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Abstract

A Seventh-Order Linear Multistep Method (SOLMM) is developed and implemented in
both predictor-corrector mode and block mode. The two approaches are compared by
measuring their total number of function evaluations and CPU times. The stability
property of the method is examined. This SOLMM is also compared with existing
methods in the literature using standard numerical examples.
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Introduction
Linear multistep methods (LMMs) of the form

k∑
j=0

αjyn+j = h2
k∑

j=0
βj fn+j, k ≥ 2, (1)

have been extensively applied to solve the special second order initial value problem (IVP)

y′′ = f (t, y), y(t0) = y0, y′(t0) = y′
0, tε[t0, tN ] (2)

on the discrete set of points tn = t0 + nh, n = 0, ...,N , h = tN−t0
N , (see Lambert and

Watson (1976), Ramos and Vigo-Aguiar (2005), Ixaru and Berghe (2004). Despite the suc-
cessful application of (1) to solving problems of the form (2), fewer methods of the form
(1) have been proposed for solving the general second order IVP

y′′ = f (t, y, y′), y(t0) = y0, y′(t0) = y′
0. (3)

Some of the methods available for directly solving (3) are due to Awoyemi (2001) and
Ramos and Vigo-Aguiar (2006). These methods are generally implemented in a step-by-
step fashion in a predictor-corrector mode.
In this paper, we construct the continuous form of (1) which has ability to generate

several methods which are combined and implemented in block form to solve (3) directly
(see Jator and Li (2009) and Jator (2012, 2010, 2007).
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The paper is organized as follows. In Section ‘SOLMM’, we derive a continuous approx-
imation which is used to obtain the discrete methods that are combined to form the
block method. The analysis and computational aspects of the SOLMM is given in Section
‘Implementation of the SOLMM’. Numerical examples are given in Section ‘Numerical
examples’ to show the accuracy and efficiency of the method. Finally, the conclusion of
the paper is discussed in Section ‘Conclusion’.

SOLMM
Continuous form

On interval tn ≤ t ≤ tn+6, the exact solution to (3) is approximated by the continuous
form of the SOLMM

u(t) =
1∑

j=0
αj(t)yn+j + h2

6∑
j=0

βj(t)fn+j, (4)

whose first derivative is given by

u′(t) = d
dt

⎧⎨
⎩

1∑
j=0

αj(t)yn+j + h2
6∑

j=0
βj(t)fn+j

⎫⎬
⎭ , (5)

where α0(t), α1(t), and βj(t), j = 0, 1, 2 are continuous coefficients that are uniquely deter-
mined. We assume that yn+j is the numerical approximation to the analytical solution
y(tn+j), y′

n+j is an approximation to y′(tn+j), and fn+j = f (tn+j, yn+j, y′
n+j), j = 0, 1, . . . , 6

is supplied by the differential equation. The coefficients of the method (4) are specified
by the following theorem.

Theorem 1. In order to obtain the coefficients of the continuous method (4), a nine
by nine system is solved with the aid of Mathematica by demanding that the following
conditions are satisfied

u
(
tn+j

) = yn+j, j = 0, 1,

u′′ (tn+j
) = fn+j, j = 0, 1, . . . , 6.

After some algebraic manipulations, the equivalent form (6) produces the coefficients of (4)
whose first derivative is given by (7),

u(t) =
8∑

j=0

det(Wj)

det(W )
Pj(t), (6)

u′(t) = d
dt

⎛
⎝ 8∑

j=0

det(Wj)

det(W )
Pj(t)

⎞
⎠ , (7)

where we define the matrix W as

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0(tn) · · · P8(tn)
P0(tn+1) · · · P8(tn+1)

P′′
0(tn) · · · P′′

8(tn)
P′′
0(tn+1) · · · P′′

8(tn+1)
...

...
P′′
0(tn+6) · · · P′′

8(tn+6)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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and Wj is obtained by replacing the jth column of W by V ; Pj(t) = tj, j = 0, . . . , 8 are basis
functions, and V is a vector given by V = (yn, yn+1, fn, fn+1, . . . , fn+6)T . We note that T is
the transpose.

