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Abstract

Brain ischemia leads to a decrease in pH,. We have shown previously in synaptosomes that the extracellular
acidification induces depolarization of mitochondria followed by synthesis of superoxide anions and oxidative
stress. Here, we investigated the effects of lowered pH, on oxidative stress and membrane potentials in
synaptosomes treated by the iron chelator deferoxamine and zinc chelator TPEN. We demonstrated that chelating
of metals has no impact on superoxide anion synthesis and intrasynaptosomal mitochondria depolarization.
Meanwhile, deferoxamine was able to inhibit oxidative stress induced by low pH, and hydrogen peroxide
application. Compared to deferoxamine, TPEN was less effective but it decreased the DCF fluorescence induced by
pH, 6.0 which had no effects in other oxidative stress models. We found that the chelators were able to inhibit
slightly plasma membrane depolarization. Synaptosomes preincubation at low pH, caused no effects on the
reduced glutathione level. Depletion of glutathione by CDNB produced no additional increase in the DCF
fluorescence induced by pH, 7.0. Our results suggest that free iron is crucial for the development of oxidative stress
elicited by acidification in synaptosomes. Chelating of this metal seems to be a promising strategy for protecting
the neuronal presynaptic terminals against oxidative stress developed at stroke.
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Introduction

Stroke is associated with acidification reaching pH, of
5.3 in certain cases, for instance, in hyperglycemia (Thorn
and Heitmann 1954; Crowell and Kaufman, 1961; Kraig
and Chesler 1990; Tombaugh and Sapolsky 1993; Isaev
et al. 2008). The main cause of pH lowering is a meta-
bolic shift to predominance of glycolysis (Tombaugh
and Sapolsky 1993; Isaev et al. 2008; Obara et al. 2008).
Apart form ischemia, acidification was also observed in
several neurodegenerative diseases (Yates et al. 1990)
potentially contributing to their pathogenesis.

Lowering of pH down to 6.0 can induce neuronal
death (Nedergaard et al. 1991; Isaev et al. 2010). The main
cause of acid-induced neuronal death is thought to be acti-
vation of the acid sensitive ion channels (ASICs) (Krishtal
and Pidoplichko 1981; Xiong et al. 2004; Isaev et al. 2008;
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Wemmie et al. 2013). However, at least in some cases,
damage of neurons under low pH was associated rather
with an acidification-induced increase in cytosolic zinc
levels than ASIC activity (Isaev et al. 2010; Kiedrowski
2011). It was suggested that the mitochondria depolar-
ization followed by oxidative stress plays a key role in de-
velopment of this phenomenon (Isaev et al. 2010).

It was shown that lowering of pH may lead to an in-
crease of free radical formation in the brain homoge-
nates, slices and isolated neuronal presynaptic terminals
termed synaptosomes (Siesjo et al. 1985; Bralet et al.
1991, 1992; Pekun et al. 2012, 2013).

Recently, we have demonstrated that superoxide anion
synthesis in mitochondria followed by their depolarization
is the primary cause of oxidative stress induced by extra-
cellular acidification (Pekun et al. 2013). Nonetheless, the
release of iron from proteins and inhibition of enzymes
maintaining the cellular pool of reduced glutathione were
reported to exert the crucial effects on development of
oxidative stress in brain homogenates, brain slices, and
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neurons (Siesjo et al. 1985; Bralet et al. 1992; Ying et al.
1999; Lewerenz et al. 2010). It is unknown whether iron,
zinc and glutathione have any role in the development of
oxidative stress in synaptosomes, an experimental model
that we have characterized earlier (Pekun et al. 2012,
2013). Meanwhile, it was demonstrated that the local free
radical formation in synapses is able to modify signifi-
cantly the synaptic vesicle recycling (Giniatullin et al.
2006; Keating 2008; Tarasenko et al. 2012; Tsentsevitsky
et al. 2013). Accordingly, synaptic oxidative stress induced
by low pH, might underlay irreversible impairment of
synaptic transmission which is a poorly investigated
consequence of brain ischemia (Hofmeijer and van
Putten 2012).

