, and returns 2 if (j,k)
corresponds to Zone 2
q�jk is the modeled extraction rate at model grid
location (j,k).

6) It is unallowable for the extent of groundwater
contamination to increase beyond initial conditions
at any time during the remediation.

7) Total pumping and infiltration rates must be balanced
at the beginning of every management period

XNweli

j¼1

Qij−
XNrechi

k¼1

Qkj

�����
�����≤1 gpm;∀i∈ 1; 6; 11; 16f g ð22Þ

where:
Nrechi is the number of injection wells operating in
year i.

In summary, the optimization problem can be stated as
follows: find the combination of simulated extraction and
injection well locations and their operating rates that
Figure 7 Extent of RDX and MGO optimal solutions after year 2.
minimize the cost of reducing RDX and TNT concentra-
tions within a 20 year time horizon while satisfying all the
constraints on well, remedy operations, and plume behav-
ior. The remedial system designs use the calendar year
2003 as the starting point.
The groundwater flow and transport models provided

for the study simulate 20 years with four management pe-
riods of five years each. The extraction and injection flow
rates can vary across the management periods, but not
within a management period. The locations of the extrac-
tion and injection infrastructure can only vary between
candidate solutions, not between management periods.

Optimization solution approach
The optimization problem is solved by defining the regions
to search for the globally optimal settings of the decision
variables, and prescribe how to conduct the search. The
decision variable search regions mimicked, as closely as
possible, the regions established for new well locations and
infiltration basins by the MGO team. The MGO team
confined their search for new extraction well locations to
regions where the plume densities were highest as shown
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on Figure 2. Each region contains the areas of the highest
concentration for the three principal lobes of the two
contaminant plumes. In addition to these search areas for
extraction wells, locations for three new infiltration basins,
IF-A, IF-B, and IF-C in the original study at the extent of
the RDX plume to the east, southeast, and southwest as al-
ternatives to the four pre-existing recharge basins. In all, a
total of 11 candidate regions exist for locating decision var-
iables: four extraction areas and seven injection/recharge
areas; the locations as defined by the MGO team. These 11
regions make up the infrastructure search areas of the rem-
edy used to alter the distribution of RDX and TNT in
groundwater. Active remediation solutions require non-
zero total extraction and injection fluxes; hence, there must
be at least one extraction location and one injection loca-
tion active for all viable candidate solutions.
Within the extraction locations, a well(s) can be lo-

cated anywhere in the search box (we restrict the well
position to a model node). Table 2 provides the box lo-
cation and number of candidate position locations for
one or two wells in each singular box.
Figure 8 Extent of RDX and MGO optimal solutions after year 3.
Allowing an extraction well(s) to be located in any of
the three search boxes results in 302,253 potential extrac-
tion well location combinations. The 128 different candi-
date location configurations for the infiltration basins
results in a total of 38,688,384 candidate infrastructure
system designs. Simultaneously, when determining the in-
frastructure configuration design, the water flow rates are
optimized. This magnitude of options illustrates the diffi-
culty of finding the optimal solution either by random
searching or by using the SME subjective engineering
judgment.
The approach used to solve the Umatilla problem

consisted of the following generalized automated search
strategy:

1) Evaluate the cost of the RIP. The RIP consists of
three extraction wells and three infiltration basins.
Store these results as a current minimum.

2) Begin evaluation of different combinations of
extraction wells and infiltration basins.

a. Set number of evaluation epochs equal to one.
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b. Initial extraction location: Initiate the solution
using the study maximum number of new wells
(two), located in Box 1 (which contains the RDX
and TNT plumes).

c. Initial injection location: IFL located in Box 1, the
innermost infiltration basin.

d. Initiate search strategy. Begin to cycle through
and test the 4 pumping areas and 7 injection
areas for quality of solution, use extraction rate
total = system maximum capacity of 1170 (gpm)
(which is 1,300 (gpm) * 90% uptime) as done by
the MGO team.

e. Set search cycle a minimum number of
evaluations (12).

f. Upon finding a cost lower than current minimum
cost:
i. Select the solutions with the two lowest costs.
ii. Explore these regions by conducting brief local

random searches (LRS) on each solution to
(statistically) determine the most promising
configuration of wells and basins. Perform
ure 9 Extent of RDX and MGO optimal solutions after year 4.
initial analysis using the physically-based
model. The optimization search progresses and
generates an increasing number of function
evaluations. Machine learning is invoked to
provide candidate solution objective function
evaluation estimation which reduces
computation burden when model evaluations
models are extensively time consuming.

g. Store these results (configuration, rates, cost).
h. Evaluate best current solution.

i. If solution improves, replace previous remedial
design configuration and objective function
value.

ii. Else, continue.
3) Initiate a global optimization analysis using the LGO

search options of GARS followed by GRG; initialize
using currently best identified solution.
a. Upon finding a cost lower than current minimum

cost:

i. Store these results.

b. Else, continue.
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4) If termination criteria met,
a. Stop.
b. Else, increment number of evaluation epochs by 1

until the user-specified maximum number
reached. Store and print results.

c. Go to step 2.