Proof. See Jator (2012).

Discrete by-products

The following methods which are used to construct the block form are obtained by eval-
uating (4) and (5) at t = {tn+2, tn+3, tn+4, tn+5, tn+6} and t = {tn, tn+1, tn+2, tn+3, tn+4,
tn+5, tn+6} respectively.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn+2 − 2yn+1 + yn = h2
60480 (4315fn + 53994fn+1 − 2307fn+2 + 7948fn+3 − 4827fn+4
+1578fn+5 − 221fn+6)

yn+3 − 3yn+1 + 2yn = h2
20160 (2803fn + 37950fn+1 + 14913fn+2 + 7108fn+3− 3147fn+4

+990fn+5 − 137fn+6)

yn+4 − 4yn+1 + 3yn = h2
10080 (2089fn + 28878fn+1+16383fn+2+13828fn+3 − 1257fn+4

+654fn+5 − 95fn+6)

yn+5 − 5yn+1 + 4yn = h2
6048 (1669fn + 23250fn+1 + 15207fn+2 + 15004fn+3+4371fn+4

+1074fn+5 − 95fn+6)

yn+6 − 6yn+1 + 5yn = h2
4032 (1375fn + 19554fn+1 + 13401fn+2 + 15004fn+3+6177fn+4

+4770fn+5 + 199fn+6)

(8)

The derivatives are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hy′
n = −yn + yn+1 + h2

120960 (−28549fn − 57750fn+1 + 51453fn+2 − 42484fn+3
+23109fn+4 − 7254fn+5 + 995fn+6)

hy′
n+1 = −yn + yn+1 + h2

120960 (9625fn + 72474fn+1 − 41469fn+2 + 32524fn+3
−17313fn+4 + 5370fn+5 − 731fn+6)

hy′
n+2 = −yn + yn+1 + h2

40320 (2633fn + 40910fn+1 + 17503fn+2 + 4fn+3
−905fn+4 + 398fn+5 − 63fn+6)

hy′
n+3 = −yn + yn+1 + h2

120960 (8441fn + 117210fn+1 + 114147fn+2 + 75020fn+3
−16257fn+4 + 4410fn+5 − 571fn+6)

hy′
n+4 = −yn + yn+1 + h2

120960 (8059fn + 120426fn+1 + 100605fn+2 + 150028fn+3
+45381fn+4 − 1110fn+5 − 29fn+6)

hyn+5 = −yn + yn+1 + h2
40320 (2867fn + 38750fn+1 + 38401fn+2 + 39172fn+3

+46453fn+4 + 16382f5 − 585fn+6)

hy′
n+6 = −yn + yn+1 + h2

120960 (6875fn + 128874fn+1 + 74781fn+2 + 192524fn+3
+46437fn+4 + 179370fn+5 + 36419fn+6)

(9)

Block form

The methods (8) and (9) are combined and expressed in the form

A1Yμ+1 = A0Yμ + h2B0Fμ + h2B1Fμ+1, μ = 0, 1, . . . , (10)
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where

Yμ+1 = ( yn+1, . . . , yn+6, hy′
n+1, . . . , hy′

n+6)
T ,

Fμ+1 = (fn+1, . . . , fn+6, hf ′
n+1, . . . , hf ′

n+6)
T ,

Yμ = ( yn−5, yn−4, . . . , yn, . . . , hy′
n−5, hy′

n−4, . . . , hy′
n)

T ,

Fμ = (fn−5, fn−4, . . . , fn, hf ′
n−5, hf ′

n−4, . . . , hf ′
n)

T ,

and A0, A1, B0, and B1 are matrices of dimension 12 whose entries denoted by αj =
αi,j, βj = βi,j, i = 1, . . . , 12 are given by the coefficients of (8) and (9).