In the present, paper we investigated an impact of the
membrane permeable iron chelator deferoxamine and
membrane permeable zinc chelator N,N,N,N’-tetrakis(2-
pyridylmethyl)ethylenediamine (TPEN) on free radical
formation in rat brain synaptosomes at low pH,. React-
ive oxygen species (ROS) accumulation was monitored
by the fluorescent dye DCFDA and dihydroethidium
(LeBel and Bondy 1990; Pekun et al. 2013). It is well
known that depolarization of mitochondrial membrane
can cause free radical formation (Votyakova and Reynolds
2001; Abramov et al. 2007; Manzanero et al. 2013; Pekun
et al. 2013) and a subsequent ROS accumulation is able to
result in depolarization of the neuronal plasma membrane
(Bao et al. 2005; Nani et al. 2010). Acidification decreases
potentials in either mitochondrial or plasma membrane of
rat brain synaptosomes (Fedorovich et al. 1996, 2003;
Pekun et al. 2013, 2014); therefore, we investigated the
effects of chelators on mitochondrial or plasma membrane
potentials. Plasma membrane potential was monitored
by a fluorescent dye DiSC3(5) (Waseem and Fedorovich
2010), mitochondrial potential was monitored by a
fluorescent dye JC-1 (Chinopoulos et al. 1999). Further,
we investigated the intrasynaptosomal concentration of
reduced glutathione after lowering of pHo. Glutathione
was monitored by a fluorescent dye monochlorobimane
(Kamencic et al. 2000; Abramov et al. 2007).

Materials and methods

Materials

Dihydroethidium, 2;7’-dichlorodihydrofluorescein diacetate
(DCFDA), oligomycin, 3,3" — dipropylthiadicarbocyanine
(DiSC3(5)), deferoxamine mesylate, butylated hydroxytolu-
ene (ionol), 1-chloro-2,4-dinitrobenzene (CDNB), mono-
chlorobimane and N, N, N; N’-tetrakis(2-pyridylmethyl)
ethylenediamine (TPEN) were purchased from Sigma
(St. Louis, MO, USA). 4-(2-Hydroxyethyl)piperazine-N’-
1-ethanesulfonic acid (HEPES) was obtained from Merck
(Darmstadt, Germany). 5,56,6'-tetrachloro-1,1,3,3’-tet-
raethylbenzimidazolo-carbocyanine iodide (JC-1) and
rotenone were received from Calbiochem (La Jolla, CA,
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USA). 4-morpholineethanesulfonic acid (MES) was pur-
chased from Reanal (Budapest, Hungary). Tris(hydroxy-
methyl)aminomethane (Tris) was obtained from BDH
(Poole, UK).

Synaptosomes preparation

Synaptosomes were isolated from brain hemispheres of
12-16-week-old male Wistar rats according to Hajos
(1975). Stock suspensions of synaptosomes (10 mg/ml)
were prepared in medium A (composition in mM: 132
NaCl, 5 KCI, 10 glucose, 1.3 MgCl,, 1.2 NaH,PO,, 15
HEPES, 5 Tris, pH 7.4, 310 mOsm/l) and kept on ice.
Animal experiments were carried out in accordance with
EU Directive 2010/63/EU.

Intrasynaptosomal ROS determination

Intrasynaptosomal ROS was monitored by fluorescent
dye DCFDA according to LeBel and Bondy (1990) with
modifications according to Alekseenko et al. (2008).

Synaptosomes purification was carried out in medium
A and then after additional washing the pellet was resus-
pended in the same medium (protein concentration 10
mg/ml). Suspension was incubated for 60 min at 37°C in
presence of 25 uM DCFDA. Extracellular dye was removed
by sedimentation and the final pellet was resuspended in 2
ml calcium-free medium B (composition in mM: 132 NaCl,
5 KCl, 10 glucose, 1.3 MgCl,, 1.2 NaH,PO,, 2.0 CaCl,, 10
HEPES, 10 MES, pH 6.0-7.4, 310 mOsm/l). To investigate
ROS formation, 200 pl of loaded synaptosomes were added
to the cuvette containing 1.8 ml of incubation medium B
Fluorescence intensity was recorded at Aey/em =501/525
nm on spectrofluorimeter Cary Eclipse (“Varian”, USA)
with constant stirring and 37°C temperature.

