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Abstract

This article proposes Laplace Transform Homotopy Perturbation Method (LT-HPM) to find an approximate solution
for the problem of an axisymmetric Newtonian fluid squeezed between two large parallel plates. After comparing
figures between approximate and exact solutions, we will see that the proposed solutions besides of handy, are
highly accurate and therefore LT-HPM is extremely efficient.
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Introduction
Although the studies of squeezing flows have their origins
in the 19 th century, at present time, it is an issue of
considerable importance due to its practical applica-
tions in different areas such as physical, biophysical,
chemical engineering, and food industry, also they are
relevant in liquid metal lubrication theory, polymer
processing, compression and injection molding, among
many others.
The goal of this study is to find an approximate solution

for the problem of squeezing flow between two infinite
parallel plates slowly approaching each other. As men-
tioned in (Ran et al. 2009) these fluids are of paramount
importance, in hydrodynamic lubrication theory. Thus,
(Langlois 1962) and (Salbu 1964) analyzed isothermal
compressible squeeze films neglecting inertial effects,
while (Thorpe 1967), found an explicit solution, taking
into account these effects. Also have been found some
numerical solutions to these problems, such as those
provided in (Verma 1981) and (Singh et al. 1990). Addition-
ally, (Rajagopal & Gupta 1981) and (Dandapat & Gupta
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1991) extended the previous investigations for the case of
flow between rotating parallel plates.
Laplace Transform (L.T.) (or operational calculus) has

played an important role in mathematics, not only for its
theoretical interest, but also because its methods let to
solve, in a simpler fashion, many problems in science
and engineering, in comparison with other mathematical
techniques (Spiegel 1988). In particular the Laplace
Transform is useful for solving linear ordinary differ-
ential equations with constant coefficients, and initial
conditions, but also can be used to solve some cases of
differential equations with variable coefficients and partial
differential equations (Spiegel 1988). On the other hand,
applications of L.T. for nonlinear ordinary differential
equations mainly focus to find approximate solutions, thus
in reference (Aminikhan & Hemmatnezhad 2012) was re-
ported a combination of Homotopy Perturbation (HPM)
and L.T. methods (LT-HPM), in order to obtain highly
accurate solutions for these equations. However, just as
with L.T; LT-HPM method has been used mainly to find
solutions to problems with initial conditions (Aminikhan &
Hemmatnezhad 2012; Aminikhah 2012), because it is
directly related with them. Therefore this paper presents
the application of LT-HPM, in the search for an approxi-
mate solution of the higher order nonlinear ordinary differ-
ential equation, which describes a squeezing flow between
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two infinite plates with, mixed boundary conditions defined
on a finite interval (Filobello-Nino et al. 2013).
The case of equations with boundary conditions on

infinite intervals, has been studied in some articles, and
correspond often to problems defined on semi-infinite
ranges (Hossein 2011; Khan et al. 2011). However the
methods of solving these problems, are different from
what will be presented in this paper (Filobello-Nino et al.
2013). The importance of research on nonlinear differential
equations is that many phenomena, practical or theoretical,
are of nonlinear nature. In recent years, several methods
focused to find approximate solutions to nonlinear differ-
ential equations, as an alternative to classical methods,
have been reported, such those based on: variational ap-
proaches (Assas 2007; He 2007; Kazemnia et al. 2008;
Noorzad et al. 2008), tanh method (Evans & Raslan 2005),
exp-function (Xu 2007; Mahmoudi et al. 2008), Adomian’s
decomposition method (Adomian 1988; Babolian & Biazar
2002; Kooch & Abadyan 2012; Kooch & Abadyan 2011;
Vanani et al. 2011; Chowdhury 2011), parameter expan-
sion (Zhang & Xu 2007), homotopy perturbation method
(Vazquez-Leal 2014; Marinca & Herisanu 2011; He 1998;
He 1999; He 2006a; He 2008; Belendez et al. 2009; He
2000; El-Shaed 2005; He 2006b; Ganji et al. 2009; Ganji
et al. 2008; Fereidon et al. 2010; Sharma & Methi 2011;
Hossein 2011; Vazquez-Leal et al. 2012a; Vazquez-Leal
et al. 2012b; Filobello-Niño et al. 2012a; Biazar & Aminikhan
2009; Biazar & Ghazvini 2009; Filobello-Niño et al. 2012b;
Khan & Wu 2011; Madani et al. 2011; Aminikhan &
Hemmatnezhad 2012; Aminikhah 2012; Khan et al. 2011;
Filobello-Nino et al. 2013), homotopy analysis method
(Patel et al. 2012), and perturbation method (Filobello-Niño
et al. 2013a) among many others. Also, a few exact solu-
tions to nonlinear differential equations have been reported
occasionally (Filobello-Niño et al. 2013b).
The paper is organized as follows. In Standard HPM,