Order and local truncation error

Define the local truncation error of (10) as

Ł[ z(t); h]= Zμ+1 − A−1
1 [A0Zμ + h2B0Fμ + h2B1Fμ+1] (11)

where

Zμ+1 = ((y(tn+1), . . . , y(tn+6), hy′(tn+1), . . . , hy′(tn+6))
T ,

Fμ+1 = (f (tn+1, y(tn+1), y′(tn+1)), . . . , f (tn+6, y(tn+6), y′(tn+6)),

hf ′(tn+1, y(tn+1), y′(tn+1)), . . . , hf ′(tn+6, y(tn+6), y′(tn+6))
T ,

Zμ = (y(tn−5), y(tn−4), . . . , y(tn+6), hy′(tn−5), hy′(tn−4), . . . , hy′(tn+6))
T ,

Fμ = (f (tn−5, y(tn−5), y′(tn−5)), f (tn−4, y(tn−4), y′(tn−4)), . . . , f (tn, y(tn), y′(tn)),
hf ′(tn−5, y(tn−5), y′(tn−5)), hf ′(tn−4, y(tn−4), y′(tn−4)), . . . , hf ′(tn, y(tn), y′(tn))T ,

and Ł[z(t); h]= (Ł1[z(t); h] , . . . , Ł6[z(t); h] , Ł7[ hz′(t); h] , . . . , Ł12[ hz′(t); h] )T is a linear
difference operator.
Assuming that z(t) is sufficiently differentiable, we can expand the terms in (4) as a

Taylor series about the point t to obtain the expression for the local truncation error

L[z(x); h]= C0z(x) + C1hz′(x) + . . . + Cqhqz(q)(x) + . . . (12)

where the constant coefficients Cq = (C1,q,C2,q, . . . ,C12,q)T , q = 0, 1, . . . are given as
follows:

C0 = ∑6
j=0 αj

C1 = ∑6
j=1 jαj

...
Cq = 1

q!

[∑6
j=1 jqαj − q(q − 1)

∑6
j=1 jq−2βj

]

Definition 1. Let pj, p′
j, j = 1, . . . , 6 be positive integers, then, the block method (10)

has algebraic order p = min{p1, . . . , p6, p′
1, . . . , p′

6}, p > 1, provided there exists a
corresponding constant Cp+2 such that the Local Truncation Error Eμ satisfies

‖Eμ‖ = Cp+2hp+2 + O(hp+3)

where ‖ · ‖ is the maximum norm.
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Definition 2. The block method (10) is said to be consistent if it has order at least one.

The block method (10) has order and error constant given by the vector p =
6 and Cp+2 = ‖ ( 19

6048 ,
349

60480 ,
127

15120 ,
349

30240 ,
349

30240 ,− 6031
907200 ,

8563
1814400 ,

6163
1814400 ,

6163
1814400 ,

1649
907200 ,

8563
1814400 ,− 6031

907200
)T ‖.

Linear stability of the SOLMM

The linear-stability of the SOLMM is discussed by applying the method to the test
equation y′′ = λy, where λ is expected to run through the (negative) eigenvalues of the
Jacobian matrix ∂ f

∂y (see Sommeijer (1993)). Letting q = λh2, it is easily shown that the
application of (10) to the test equation yields

Yμ+1 = M(q)Yμ ,M(q) = (A1 − qB1)
−1(A0 + qB0) (13)

where the matrix M(q) is the amplification matrix which determines the stability of the
method.

Definition 3. The interval [−q0, 0] is the stability interval, if in this interval ρ(q) ≤ 1,
where ρ(q) is the spectral radius of M(q) and q0 is the stability boundary (see Sommeijer
(1993)).

Remark 1. We found that ρ(q) ≤ 1 if q ε [−4.552, 0], hence, for the SOLMM, q0 =
4.552.