To change the extracellular pH, the aliquots of 60 ul
of HCIl solution having different acid concentrations were
directly added to the cuvette at 50 s. The same quantity of
water was added in control experiments. The control
curve was extracted from the experimental curve.

Determination of superoxide anion formation
Superoxide anion level was determined by fluorescent
dye dihydroethidium according to Pekun et al. (2013).

Synaptosomes purification was carried out in calcium-
free medium A. Synaptosomal pellet was resuspended in
calcium-free medium B. An aliquot of synaptosome sus-
pension (200 pl) was added to the cuvette containing 1.8
ml of incubation medium B with 2.0 mM CaCl,. 5 uM
of dihydroethidium were added to the cuvette, then after
1 minute different additions were made. Fluorescence
intensity was recorded at Aex/em =490/560 nm on spec-
trofluorimeter Cary Eclipse (“Varian”, USA) at constant
stirring and 37°C.

To change the extracellular pH the aliquots of 60 pl of
HCI solution having different acid concentrations were
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added to the cuvette directly. The same quantity of
water was added in control experiments. The control
curve was extracted from the experimental curve.

Determination of intrasynaptosomal mitochondria
membrane potential by fluorescent dye JC-1

Membrane potential of intrasynaptosomal mitochondria
was detected by fluorescent dye JC-1 according to
Chinopoulos et al. (1999) with modifications according
to Pekun et al. (2013).

Synaptosomes purification was carried out in calcium-
free medium A and then the pellet was resuspended in
the same medium (protein concentration of 5 mg/ml).
Suspension was incubated for 15 min at 37°C in the
presence of 10 pg/ml dye. Extracellular dye was washed
out three times by sedimentation and the final pellet was
resuspended in 2.0 ml calcium-free medium B (protein
concentration of 10 mg/ml).

To investigate mitochondrial membrane potential, 200
ul of loaded synaptosomes were added to the cuvette
containing 1.8 ml of incubation medium B. Fluorescence
intensity was recorded at Aey/em = 504/535 nm on spec-
trofluorimeter Cary Eclipse (“Varian”, USA) at constant
stirring and 37°C.

To change the extracellular pH, 60 pl of HCI solutions
having different acid concentrations were directly added
to the cuvette on 50s. The same quantity of water was
added in control experiments. The control curve was ex-
tracted from the experimental curve.

Investigation of plasma membrane potential

Plasma membrane potential was investigated using fluor-
escent dye 3,3’—dipropylthiadicarbocianyne (DiSC3(5)) ac-
cording to Waseem and Fedorovich (2010). An aliquot of
synaptosome suspension (200 pl) was added to the cuvette
containing 2 ml of incubation medium B. After 1 min 1
uM of DiSC3(5) was added to the cuvette. After 1 minute,
10 uM of rotenone and 5 pg/ml oligomycin was added.
Fluorescence intensity was recorded at Aey/em = 640/688
nm on spectrofluorimeter Cary Eclipse (“Varian”, USA) at
constant stirring and 37°C. Synaptosomes were preincu-
bated with different chelators for 30 min at 37°C. All
indicated compounds also were present in incubation
medium throughout the fluorescence measurements.

To change the extracellular pH, 60 pl of HCI solutions
having different acid concentrations were directly added
to the cuvette in 1 minute after addition of rotenone and
oligomycin. The same quantity of water was added in
control experiments. The control curve was extracted
from the experimental curve.

Determination of reduced glutathione
Level of reduced glutathione was estimated by fluorescent
dye monochlorobimane (Kamencic et al. 2000; Abramov
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et al. 2007). Synaptosomes purification was carried out in
calcium-free medium A. Synaptosomal pellet was resus-
pended in calcium-free medium B. An aliquot of synapto-
somal suspension (200 pl) was added to 800 pl incubation
medium B having pH 7.4, 7.0, 6.0 or containing 50 pM of
1-chloro-2,4-dinitrobenzene (CDNB). Synaptosomes were
sedimented by centrifugation after 10 min incubation at
37°C. Then pellets were resuspended in 1 ml of incubation
medium A containing 50 pM of monochlorobimane.
Samples were incubated for 40 min at room temperature.
The reaction was stopped by transferring samples on ice
followed by fast centrifugation. The resulting pellets was
resuspended again in 2 ml of incubation medium A, and
fluorescence was measured on spectrofluorimeter Cary
Eclipse (“Varian”, USA) at Aey/em = 383/485 nm.

