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Abstract

Breast cancer is the most common cancer in women and autologous fat grafting is an important clinical
application in treatment of post-surgical deformities. The simplicity of fat grafting procedures and the absence of
subsequent visible scar prompted an increasing interest for this technique. The plasticity of adipose-derived stem
cells (ASCs) obtained from stromal vascular fraction (SVF) of adult adipose tissue provided exciting perspectives for
regenerative medicine and surgery. The recent discovery that SVF/ASC enrichment further ameliorates clinical
efficacy of grafting ASCs suggest as ASC-mediated new adipogenesis and vasculogenesis. ASC adipogenic
differentiation involves Akt activity and EGFRs, FGFRs, ERbB2 receptor-mediated pathways that also play a pivotal
role in the regulation of breast cancer growth. Moreover, the finding that platelet-derived growth factors and
hormones improved long-term maintenance of fat grafting raises new concerns for their use during breast
reconstruction after cancer surgery. However, it remains unclear whether grafted or resident ASCs may increase the
risk of de novo cancer development or recurrence. Preliminary follow-up studies seem to support the efficacy and
safety of SVF/ASCs enrichment and the additional benefit from the combined use of autologous platelet-derived
growth factors and hormones during breast reconstruction procedures. In the present review we highlighted the
complex interplay between resident or grafted ASCs, mature adipocytes, dormant or active breast cancer cells and
tumor microenvironment. Actually, data concerning the permissive role of ASCs on breast cancer progression are
contrasting, although no clear evidence speaking against their use exists.
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Introduction
Adult adipose tissue is a multifunctional organ that con-
tains various cellular types, including mature adipocytes,
macrophages and stromal cells, supported by connective
tissue surrounding fine capillaries (Zuk et al. 2001; Gentile
et al. 2012a; Tran et al. 2012). When isolated in vitro, stro-
mal cells have the potential to form bone, cartilage, muscle
and fat tissues and have been variously termed, including
preadipocytes and multipotent adipose-derived stem cells.
However, the term “adipose-derived stem cells” (ASCs)
has been successively recommended for the consistency
between research groups (Zhao et al. 2010). In adult adi-
pose tissue (Figure 1A), ASCs are considered to reside be-
tween mature adipocytes and extracellular matrix around
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small vessels (Tran et al. 2012). In fact, transmission elec-
tron microscopy of human breast adipose tissue showed
the presence of cells featuring ASCs arranged around the
endothelial cells of small vessels (Figure 1B), strongly
supporting their perivascular origin (Traktuev et al. 2008;
Crisan et al. 2008). ASCs likely contribute to adipose
tissue cell turn-over (Strawford et al. 2004; Wang et al.
2012a). ASCs can be isolated from subcutaneous adult
adipose tissue after liposuction by enzymatic digestion
(Gimble et al. 2007; Cervelli et al. 2009). After centrifu-
gation, the obtained heterogeneous mixture of endothelial
cells, smooth muscle cells, fibroblast, pericytes, mast
cells and preadipocytes is named stromal-vascular fraction
(SVF). ASCs can be separated from SVF by adhesion on
plastic dishes (Gimble et al. 2007; Cervelli et al. 2009). Be-
fore discovering of the plasticity of ASCs, bone marrow
was clinically considered the major tissue source of human
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Figure 1 Microscopic characterization of human breast adipose tissue. A, Normal mammary adipose tissue after Haematoxylin and Eosin
staining. Scale bar, 100 μm. B, transmission electron microscopy image of human breast adipose tissue showing perivascular adipose-derived stem
cells (ASC) surrounding a small blood vessel with endothelial cells (EC). Scale bar, 10 μm. C, Under fluorescence microscopy, vascular endothelial
cells are vonWillenbrand positive (red fluorescence) in the breast adipose tissue, whereas D, adipose-derived stem cell are CD44 positive (green
fluorescence). E, Merged image shows that CD44 positive cells reside around endothelial cells of small blood vessels in breast adipose tissue.
Nuclei are stained with Hoechst. Scale bar, 100 μm.
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adult stem cells, the so-called mesenchymal stem cells
(MSCs) (Izadpanah et al. 2006). ASCs and MSCs share
the ability to differentiate along multiple lineage path-
ways, including vasculogenetic properties. Cells with
stem phenotype and vasculogenetic capacities have been
also identified in the circulatory system, in the vessel
wall and in various extravascular sites (Grenier et al.
2007; Orlandi & Bennett 2010). Furthermore, ASCs can
easily differentiate in mature adipocytes, and adipogenic
differentiation is greatly increased by combined treat-
ment with insulin and platelet-derived growth factors,
with an increased long-term maintenance of fat grafts
(Cervelli et al. 2012). Autologous fat grafting with SVF
enrichment for regenerative surgical purposes, in par-
ticular in the therapy of post-traumatic lower extremity
ulcers, give promising results (Cervelli et al. 2011).
Similarly, SVF enrichment allows fat graft maintenance,
likely favoring vascularization and collagen synthesis ac-
tivity (Gentile et al. 2012b). These findings suggest the
innovative use of the SVF/ASC enrichment and growth
factors also in the breast reconstruction to avoid the fre-
quent complications of fat grafting, including fat necro-
sis, cyst formation and calcification (Gutowski 2009).
Adipose tissue is extremely metabolically active, as doc-
umented by its capacity to secrete hormones, growth
factors and cytokines by both mature adipocytes and
ASCs (Fruhbeck et al. 2001; Kilroy et al. 2007). Simi-
larly, the discovery of ASCs as main actors in the
regulatory scenario of adipose tissue cell turn-over re-
quires further attention for the potential interplay be-
tween resident, grafted ASCs and residual breast cancer
cells or adjacent in situ lesions. This finding induced cau-
tion and suggested some concerns about the use of fat
grafting with SVF/ASC enrichment in breast reconstruc-
tion following cancer surgery. In the present review, we
tried to describe the biomolecular pathways regulating pro-
liferation and differentiation of ASCs, in order to define po-
tential implications of breast cancer cell biology and risks
for their use in post-surgery breast cancer reconstruction.