PBMO’s partition and exploration approach enables
implementation of the search strategy be conducted on
multiple central processing units (CPUs). However, this
test used a sequential implementation to mimic ESTCP
test conditions. The search continues until the termin-
ation criterion satisfied. The termination criterion can
either be the targeted optimal cost, the total number of
flow and transport simulations, the number of simula-
tions since the optimal value was last improved, or the
total simulation (CPU) time consumed. In this case, the
termination criterion was the optimal total remedial cost
as published by the MGO team. The initial starting point
for the total flow rate is the maximum treatment plant
flow rate 1,170 (gpm) and mimics the MGO team. Ini-
tially, all extraction wells in Box 1 equally pumped; all
Figure 10 Calculated maximum concentrations of RDX in the shallow
extracted water injected into the single infiltration gal-
lery IFL, and new candidate extraction wells placed ran-
domly during the infrastructure search phases.

Results and discussion
The total net present value cost from PBMO
($1,664,085) significantly improved upon the costs com-
mitted for remediation at the site by implementing the
RIP ($3,836,285) and the design achievable via SME
($2,230,905). The PBMO results mimicked MGO
($1,664,395) and SOMOS ($1,663,841). Table 3 presents
the well location strategies and cost results for RIP,
SME, MGO and PBMO (since MGO and SOMOS were
similar).
The termination criterion in the test was the MGO cost

value. PBMO found a lower cost that MGO in fewer than
120 model evaluations. Additional optimization analysis
performed during reliability testing produced multiple so-
lutions with lower costs - as low as $1,663,240 – and with
different new well extraction locations and different rates
in the extraction wells. These subsequent findings illus-
trate the multi-extremal structure of this design problem,
aquifer model layer 1 (Starting at the end of 2002).
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thereby calling for global optimization based solution
approaches.
Simulation model reliability over the range of feasible in-

puts is essential for determining the globally optimal vari-
able values. We observed that 10.7% of the viable
candidate designs simulated in the groundwater flow and
transport models during the optimization search failed to
converge. This primarily occurred when the extraction
well flow rates were set near the high end of the accept-
able range and which caused flow model cells to dewater.
In instances where model cells become dewatered, the
groundwater flow simulator could not converge to a solu-
tion without the application of a non-physical lower
bound on the head in the dewatered cella. Given that the
two simulators execute sequentially during a function
evaluation (groundwater flow followed by fate and trans-
port), the failure of the flow simulator to provide a conver-
gent solution prevents the transport simulator from
predicting contaminant distributions resulting in a lost
candidate design evaluation cycle.
PBMO addresses issues that arise in model simulations

due to these harsh modeling scenarios imposed by formal
Figure 11 Calculated maximum concentrations of TNT in the shallow
optimization. PBMO examines the model simulation solu-
tion time and the flow and transport mass balance errors.
Automated solver parameter adjustments can take place if
the solution becomes unstable or inefficient. If a model
nevertheless fails to converge after a user-specified max-
imum number of numerical solver parameter setting at-
tempts, penalty functions divert the optimal search from
exploring this solution region. Hence, while the algorithm
handles the non-convergent model issue, should the simu-
lations be noted to fail to converge either at an appreciable
rate or in regions of the search space where the suspected
location of the optimal value, a more robust model code
should be used. This will alleviate the risk of not locating
the true globally optimal solution. This study design ne-
cessarily used the modeling system used by the other
teams in spite of the 10.7% model simulation failure rate.
Table 4 presents a breakdown of the capital, and oper-

ations and maintenance costs for each of the four strat-
egies. Figure 4 shows the well locations for RIP and T&E
conducted by the SME’s, and the optimal well locations
determined by MGO and PBMO The PBMO solution
places two new wells into the TNT plume, as did MGO.
aquifer model layer 1 (Starting at the end of 2002).
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Examining the performance comparisons of the
algorithmsb reported in the ESTCP study for the number
of flow and transport simulations, PBMO found its solu-
tion using under 120 flow and transport simulations as
compared to the estimated 5,000 simulations reported by
the MGO investigators [see Volume II of the DoD/ESTCP
report (Minsker et al., 2004)]. This is a significant im-
provement in efficiency, by an estimated factor of over 40.
Furthermore, PBMO ran unattended, whilst MGO re-
quired numerous human interventions.
The authors believe that the observed increased effi-

ciently lies in the integrated optimization search strategy.
The PBMO approach supports rapid determination of
“good” solution spaces that work synergistically with LGO,
the core global optimization algorithm. The investigation
of (Rios and Sahinidis 2012) supports this position via the
results of testing 23 optimization algorithms, including
LGO. The results of that comparative study indicate LGO
to be orders of magnitude more efficient and reliable than
the techniques selected by the original ESTCP study teams
(see Figure 5, adapted from that study). Regarding the final
solution to the Umatilla problem, the solutions generated
Figure 12 Starting locations of new candidate wells for reliability test
by the optimization techniques are conceptually similar:
all three utilize the same existing extraction wells, EW-1
and EW-3; both use the same infiltration basins, IF-2 and
IF-3; and both locate new extraction wells near to the cen-
ter of mass of the TNT plume, and remediate the site in 4
years. Figures 6, 7, 8, 9 show the RDX and TNT plumes at
the end of Year 1 through Year 4― the time of remedi-
ation completion. Figure 10 and Figure 11 illustrate the
maximum concentration of both contaminants over time
in the top layer of the model. The (slight) over design by
MGO compared with PBMO is evidenced regarding the
TNT remediation results. The TNT remediation did not
occur at the same time as the RDX remediation and the
water quality was remediated cleaner than required by the
project specifications.