we introduce the basic idea of standard HPM method. For
Basic Idea of Laplace Transform Homotopy Perturbation
Method (LT-HPM) we introduce Laplace transform
homotopy perturbation method. Additionally in Governing
equations the basic equations for the flow in study are
derived. Case Study present the application of LT-HPM
method, in the search for an approximate solution for
the higher order nonlinear ordinary differential equation,
which describes a squeezing flow between two infinite
plates. Besides a discussion on the results is presented
in Discussion. Finally, a brief conclusion is given in
Conclusions.

Standard HPM
The standard homotopy perturbation method (HPM) was
proposed by Ji Huan He, it was introduced like a powerful
tool to approach various kinds of nonlinear problems. The
Homotopy Perturbation Method (HPM) is considered as a
combination of the classical perturbation technique and
the homotopy (whose origin is in the topology), but not
restricted to small parameters as occur with traditional
perturbation methods. For example, HPM method requires
neither small parameter nor linearization, but only few
iterations to obtain highly accurate solutions (He 1998;
He 1999).
To figure out how HPM works, consider a general

nonlinear differential equation in the form

A uð Þ−f rð Þ ¼ 0; r ∈Ω; ð1Þ
with the following boundary conditions

B u; ∂u=∂nð Þ ¼ 0; r ∈ Γ ð2Þ
where A is a general differential operator, B is a boundary
operator, f(r) a known analytical function and Γ is the do-
main boundary for Ω. A can be divided into two operators
L and N, where L is linear and N nonlinear; so that (1) can
be rewritten as

L uð Þ þ N uð Þ− f rð Þ ¼ 0: ð3Þ
Generally, a homotopy can be constructed as (He 1998;

He 1999)

H U ; pð Þ ¼ 1−pð Þ L Uð Þ−L u0ð Þ½ � þ p L Uð Þ þ N Uð Þ−f rð Þ½ �
¼ 0; p ∈ 0; 1½ �; r ∈Ω;

ð4Þ
or

H U ; pð Þ ¼ L Uð Þ−L u0ð Þ þ p L u0ð Þ þ N Uð Þ−f rð Þ½ �
¼ 0; p ∈ 0; 1½ �; r ∈Ω;

;
ð5Þ

where p is a homotopy parameter, whose values are
within range of 0 and 1, u0 is the first approximation for
the solution of (3) that satisfies the boundary conditions.
Assuming that solution for (4) or (5) can be written as

a power series of p as

U ¼ v0 þ v1pþ v2 p
2 þ… ð6Þ

Substituting (6) into (5) and equating identical powers
of p terms, there can be found values for the sequence
v0, v1, v2,…
When p→ 1, it yields the approximate solution for (1)

in the form

U ¼ v0 þ v1 þ v2 þ v3… ð7Þ

Basic idea of Laplace Transform Homotopy
Perturbation Method (LT-HPM)
The objective of this section is to show, how LT-HPM,
can be employed to find analytical approximate solutions
of Ordinary Differential Equations (ODE, s), as (3).
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For this purpose LT-HPM follows the same steps of
standard HPM until (5), next we apply Laplace transform
on both sides of homotopy equation (5), to obtain