Other methods
Protein concentration was assayed according to (Lowry
et al. 1951) using bovine serum albumin as a standard.
Data are presented as mean + S.E.M. where indicated,
statistical significance was evaluated using one-tailed
Student’s t-test.

Results

Role of iron and zinc in development of oxidative stress
Figure 1la illustrates that decreasing of pH, down to 6.0
results in an increase in DCF fluorescence, as we had
demonstrated earlier (Pekun et al. 2013). As expected,
this pH,.induced increase was sensitive to the antioxi-
dant ionol (200 uM) (Figure 1b). In these experimental
conditions, oxidative stress was inhibited by the iron
chelator deferoxamine (100 uM) and zinc chelator TPEN
(5 puM), with deferoxamine being even more effective
than ionol (Figure 1b). Conversely, oxidative stress in-
duced by a moderate acidification (pH, 7.0) was sensi-
tive to deferoxamine, but not to TPEN (Figure 1c). The
increase in DCF fluorescence induced by 1 mM H,0,
was sensitive to ionol and deferoxamin, but not to TPEN
(Figure 1d).

Role of iron and zinc in superoxide anion synthesis

Figure 2a shows that decreasing of pH, down to 6.0 re-
sults in the elevation dihydroethidium fluorescence, as
we had demonstrated earlier (Pekun et al. 2013). This
effect was not abolished by application of iron and zinc
chelators (Figure 2b).

Role of iron and zinc in induction of intrasynaptosomal
mitochondria depolarization

Figure 3a shows that decreasing of pH, down to 6.0
results in the elevation JC-1 fluorescence, as we had
demonstrated earlier (Pekun et al. 2013). This effect was
not abolished by application of iron and zinc chelators
(Figure 3b).
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Figure 1 Influence of extracellular pH on DCF fluorescence in synaptosomes. Role of iron and zinc. a) Kinetics of DCF fluorescence increase
after extracellular acidification. HCl down to pH 6.0 was added where indicated. Curves represent 5 independent experiments. b) Influence of
deferoxamine, TPEN and ionol on DCF fluorescence evoked by pH 6.0 ¢) Influence of desferoxamine and TPEN on DCF fluorescence evoked by
pH 7.0 d) Influence of desferoxamine, TPEN and ionol on DCF fluorescence evoked by T mM H,0,. Con — control DF — synaptosomes were
preincubated for 60 min at 37°C with 100 uM of deferoxamine, incubation medium contains also 100 uM of desferoxamine. TPEN - synaptosomes
were preincubated for 60 min at 37°C with 5 uM of TPEN, incubation medium contains also 5 uM of TPEN lon - synaptosomes were preincubated
for 60 min at 37°C with 200 uM of ionol, incubation medium contains also 200 uM of ionol. Bars represent DCF fluorescence increase within

4 minutes after additions. Data presented are mean valuestSEM of at least 4 experiments. 100% level corresponds to fluorescence increase in
response to pH 6.0 (b), pH 7.0 (0), 1 mM of H,O, (d) without chelators and antioxidants (b), **P<0.01 vs. 100%.
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Role of iron and zinc in induction of plasma membrane
depolarization

Figure 4a shows that decreasing of pH,, down to 6.0 results
in the elevation DiSC3(5) fluorescence, as we had demon-
strated earlier (Pekun et al. 2014). This effect was sensitive
to iron and zinc chelators (Figure 4b). Furthermore, TPEN
was more effective than deferoxamine (Figure 4b).

Role of reduced glutathione in induction of oxidative
stress

Figure 5 shows that incubation of synaptosomes at pH,
6.0 for 10 minutes does not change the levels of reduced
glutathione. Conversely, treatment with 1-chloro-2,4-di-
nitrobenzene (CDNB) of the same duration decreased
the monochlorobimane fluorescence indicating glutathi-
one depletion (Figure 5). Furthermore, we have shown
that the pattern of oxidative stress development detected
by DCF upon lowering of pH, to 7.0 is similar between
control synaptosomes and synaptosomes wherein the
pool of reduced glutathione has been depleted by CDNB
(Figure 6).