Phenotypic characterization of adipose-derived
stem cells
ASCs share with MSCs the differentiation potential along
several mesenchymal lineages (Gimble et al. 2007) (Peng
et al. 2008). Nevertheless, some characteristics of ASCs, in
particular the maintenance of proliferating ability in cul-
ture, are even greater than those of MSCs (Xu et al. 2005).
The surface antigen profile of ASCs isolated from human
adipose tissue, changes in vitro as a function of time and/
or passage in culture (Mitchell et al. 2006). Table 1 sum-
marizes the antigenic profile of ASCs. After two or more
passages in vitro, ASC surface immunophenotype resem-
bles that of MSCs, with a similarity greater than 90%
(Gimble et al. 2007). Nevertheless, some differences in
surface protein expression have been described. The pres-
ence of the glycoprotein CD34 on the surface of human



Table 1 Antigen profile of adipose-derived stem cell

Antigen Category Surface-positive Antigens

Cytoplasmic receptor CD44 (hyaluronate), CD71 (transferrin)

Cell adhesion molecules CD9, CD29, CD49 days, CD54, CD105,CD166

Extracellular matrix
markers molecule

CD90, CD146, collagen types I and II,
osteopontin, osteonectin

Stromal markers CD29, CD44, CD73, CD90, CD166

Cytoskeleton markers α-smooth muscle actin, vimentin, calponin*,
caldesmin*

Stem cell markers CD34, ABCG2

*After 7-days TGF-β1 treatment.