ℑ L Uð Þ−L u0ð Þ þ p L u0ð Þ þ N Uð Þ−f rð Þ½ �f g ¼ 0; ð8Þ
using the differential property of L.T, we have (Spiegel
1988)

snℑ Uf g−sn−1U 0ð Þ−sn−2U ′ 0ð Þ−…−U n−1ð Þ 0ð Þ
¼ ℑ L u0ð Þ−pL u0ð Þ þ p −N Uð Þ þ f rð Þ½ �f g;

ð9Þ

or

ℑ Uð Þ ¼ 1
sn

� �
fsn−1U 0ð Þ þ sn−2U ′ 0ð Þ þ ::þ U n−1ð Þ 0ð Þ
þ ℑ L u0ð Þ−pL u0ð Þ þ p −N Uð Þ þ f rð Þ½ �f gg

ð10Þ
applying inverse Laplace transform to both sides of (10),
we obtain

U ¼ ℑ−1

(
1
sn

� �
fsn−1U 0ð Þ þ sn−2U′ 0ð Þ þ ::þ U n−1ð Þ 0ð Þ
þ ℑ L u0ð Þ−pL u0ð Þ þ p −N Uð Þ þ f rð Þ½ �f gg

)

ð11Þ
Assuming that the solutions of (3) can be expressed as

a power series of p

U ¼
X∞
n¼0

pnvn: ð12Þ

Then substituting (12) into (11), we get

X∞
n¼0

pnνn ¼ ℑ−1

(
1
sn

� �
fsn−1U 0ð Þ þ sn−2U ′ 0ð Þ
þ ::þU n−1ð Þ 0ð Þg

þ 1
sn

� �
ℑ

(
L u0ð Þ−pL u0ð Þ þ p

"
−N

X∞
n¼0

pnνn

 !

þf rð Þ
#)

)
;

ð13Þ
comparing coefficients of p, with the same power leads to

p0 : ν0 ¼ ℑ−1

(
1
sn

� �
sn−1U 0ð Þ þ sn−2U ′ 0ð Þ þ ::þ U n−1ð Þ 0ð Þ
� �
þ ℑ L u0ð Þf gÞ

)
;

p1 : ν1 ¼ ℑ−1 1
sn

� �
ℑ N ν0ð Þ−L u0ð Þ þ f rð Þf gð Þ

� �
;

p2 : ν2 ¼ ℑ−1 1
sn

� �
ℑ N ν0; ν1ð Þf g

� �
;

p3 : ν3 ¼ ℑ−1 1
sn

� �
ℑ N ν0; ν1; ν2ð Þf g

� �
; ð14Þ

pj : νj ¼ ℑ−1 1
sn

� �
ℑ N ν0; ν1; ν2;…; νj

� 	
 �� �
;

Assuming that the initial approximation has the form:
U(0) = u0 = α0, = αn − 1; U′(0) = α1,..,U

n − 1(0) therefore the
exact solution may be obtained as follows

u ¼ lim
p→1

U ¼ ν0 þ ν1 þ ν2 þ… ð15Þ

Governing equations
The purpose of this job is the search for an approximate
solution for the nonlinear problem, which describes a
viscous, incompressible fluid, squeezed between two infin-
ite parallel plates, so that the plates are moving towards
each other with a certain velocity, say W (see Figure 1).
The basic equations for this case, in the absence of body

forces are given by

∇⋅ V
→¼ 0; ð16Þ

ρD V
→¼ ∇⋅T ; ð17Þ

where

V
→

is the velocity vector, ρ the density, D represents the
material time derivative, and T is the stress tensor, which

is given by T ¼ −PI þ μ ∇ V
→ þ ∇ V

→� �T� �
; where μ is

the dynamic viscosity of the fluid and P the pressure.
By symmetry arguments, the problem involves a steady

axisymmetric flow, so that V
→

is represented by

V
→¼ ur r; z; tð Þ; 0; uz r; z; tð Þ½ �: ð18Þ

Next, in order to simplify the analysis, we introduce
the stream function ψ(r, z, t) defined by

ur r; z; tð Þ ¼ 1
r
∂ψ
∂z

; uz r; z; tð Þ ¼ −
1
r
∂ψ
∂r

: ð19Þ

Thus, we have to determine only one unknown func-
tion ψ(r, z, t), rather than the two functions ur(r, z, t) and
uz(r, z, t).
It’s easy to show that the continuity equation (16) is

identically satisfied using (19). Substituting (19) into the
z and r components of (17) we obtain