Discussion

In order to investigate the process of free radicals accu-
mulation we have used the fluorescent dyes DCFDA and
dihydroethidium. DCFDA indicates predominantly levels
of highly toxic OH radicals, while dihydroethidium is
able to detect superoxide anion which can function as a
signaling molecule apart from its damaging effects. This
signaling function may be important for protecting the
brain against ischemia (LeBel and Bondy 1990; Halliwell
2006; Ravati et al., 2001; D’Autreaux and Toledano 2007;
Niizuma et al. 2009; Kalyanaraman et al. 2012).

We have shown that iron chelator is able to block
the - OH radical formation and plasma membrane depo-
larization, but has no effects on the superoxide anion
synthesis and mitochondria depolarization (Figures 1, 2,
3 and 4). Therefore, the presence of free iron is consid-
ered to be an essential prerequisite contributing to the
damage of presynaptic terminals upon lowering pH.
Furthermore, we have shown that the development of
significant oxidative stress can potentially be obviated
through the use of iron chelators, even when the
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Figure 2 Influence of low pH on dihydroethidium fluorescence in synaptosomes. Role of iron and zinc. a) Kinetics of dihydroethidium
fluorescence increase after extracellular acidification. HCI down to pH 6.0 was added where indicated. Curves represent 22 independent
experiments. b) Influence of desferoxamine and TPEN on DCF fluorescence evoked by pH 6.0. Con — control. DF — synaptosomes were
preincubated for 30 min at 37°C with 100 uM of deferoxamine, incubation medium contains also 100 uM of desferoxamine. TPEN - synaptosomes
were preincubated for 30 min at 37°C with 5 uM of TPEN, incubation medium contains also 5 uM of TPEN. Bars represent dihydroethidium
fluorescence increase within 4 minutes after additions. Data presented are mean values + SEM of at least 4 experiments. 100% level corresponds
to fluorescence increase in response to pH 6.0 without chelators and antioxidants.

superoxide anion synthesis is increased. The presence of
iron is also important for the hydroxyl radical formation
induced by hydrogen peroxide (Figure 1d). Deferox-
amine is able to inhibit oxidative stress induced by both
strong and moderate acidification (Figure 1b, c).

The effect of deferoxamine, in terms of smaller oxidative
stress induced by hydrogen peroxide, was comparable with

that of the classical lipophilic antioxidant ionol (Hocman
1988) (Figure 1d), although the effect was even stronger in
the extracellular acidification model (Figure 1b).

Two important conclusions can be drawn based on
our experiments aimed at investigating the effect of de-
feroxamine on plasma membrane and intrasynaptosomal
mitochondria potentials.
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Figure 3 Influence of extracellular pH on JC-1 fluorescence. Role of iron and zinc. a) Kinetics of JC-1 fluorescence increase after extracellular
acidification. HCl down to 6.0 was added where indicated. Curves represent 7 independent experiments. b) Influence of deferoxamine and TPEN
on JC-1 fluorescence evoked by pH 6.0. Con — control. DF — synaptosomes were preincubated for 30 min at 37°C with 100 uM of deferoxamine,
incubation medium contains also 100 pM of deferoxamine. TPEN - synaptosomes were preincubated for 30 min at 37°C with 5 uM of TPEN,
incubation medium contains also 5 uM of TPEN. Bars represent JC-1 fluorescence increase within 4 minutes after additions. Data presented are
mean values + SEM of at least 4 experiments. 100% level corresponds to fluorescence increase in response to pH 6.0.

1) Iron chelating inhibited the plasma membrane
depolarization, but not the mitochondria depolarization
(Figures 3 and 4). This confirmed our previous findings
indicating different mechanisms of acidosis-induced re-
duction of plasma membrane and mitochondria poten-
tials (Pekun et al. 2014).