Figure 2 Phenotypic analysis of human adipose-derived stem cells. A
CD44 stromal markers. C and D, Immunofluorescence staining revealing th
stained with Hoechst. Scale bar, 50 μm E, Phase contrast micrograph show
cultures. Scale bar, 150 μm F, Transmission electron microscopy image sho
lipid droplet electron dense (arrow heads). Scale bar, 10 μm.
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ASCs is not reported in MSCs (Pittenger et al. 1999).
Since CD34 is abundantly expressed in human ASCs,
immunofluorescence makes possible to identify ASCs as
CD34+ cells and to differentiate them from circulating
precursors (Pittenger et al. 1999), confirming in human
adipose tissue the presence of CD34+ cells and the peri-
vascular origin of ASCs (Figure 1C-E). Cytofluorimetry
and immunofluorescence represent suitable methods to
investigate ASCs phenotype in vitro (Figure 2). Besides
mesenchymal markers, such as CD44 and CD90, ASCs
display pericytic markers, such as CD140a, CD140b and
smooth muscle markers, such as α − smooth muscle
actin (Traktuev et al. 2008).

Adipose-derived stem cells and angiogenesis
The fascinating differentiative pluripotency of ASCs and
their ability to enhance vascularization (Bertolini et al.
and B, Flow cytometry depicting the diffuse expression of CD90 and
e strong expression of CD44 and CD90 in cultured ASCs. Nuclei are
s the typical elongated shape of adipose-derived stem cells in serum
wing adipose-derived stem cell with the presence of intracytoplasmic
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2012; Merfeld-Clauss et al. 2010) progressively increased
interest for their use in tissue engineering and regenera-
tive medicine. The perivascular origin of ASCs and the
expression of pericytic markers first suggested a role in
vascular homeostasis of adipose tissue (Maumus et al.
2011). When transplanted, ASCs have the capacity to
maintain the viability of fat transplanted through the
secretion of growth factors that improve tissue survival
(Kolle et al. 2013). Recent studies indicated that ASCs
like MSCs are capable to promote angiogenesis through
secretion of growth factors, in particular VEGF (Kinnaird
et al. 2004; Salgado et al. 2010). Angiogenesis is a crucial
event for cancer growth, and VEGF secretion plays a
pivotal role in this process (Tarallo et al. 2010). Stem
cells contribute to vascular remodelling by synthesizing
collagen and secreting vascular growth factors (Orlandi
and Bennett 2010). So, the expression of VEGF recep-
tors in ASCs should be taken into account for future
additional new anti-angiogenic strategies (Cassinelli
et al. 2012) in breast cancer. It is worth of noting that
ASCs share with resident vascular stem cells the paracrine
production of VEGF (Cervelli et al. 2012; Ferlosio et al.
2012) and the expression of VEGF receptors (Kinnaird
et al. 2004; Salgado et al. 2010). Furthermore, ASCs se-
crete hepatocyte growth factor, tumor necrosis factor-α
and nerve growth factor (Salgado et al. 2010). Nerve
growth factor and precursors are capable of inducing vas-
cular remodeling by modulating vascular cells apoptotic
sensitivity (Campagnolo et al. 2014).

Cross-talk between mature adipocytes and breast
cancer cells
Many studies focused the relationship between mature
adipocytes and breast cancer cells. Rat mature adipo-
cytes affect the biological behavior of epithelial cells
through the production of leptin, adiponectin, tumor ne-
crosis factor-α, heparin-binding epidermal growth factor,
insulin-like growth factor-II and adipsin (Manabe et al.
2003). Furthermore, mature adipocytes metabolize an-
drogen to estrogen trough their own aromatase activity
(Miller et al. 1998). Estrogen synthesis affects breast car-
cinoma cell growth by a paracrine mechanism (Miller
et al. 1998). Since breast adipose tissue is the major site
of estrogen biosynthesis, its local delivering is likely in-
volved in cancer progression. As matter of fact, estrogen
level in breast tissues results 10 times greater than in
blood as a consequence of high aromatase activity and
tumor cells release stimulatory factors that amplify aroma-
tase expression (Sasaki et al. 2010). Breast tumor cells also
influence and modify the surrounding tissue microenvir-
onment. Recent in vivo and in vitro studies demonstrated
relevant phenotypic changes in adipocytes surrounding
breast cancer (Dirat et al. 2011). Murine and human ma-
ture adipocytes co-cultured with tumor cells exhibited
changes of the number and size of lipid droplets, a de-
crease of adipose markers level and over-expression of
IL6, leading to a more aggressive tumor behavior
(Walter et al. 2009). Also, mature adipocytes adjacent
to the tumor showed a reduction of the expression of
PPARγ and lipid droplet accumulation (Chandler et al.
2012). Adipose tissue may also stimulate the growth
and survival of breast tumor cells trough the secretion
of adipokines, such as leptin and adiponectin (Bertolini
et al. 2012). It appears evident that adipocytes surrounding
breast cancer are subjected to significant transcriptional
changes with a marked increased expression of endocrine-
related factors, influencing the growth and survival of
breast cancer cells, in a paracrine loop (Ghosh et al. 2010).
These findings support the hypothesis of an intimate
cross-talk between breast cancer cells and immediately
adjacent adipose tissue cells.