∂ P þ ρ=2ð Þ V→
��� ���2� �

∂r
þ ρ

r
∂2ψ
∂t∂z

−ρ
∂ψ
∂r

E2ψ

r2
−
μ

r
∂E2ψ

∂z
¼ 0; ð20Þ

∂ P þ ρ=2ð Þ V→
��� ���2� �

∂r
−
ρ

r
∂2ψ
∂t∂z

−ρ
∂ψ
∂z

E2ψ

r2
þ μ

r
∂E2ψ

∂z
¼ 0 ð21Þ

where the differential operator E2 is given by

E2 ¼ ∂2

∂r2
−
1
r
∂
∂r

þ ∂2

∂z2
:



Figure 1 Shows an axisymmetric fluid, squeezed between two infinite parallel plates.
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After eliminating the pressure from the above equa-
tions, we obtain the following equation for ψ(r, z, t)

−ρ
−1
r
∂E2ψ

∂t
þ ∂ψ

∂r

∂ E2ψ
r2

� �
∂z

−
∂ψ
∂z

∂ E2ψ
r2

� �
∂r

2
4

3
5 ¼ μ

r
E2
� 	2

ψ: ð22Þ

We will assume that W is small enough so that, during
the process, the gap 2l between the plates changes little and
it can be considered approximately constant (see Figure 1).
Under these conditions the flow can be considered

quasi-steady (Hughes & Brighton 1967; Papanastasiou et al.
2000), and therefore ψ =ψ(r, z), so that (22) is rewritten as

−ρ
∂ψ
∂r

∂ E2ψ
r2

� �
∂z

−
∂ψ
∂z

∂ E2ψ
r2

� �
∂r

2
4

3
5 ¼ μ

r
E2
� 	2

ψ; ð23Þ

with the following boundary conditions (see Figure 1)

z ¼ l ur ¼ 0; uz ¼ −W ;

z ¼ 0 uz ¼ 0;
∂ur
∂z

¼ 0: ð24Þ

Following (Stefan 1874), (23) can be expressed as a
four order ordinary differential equation, by using of the
substitution

ψ r; zð Þ ¼ r2F zð Þ: ð25Þ
In view of (25), (23) and (24) become

d4F zð Þ
dz4

þ 2ρ
μ
F zð Þ d

3F zð Þ
dz3

¼ 0; ð26Þ

with the boundary conditions

F 0ð Þ ¼ 0; F″ 0ð Þ ¼ 0;

F lð Þ ¼ 1
2
W ; F ′ lð Þ ¼ 0 : ð27Þ
(see for example that, after substituting (25) into the sec-
ond equation of (19), we obtain uz(r, z) = − 2F(z), in such a
way that from (24) is obtained uz(r, 0) = − 2F(0) = 0, and so
on). In order to facilitate the evaluation of (26) we
introduce the following dimensionless parameters
given by

F� ¼ F
W=2

; Z� ¼ Z
l
; ε ¼ ρl

μ=W
; ð28Þ

so that, (26) and (27) adopt the form

d4F zð Þ
dz4

þ εF zð Þ d
3F zð Þ
dz3

¼ 0; ð29Þ

F 0ð Þ ¼ 0; F″ 0ð Þ ¼ 0;

F 1ð Þ ¼ 1; F ′ 1ð Þ ¼ 0; ð30Þ
where we have dropped * for simplicity.