Remediation well starting position: sensitivity tests
The algorithm’s reliability test consisted of assessing its
ability to converge on the optimal result from different
ill-placed starting locations. The well location search re-
gion used was the same search region defined for the
northernmost box, the one that contains the initial RDX
ing of PBMO.



Table 5 PBMO computational performance during
robustness testing

Run # Starting
locations for
new wells
(L,R,C)

Optimal
locations
(L,R,C)

Optimal
cost ($K)

# Flow
/transport
iterations to
optimal3

CPU time
to optimal
(min)1,2

1 (1,40,53) (1,48,57) 1,664.1 124 164.3

(1,40,73) (1,52,61)

2 (1,40,53) (1,48,57) 1,664.1 124 164.5

(1,63,73) (1,52,61)

3 (1,63,53) (1,48,57) 1,664.1 127 177.8

(1,40,73) (1,52,61)

4 (1,63,53) (1,48,57) 1,664.1 127 178.3

(1,63,73) (1,52,61)

5 (1,40,53) (1,48,57) 1,664.1 124 161.7

(1,63,53) (1,52,61)

6 (1,40,73) (1,48,57) 1,664.1 124 161.0

(1,63,73) (1,52,61)
1Intel Core i5 CPU 760 @ 2.80 GHz, 8 GB RAM, Win7 Pro.
2Intel Core i7 CPU 870 @ 2.93 GHz, 8 GB RAM, Win7 Pro.
3The number of iterations for each optimization run includes 1 evaluation for
RIP and 24 evaluations for the optimal infrastructure configuration search.
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and TNT plumes as shown in Figure 2. However, instead
of using the best configuration of the extraction well lo-
cations determined thus far (i.e. from the infrastructure
search), the search box corners specify the initial new
extraction well locations. The test scenarios consisted of
six combinations of initial locations for the two new ex-
traction wells at the four corners. Figure 12 shows the
six different initial starting configurations for the two
new extraction wells represented as the green triangles
on the various corners. The results of interest are the
final solution, the optimal placement of two new extrac-
tion wells to accompany EW-1 and EW-3, the number
of simulation/optimization iterations required, and the
elapsed time needed to achieve the solution. Table 5 pre-
sents the test results. Each of the six test cases found the
same optimal locations. The number of model simula-
tions varies between 124 and 127. In every scenario,
identification of the optimal solution occurred in less
than 3 hours of CPU time. In nearly 100 iterations, the
GARS optimization algorithm found the optimal solu-
tion regardless that the search initiates from locations
outside the contaminant plume. Reliability and minimal
dependence on the starting solution initialization are
fundamental and desirable features of a high-quality glo-
bal solver.

Conclusions
The study demonstrates the effectiveness of an automated,
cost-effective, and broadly applicable approach to ground-
water remedial design. The application of the PBMO
methodology to the Umatilla case study site represents a
rigorous testing and validation exercise. This numerical
analysis efficiently and automatically identified the best so-
lution found by others. Extension of the approach for
evaluation and optimal aquifer remediation management
for different sites in different geologic settings is accom-
plished by using a site specific calibrated groundwater flow
and transport model. The approach identified the optimal
solution about 40 times faster than any of the other
methods by reducing the number of time consuming flow
and transport model evaluations. Comprehensive automa-
tion promotes efficiency, effectiveness and usability. Merit
for reliably optimizing complicated systems is achieved
through the ability to overcome the inherent non-
convergence difficulties that occur when using numerical
models for process simulation.

Endnotes
aThis approach was explicitly applied to one of the

other study sites in the DoD/ESTCP study – see Section
3.2.3.4 in Volume I of Minsker et al. (2004).

bThe model files representing the optimal solution
identified by MGO and SOMOS are on the web site,
however, the input files to MGO or SOMOS to recreate
the optimization study and generate the optimal solution
are not available. Therefore, it was not possible to inde-
pendently verify the reported operational performance of
MGO or SOMOS. Hence, we use the reported values for
the number of model runs, with MGO being the lesser
number of ~5,000. To put this efficiency result in per-
spective, it would take nearly 5 days of clock time on a
modern computer (~1.4 minutes per flow and transport
simulation) to solve the problem using MGO, whereas
PBMO found a somewhat better solution in less than 3
hours. In addition, the MGO solution required several
stops and starts as well as other interceding actions by
the investigators to reach the final answer presented in
the study. PBMO required a single execution without
any human intervention: the optimization process was
completely automated.
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