Adipose-derived stem cells and breast cancer
Differently from mature adipocytes, the interplay be-
tween resident mesenchymal cells, including ASCs, and
breast epithelial cells is still partially unknown. In this
respect, it is still unclear whether preadipocytes act
differently from mature adipocytes. ASCs are located in
perivascular niches and contribute to cell turn-over, vas-
cular network for the maintenance of adipose tissue
tropism (Strawford et al. 2004; Wang et al. 2012a) and
to regulate stem cell homeostasis. Dynamic and recipro-
cal communication between epithelial and stromal com-
partments occurs during breast cancer progression, with
the production and release of a large panel of cytokines,
chemokines and growth factors which are essentials for
the generation of a more favorable microenvironment
for tumor growth (Dirat et al. 2011; Wiseman and Werb
2002). These signals are capable to induce the recruitment
of several cells types including MSCs, so promoting
cancer growth, metastasis and tumour stroma forma-
tion (Kucerova et al. 2013; Karnoub et al. 2007). Tumor
microenvironment is heterogeneous and, in recent stud-
ies, the presence within tumor bulk of a cancer stem cell
has been hypothesised. Cancer stem cells are defined as
a subpopulation that constitute a small percentage of
the tumor bulk and displayed analogies to normal stem
cells, with both embryonic and adult aspects, supported
by phenotypic (surface marker) and functional (metabolic
enzymes and transporters) features and clonogenic poten-
tial (Donnenberg et al. 2013). In the primary tumor, cancer
stem cell may arise from the transformation of resident
stem cells or from dedifferentiation of differentiated tumor
cells in response to specific microenvironmental signals
(Park et al. 2014). The acquisition of cancer stem cell fea-
tures may be a partial reminiscence of an embryonic
phenotype with an increase of susceptibility to epithelial-
mesenchymal transition, supporting greater tumor growth
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and invasiveness (Park et al. 2014). Cells shift from a
epithelial-like to a spindle-like morphology, accompan-
ied by the expression of CD44 and CD90 stem markers
and the maintenance of an adult stem cell phenotype
(Donnenberg et al. 2013; Park et al. 2014). Furthermore,
epithelial breast cancer cells undergoing to epithelial-
mesenchymal-transition showed mesenchymal features
with loss of polarity and stem like spindle shape, that
favor motility, invasiveness and survival (Hass & Otte
2012). In this context, ASCs may interact with breast
cancer cells through the formation of gap junctions that
allows intercellular communication and the exchange of
low molecular weight compounds (Donahue et al. 2003).
The presence of gap junctions correlate with a more ma-
lignant phenotype and greater tumor progression and they
can modulate the metastatic potential of the breast cancer
cells (Mandel et al. 2013). Thus, the inhibition of gap
junctions could partially block the stem cell-mediated
growth induction and CD90 expression in breast cells.
Conflicting data are reported concerning the role of
ASCs in cancer progression. As reported, ASCs express
surface markers, such as CD44, able to anchor some
matrix-metalloproteinases to the cell surface. This CD44-
matrix-metalloproteinases association mediates the reor-
ganization of extracellular matrix components (Hass
and Otte 2012). Moreover, experiments in vivo and
in vitro reported that ASCs favor tumor growth, increas-
ing extracellular matrix deposition and vascularization,
suggesting that ASCs may directly contribute to the dense
network of fibroblasts and desmoplastic reaction sur-
rounding breast cancer (Wang et al. 2012a). The desmo-
plastic reaction represents the stromal response to cancer
cell infiltration and it is due to the disruption of the base-
ment membrane and the inflammatory remodeling of the
extracellular matrix (Pinilla et al. 2009). Desmoplastic re-
action involves increased activity of tissue metalloprotein-
ases and studies in vitro documented that co-culture of
human ASCs and breast cancer cells induce high levels of
metalloproteinases (Pinilla et al. 2009). Desmoplastic reac-
tion also promotes myofibroblasts recruitment (De Wever
et al. 2008; Karagiannis et al. 2012) and a large number of
myofibroblasts are documented in the stromal compart-
ment of invasive human breast cancers (Gehmert et al.
2010; Orimo et al. 2005). Myofibroblasts are stromal fibro-
blasts with both myocyte and fibroblast features (Orlandi
et al. 1994). ASCs isolated from tumors also express high
levels of alpha-smooth muscle actin, a well-known myofi-
broblastic marker (Tomasek et al. 2002). This suggests
that ASCs could act as a potential source of tumor
myofibroblasts.
To better clarify their role in cancer progression, studies