Case study
The objective of this section is employ LT-HPM, to find
an analytical approximate solution for the nonlinear
problem given by (29) and (30).

d4F zð Þ
dz4

þ εF zð Þ d
3F zð Þ
dz3

¼ 0; 0 ≤ z ≤ 1; F 0ð Þ ¼ 0;

F″ 0ð Þ ¼ 0; F 1ð Þ ¼ 1; F ′ 1ð Þ ¼ 0

ð31Þ
from (28), ε is a positive parameter.
It is possible to find a handy solution by applying the

LT-HPM method.
Identifying terms:

L Fð Þ ¼ F 4ð Þ zð Þ; ð32Þ

N Fð Þ ¼ εF zð ÞF‴ zð Þ; ð33Þ
where prime denotes differentiation respect to z.
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In order to obtain an approximate analytical solution
for nonlinear problem (31), we construct a homotopy in
accordance with (4)

1−pð Þ F 4ð Þ−F0
4ð Þ

� �
þ p F 4ð Þ þ εFF‴
h i

¼ 0; ð34Þ

or

F 4ð Þ ¼ F0
4ð Þ þ p −F0

4ð Þ−εFF‴
h i

: ð35Þ

Applying Laplace transform algorithm we get

ℑ F 4ð Þ
� �

¼ ℑ F0
4ð Þ þ p −F0

4ð Þ−εFF‴
h i� �

; ð36Þ

as it is explained in (Spiegel 1988), it is possible to rewrite
(36) as

s4Y sð Þ− s3F 0ð Þ− s2F ′ 0ð Þ− sF″ 0ð Þ− F‴ 0ð Þ
¼ ℑ F 4ð Þ

0 þ p −F0
4ð Þ−εFF‴

� �� �
;

ð37Þ

where we have defined Y(s) = ℑ(F(z).
After applying the initial conditions, F(0) = 0, F″(0) = 0,

the last expression can be simplified as follows

s4Y sð Þ− s2F′ 0ð Þ− F‴ 0ð Þ ¼ ℑ F 4ð Þ
0 þ p − F0

4ð Þ−εFF‴
� �� �

ð38Þ

Solving for Y(s) and applying Laplace inverse trans-
form ℑ− 1

F zð Þ ¼ ℑ−1 A
s2
þ B
s4
þ 1
s4
ℑ F 4ð Þ

0 þ p −F 4ð Þ
0 −εFF‴

� �� �� �
: ð39Þ

where, we have defined A = F′(0), B = F‴(0).
Next, we assume a series solution for F(z), in the form

F zð Þ ¼
X∞
n¼0

pnνn; ð40Þ

and by choosing

ν0 zð Þ ¼ Az þ B
6
z3; ð41Þ

as the first approximation for the solution of (31) that
satisfies the conditions F(0) = 0, F″(0) = 0.
Substituting (40) and (41) into (39), we get

X∞
n¼0

pnνn ¼ ℑ−1

(
A
s2
þ B
s4
þ 1
s4
ℑ

�
F 4ð Þ
0 þ p

�
−F 4ð Þ

0 −εðν0 þ pν1

þ p2ν2 þ ::
	ðν‴0 þ pν‴1

þp2ν‴2 þ ::ÞÞ
�)

:

ð42Þ
On comparing the coefficients of like powers of P we
have

p0 : ν0 zð Þ ¼ ℑ−1 A
s2
þ B
s4

� �
; ð43Þ

p1 : ν1 zð Þ ¼ −εℑ−1 1
s4

� �
ℑ ν0ν

‴
0


 �� �
; ð44Þ

p2 : ν2 zð Þ ¼ −εℑ−1 1
s4

� �
ℑ ν0ν

‴
1 þ ν1ν

‴
0

� 	� �
; ð45Þ

Solving the above Laplace transforms for v0(z), v1(z), v2
(z),.. we obtain

p0 : ν0 zð Þ ¼ Az þ B
6
z3; ð46Þ

p1 : ν1 zð Þ ¼ −εB
A
120

z5 þ B
5040

z7

 �

; ð47Þ

p2 : ν2 zð Þ ¼ ε2B
A2

1680
z7 þ AB

22680
z9 þ B2

1108800
z11

� �
; ð48Þ

and so on.
By substituting solutions (46)-(48) into (15) and cal-

culating the limit when p→ 1, results in a second order
approximation

F zð Þ ¼ Az þ B
6
z3−

εAB
120

z5 þ εB
1680

−B
3

þ εA2


 �
z7

þ ε2AB2

22680
z9 þ ε2B3

1108800
z11:

ð49Þ

On the other hand, the derivative of (49) is given by

F ′ zð Þ ¼ Aþ B
2
z2−

εAB
24

z4 þ εB
240

−B
3

þ εA2


 �
z6

þ ε2AB2

2520
z8 þ ε2B3

100800
z10:

ð50Þ

In order to calculate the values of A and B, we require
that equations (49) and (50) satisfy the boundary condi-
tions F(1) = 1, F′(1) = 0, respectively. This gives rise to a
system of equations for the unknowns A and B, above
mentioned. Considering as cases study ε=1 and ε=2 we
obtain the values

A ¼ 1:531626115; and B ¼ −3:413182996 ð51Þ
and

A ¼ 1:553879891; and B ¼ −3:767089110 ð52Þ

respectively.
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Substituting (51) into (49), we obtain

F zð Þ ¼ 1:531626115z − 0:5688638327z3 þ 0:04356433510z5

− 0:007077491381z7 þ 0:0007867357024z9

− 0:00003586125655z11:

ð53Þ
On the other hand, substituting (52) into (49), we obtain

F zð Þ ¼ 1:5538798915z − 0:6278481850z3 þ 0:09756006694z5

− 0:02728799436z7 þ 0:003889073711z9

− 0:0001928521365z11:

ð54Þ

Discussion
In this work LT-HPM was used in the search for a handy
accurate analytical approximate solution, for the nonlinear
fourth order ordinary differential equation with finite
boundary conditions, which describes the problem of
squeezing flow between two infinite parallel plates
slowly approaching each other. Figures 2, 3, 4 and 5,
which compare our approximations with the numerical
solution, showed good confirmation for all cases (for
comparison purposes, we considered that the “exact” solu-
tion is computed using a scheme based on a trapezoid
technique combined with a Richardson extrapolation as a
build-in routine from Maple 17. Moreover, the routine
was configured using an absolute error (A.E.) tolerance
of 10− 12). Since LT-HPM is expressed in terms of initial
conditions for a given differential equation (see (14)),
our procedure was aimed to express the approximate
solutions in terms of two unknown quantities A = F′(0),
B = F‴(0). We noted that these values can be determined
Figure 2 Comparison between numerical solution of (31) for ε=1 and
requiring that approximate solution satisfies the couple of
boundary conditions F(1) = 1 F′(1) = 0, from which one
obtain an algebraic system of equations for the unknowns
A and B above mentioned, whose solution concludes the
procedure.
Figure 2 shows the comparison between numerical

solution and approximate solution (53) for ε=1. It can
be noticed that curves are in good agreement, from
which is clear the accuracy of our approximation, as a
matter of fact Figure 3 shows that the biggest absolute
error (A.E) of (53) is scarcely of 0.0003, which is remark-
ably precise, above all taking into account that (53) is just
a second order approximate solution for (31).
Next, we found an approximate solution for the case

of parameter ε=2 Figure 4 shows that (54) is an accurate
analytical approximate solution for (31); from Figure 5
we deduce that the biggest absolute error (A.E) is of
little more than 0.0025, whereby it is clear the reliability
of LT-HPM method in the search for approximate solutions
of nonlinear problems with finite boundary conditions. An
important fact from LT-HPM follows from equations as
(31), which can be written in the form L(z) + εN(z) = 0
where, L(z) is linear and N(z) nonlinear. It’s well known that
classical methods of approximation as perturbation method
PM (Holmes 1995; Chow 1995) provide in general, better
results for small perturbation parameters ε < < 1 (for our
case, the perturbation parameter would be small for small
values of the distance between the plates and of the density
of the fluid (see (28)). To be precise, ε can be visualized as
a parameter of smallness, that measures how greater is the
contribution of linear term L(z) than the one of N(z). In
general it is easier to find analytical approximate solutions
to equations as (31) for small values of ε than for big
values of the same. Figures 2, 3, 4 and 5 show a noticeable
LT-HPM approximation (53).