Implementation of the SOLMM
The SOLMM was implemented in both block mode and predictor-corrector mode using
a written code in PERL programming language and executed on a laptop computer with
AMD Quad-Core A10-4600M Processor, 8GB of RAM and Windows 8.1 OS. The total
program running time was acceptable, as shown in Tables 1, 2 and 3. The computational
time complexity and space complexity of the algorithms for both modes of SOLMM used
for the examples in this paper are polynomial. Details of the block mode implementation
is given in Jator (2012) and the predictor-corrector implementation is discussed next.

Predictor-corrector mode algorithm

The initial block was used to start predictor-corrector algorithm, after which the predic-
tor (14) and corrector (15) were used in a step-by-step fashion to provide the numerical
solution from the second block to the end of the interval.

Table 1 Results, with t ε [0, 1], for Example 1

PC-mode Block-mode

N NFEs Max error CPU time NFEs Max error CPU time

6 7 3.14 × 10−3 2.88 × 10−2 7 3.14 × 10−3 3.42 × 10−2

12 17 4.01 × 10−5 3.84 × 10−2 13 1.40 × 10−5 6.32 × 10−2

24 43 9.68 × 10−7 6.04 × 10−2 25 5.07 × 10−8 1.26 × 10−1

48 91 2.47 × 10−5 5.27 × 10−2 49 1.92 × 10−10 1.31 × 10−1

96 187 8.82 × 103 9.09 × 10−2 97 5.31 × 10−12 2.64 × 10−1
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Table 2 Results, with t ε [1, 8], for Example 2

PC-mode Block-mode

N NFEs Max error CPU time NFEs Max error CPU time

6 7 2.40 × 10−3 2.11 × 10−2 7 2.240 × 10−3 1.47 × 10−2

12 17 9.23 × 10−4 1.18 × 10−2 13 2.42 × 10−4 4.13 × 10−2

24 43 1.51 × 10−2 2.13 × 10−2 25 1.23 × 10−5 3.37 × 10−2

48 91 8.78 × 100 4.05 × 10−2 49 2.33 × 10−7 9.35 × 10−2

96 187 2.66 × 108 7.70 × 10−2 97 1.79 × 10−9 1.48 × 10−1

Predictors. The following predictors are derived via Theorem 2.1 by deleting the last
row and column of matrix W.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yn+6=− 4090
221 yn+ 7296

221 yn+1− 2985
221 yn+2+ h2

663
(
865fn + 11210fn+1 + 1862fn+2 + 3644fn+3

+301fn+4 + 1018fn+5
)

y′
n+6 = 1

h

(
− 36861

442 yn + 36640
221 yn+1 − 36419

442 yn+2 + h2
278460

(
1652785fn + 20780090fn+1

−703042fn+2 + 3458396fn+3 − 1724291fn+4 + 1011562fn+5
))

(14)

Correctors. The last members of (8) and (9) are used as correctors.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yn+6 = 6yn+1 − 5yn + h2
4032

(
1375fn + 19554fn+1 + 13401fn+2 + 15004fn+3 + 6177fn+4

+4770fn+5 + 199fn+6
)

y′
n+6 = 1

h

(
− yn + yn+1 + h2

120960
(
6875fn + 128874fn+1 + 74781fn+2 + 192524fn+3

+46437fn+4 + 179370fn+5 + 36419fn+6
))

(15)

Numerical examples
Example 1. We consider the IVP given by

y′′ − 4y′ + 8y = t3, y(0) = 2, y′(0) = 4, [ 0, 1] ,

Exact : y(t) = e2t(2 cos(2t) − 3
64

sin(2t)) + 3
32

t + 3
16

t2 + 1
8
t3

Table 3 Results, with t ε
[√

π
2 , 10

]
, for Example 3

PC-mode Block-mode

N NFEs Max error CPU time NFEs Max error CPU time

180 710 2.34 × 1033 6.84 × 10−1 362 1.95 × 10−2 6.82 × 101

360 1430 5.81 × 1059 7.84 × 10−1 722 2.13 × 10−4 5.36 × 101

720 2870 5.41 × 10123 1.15 × 100 1442 8.30 × 10−7 8.46 × 101

1440 5750 8.62 × 10257 1.93 × 100 2882 3.40 × 10−9 1.24 × 102

2880 11510 1.68 × 10304 3.12 × 100 5762 1.38 × 10−11 2.46 × 102
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Example 2. We consider the given Bessel’s IVP solved on [1, 8] (see Vigo-Aguiar and
Ramos (2006)).