2) Our results suggest that ROS are involved in the
depolarization of synaptosomal plasma membrane. We
have demonstrated previously that the decrease of poten-
tial in such case was induced by the inhibition of sodium
pump and potassium channels (Fedorovich et al. 2003).
Therefore, the free radical-induced damage of sodium
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Figure 4 Influence of extracellular pH on DiSC3(5) fluorescence. Role of iron and zinc. a) Kinetics of DiSC3(5) fluorescence increase after
extracellular acidification. HCl down to 6.0 was added where indicated. Curves represents 4 independent experiments. b) Influence of
desferoxamine and TPEN on DiSC3(5) fluorescence evoked by pH 6.0. Con — control. DF — synaptosomes were preincubated for 30 min at 37°C
with 100 uM of deferoxamine, incubation medium contains also 100 uM of deferoxamine. TPEN - synaptosomes were preincubated for 30 min
at 37°C with 5 uM of TPEN, incubation medium contains also 5 uM of TPEN. Bars represent DiSC3(5) fluorescence increase within 3 minutes after
additions. Data presented are mean values + SEM of at least 4 experiments. 100% level corresponds to fluorescence increase in response to

pump and/or potassium channels in association with
direct influence of protons on potassium channels may
underlay the synaptosomal plasma membrane depo-
larization (Moody 1984).

Our results with chelator TPEN (Figures 2 and 3) rule
out the leading role of zinc in mitochondria depolarization
and superoxide anion synthesis, as it was shown for other
cell models of stroke (Medvedeva et al. 2009; Sensi et al.

2009). However, we show that TPEN is able to inhibit oxi-
dative stress induced by strong but not moderate acidifica-
tion (Figure 1b, c). Its effect was less pronounced as
compared to the effect of deferoxamine (Figure 1b). In this
case, the antioxidant properties of TPEN are thought to
result from chelating of copper or even chelating of iron
with low affinity (Ying et al. 1999; Armstrong et al. 2001;
Medvedeva et al. 2009) rather than binding of zinc.
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Although we used a very low TPEN concentration (5 M),
we could not exclude a possibility of the involvement of
other prooxidant metals.

We have shown that TPEN was able to inhibit the
plasma membrane depolarization more strongly than de-
feroxamine (Figure 4b). This suggests that zinc is more
likely involved in the acid-induced decrease of plasma
membrane potential than in the decrease of mitochon-
dria potential.

Brain ischemia was shown to change significantly the
intracellular levels of reduced glutathione. These levels
appeared to be low in ischemic core and surprisingly
high in penumbra (Bragin et al. 2010). Furthermore, acid-
ification is found to induce glutathione depletion in neu-
rons (Lewerenz et al. 2010). In contrast, our results clearly
show that the levels of reduced glutathione do not change
in experimental models used in our studies (Figure 5). In
addition, depletion of glutathione by CDNB does not in-
tensify the oxidative stress induced by moderate acidifi-
cation (Figure 6). Therefore, our results suggest that the
reduced glutathione does not contribute significantly to
the antioxidant protection of neuronal presynaptic ter-
minals, at least in the acidosis-induced model of oxida-
tive stress.

Deferoxamine exhibited protective effects in some ex-
perimental models of brain ischemia in vivo, for instance
in ischemia associated with hyperglycemia (Xing et al.
2009) or neonatal brain ischemia (Palmer et al. 1994). It
was shown that hyperglycemia could significantly inten-
sify acidification in stroke (Kraig and Chesler 1990;
Tombaugh and Sapolsky 1993). Our results provide a
possible explanation of deferoxamine efficiency in this
case. The clinical trials with administration of deferox-
amine for treatment of hemorrhagic stroke have been re-
cently initiated (Xi et al. 2014). Our results indicate that
this compound can also be useful in protecting from dam-
age caused by ischemic stroke especially that associated
with hyperglycemia. Additionally, the synthetic chelators
of iron, VK-28 and HLA-20, which display superior pene-
trability through blood brain barrier compared to deferox-
amine (Zecca et al. 2004) and plant flavonoids, seem to be
very promising compounds for the potential treatments of
stroke. Flavonoids combine the properties of antioxidants
and metal chelators including iron chelators (Afanas’ev
et al. 1989; Mandel et al. 2008).

Our results indicate that chelating of iron seems to be a
better strategy for the protection of neuronal presynaptic
terminals from oxidative stress. This approach obviates the
production of highly toxic hydroxyl radicals, but helps to
maintain the same level of superoxide anion, which might
be important for the protecting brain against ischemia.
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