Figure 3 Absolute Error (A.E.) between numerical solution of (31) for ε=1 and LT-HPM approximation (53).
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fact, that (53) and (54) provide a good approximation as
solutions of (31), despite of the fact that perturbation
parameters ε=1 and ε=2 cannot be considered small.
From the above, it is evident that for values of ε ≤ 2, the

LT-HPM solution will describe efficiently the nonlinear
problem (31). On the other hand, as we take bigger values
of ε it will be necessary to consider higher order approxi-
mations of (15), in order to keep the accuracy, but possibly
losing the handy character of our approximations. In
any case, LT-HPM, is not a restricted method, to small
parameters (Filobello-Nino et al. 2013). A reason by
which LT-HPM applied to problems with boundary
conditions is as efficient and converges so rapidly
Figure 4 Comparison between numerical solution of (31) for ε=2 and
(Filobello-Nino et al. 2013), is that unlike other methods
(for instance HPM) which include the boundary conditions
from the beginning of the problem at the lowest order ap-
proximation, LT-HPM estimates one of the initial condi-
tions unknown at first, requiring that the whole proposed
solution satisfies one of the boundary conditions (the
other boundary condition is satisfied from the beginning
of the procedure), thus is ensured that the approximate
solution fits correctly on both boundaries of the interval.
Is expected to be possible to apply other methods to

solve the nonlinear problem proposed (31), for example,
HPM and HAM. Since HPM is a particular case of the
parameters of HAM (h = − 1), it is expected that in general,
LT-HPM approximation (54).



Figure 5 Absolute Error (A.E.) between numerical solution of (31) ε=2 and LT-HPM approximation (54).
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the approximation obtained with HAM turns out to be
more accurate, because its region of convergence is
based on adjusting of that parameter, while HPM corre-
sponds to a fixed value of the aforementioned parameter
and therefore is limited. However, HAM requires some-
times longer expressions, for getting accurate results, such
as was reported in (Ran et al. 2009; Murad et al. 2011),
where homotopy analysis method was employed to
provide an approximate solution of (31). Although the
solutions reported to have good accuracy, they require
of major order of approximation (in (Ran et al. 2009), for
example, approximations were calculated up to fiftieth
order), besides generally, HAM is more complicated to
applications than LT-HPM, because their approximate
expressions are too long and cumbersome, in contrast
to expressions like (49), (53) and (54).
Figure 6 Streamlines for ε=1 using (25) and (53).
Simplicity of our approximations (53) and (54) allow
to obtain a simple analytical expression for the velocity
field, for which would be sufficient to replace them in
(25) and then, the results obtained in this way, into the
expressions for the components of velocity (19). Figure 6
exemplifies the case ε=1. It shows a sketch for several
streamlines for various values of the distance r, and
therefore, provides a graphical representation of the
velocity field, because as it is well known, streamlines
are lines in the flow field that are everywhere tangent to
the velocities (Hughes & Brighton 1967).

Conclusions
In this paper LT-HPM was employed to provide an
approximate analytical solution for the fourth order
nonlinear differential equation which describes a squeezing
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flow between two infinite plates with, mixed boundary
conditions defined on a finite interval. LT-HPM method
expresses the problem of finding an approximate solution
for a nonlinear ordinary differential equation, in terms of
solving an algebraic system of equations for some un-
knowns initial conditions. Figures 2, 3, 4 and 5, show the
efficiency of this method in the search for solutions of
nonlinear boundary value problems.
The above is an additional advantage for the method,

considering that LT-HPM does not need to solve several
recurrence differential equations, by which is a tool effi-
cient, useful and precise in practical applications.
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