t2y′′ + ty′ + (t2 − 0.25)y = 0, y(1) =
√

2
π
sin 1 � 0.6713967071418031

y′(1) = (2 cos 1 − sin 1)/
√
2π � 0.0954005144474746

Exact : y(t) = J1/2(t) =
√

2
π t

sin t

The theoretical solution at t = 8 is y(8) =
√

2
8π sin(8) � 0.279092789108058969.

Example 3. We consider the nonlinear Fehlberg problem which was also solved in
Sommeijer (1993).

y′′
1 = −4t2y1 − 2√

y21+y22
y2, y′′

2 = 2√
y21+y22

y1 − 4t2y2

y1
(√

π
2

)
= 0, y′

1

(√
π
2

)
= −2

√
π
2 , y2

(√
π
2

)
= 1, y′

2

(√
π
2

)
= 0,

y1(t) = cos(t2), y2(t) = sin(t2).

Comparison of block mode and predictor-corrector mode

The SOLMM is implemented in both predictor-corrector and block modes. The two
approaches are compared bymeasuring their total number of function evaluations (NFEs)
and CPU times in seconds. The block mode implementation is shown to be superior to
the predictor-corrector mode implementation in terms of accuracy and the number of
function evaluations. However, the predictor-corrector mode implementation uses less
time than the block implementation. Details of the numerical examples are displayed in
Tables 1, 2 and 3.

Comparison of block method with other methods

The theoretical solution at t = 8 is y(8) =
√

2
8π sin(8) � 0.279092789108058969. The

errors in the solution were obtained at t = 8 using the SOLMM of order 7 and com-
pared the the errors in (Vigo-Aguiar and Ramos 2006) which is based on the variable- step
Falker method of order eight (VAR (8)) implemented in the predictor-corrector mode.
The results given in Table 4 show that the SOLMM is more accurate than the method in
(Vigo-Aguiar and Ramos 2006).
Themaximumnorm of the global error for the y-component is given in the form 10−CD,

where CD denotes the the number correct decimal digits at the endpoint (see (Sommeijer
1993)). This problem has also been solved in (Sommeijer 1993) using the eighth-order,
eight-stage RKN (H8) method constructed by Hairer (1977). We have chosen to compare
this method of order 8 with our method of order 7, because the orders of the methods are
very close. The results obtained using the H8 are reproduced in Table 5 and compared

Table 4 Absolute errors for Example 2

VAR (8) SOLMM

Steps Errors Steps Errors

67 7.1122 × 10−7 60 2.49 × 10−8

82 9.2632 × 10−8 80 3.16 × 10−9

97 8.7834 × 10−9 100 6.04 × 10−10

112 1.2108 × 10−10 112 2.57 × 10−10
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Table 5 The correct decimal digit at the endpoint for Example 3

H8 SOLMM

NFEs CD NFEs CD

400 0.3 362 1.7

800 2.6 722 3.7

1600 5.2 1442 6.1

3200 7.6 2882 8.5

6400 10.0 5762 10.9

with the results given by our method. It is seen from Table 5 that our method performs
better than those in (Sommeijer 1993) in terms of accuracy (smaller errors) and efficiency
(smaller NFEs).

Conclusion
A SOLMM is proposed and implemented in both predictor-corrector and block modes.
It is shown that the block mode algorithm is superior to the predictor-corrector mode
algorithm in terms of accuracy and the number of function evaluations. However, the
predictor-corrector mode implementation uses less time that the block implementation.
the Details of the comparison of the numerical examples are displayed in Tables 1, 2, 3,
4 and 5. Our future research will be focus on developing a variable step version of the
SOLMM in both modes.
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