in vivo and in vitro have been performed to verify ASCs
influence on dormant tumor cells and on their growth
and invasiveness. In literature is not yet clear whether
dormant tumor cells are out of cell cycle, or persist in a
dynamic state of proliferation and death. The transition
between dormant and active states requires the presence
of various signals, such as cytokines, hormones and
growth factors (Donnenberg et al. 2010). Xenograft
model experiments documented that grafted ASCs act
in a different manner on active and dormant breast can-
cer cells. In fact, whereas the active cancer cells require
growth factors and a new vascular network for the survival
and invasiveness, the dormant cancer cells do not immedi-
ately require support of these factors. The latter are more
autonomous and their growth is slower (Donnenberg et al.
2010; Zimmerlin et al. 2011). Consequently, these results
indicate that grafted ASCs favour the growth of active, but
not dormant, breast cancer cells. Moreover, ASCs trans-
plantation or co-injected into mouse breast cancer model
did not promote tumor growth or metastasis, and this
inhibitory effect has been identified as the cause for
ASC-dependent Poly ADP ribose polymerase cleavage,
so inducing tumor cell apoptosis (Sun et al. 2009).
Altogether, these studies highlight the concept that

resident ASCs and cancer cells may interact in a complex
and dynamic fashion influencing the tumor behavior.
Further studies are needed to better clarify this in vivo
interaction and define how selectively stimulate ASCs
regenerative function without influencing tumorigenesis.

Similarities of growth and differentiative
pathways of adipose-derived stem cells and
breast cancer cells
The proliferative arrest and/or cell loss are potential
limitations in regenerative surgery strategies. So, exogen-
ous growth factors should provide the necessary micro-
environmental signals to accelerate cell proliferation,
extracellular matrix synthesis and tissue deposition
(Chen et al. 2010). Various receptor pathways regulated
ASC proliferation and differentiation. Epidermal growth
factor receptors (EGFRs), fibroblast growth factor re-
ceptors (FGFRs) and ErbB tyrosine kinase receptor
(ErbB) families are involved in growth control and dif-
ferentiation of cancer stem cells (Flageng et al. 2013;
Nguyen et al. 2013; Reed et al. 2012; Liu et al. 2009). Re-
cent studies documented the presence of EGFR and
ErbB2 transcripts and proteins in ASCs (Cervelli et al.
2012). Platelet-derived growth factors stimulated ASCs
proliferation and improved the maintenance of breast
fat grafting in patients affected by soft tissue defects
(Cervelli et al. 2012), but did not affect adipogenic dif-
ferentiation of ASCs in vitro (Cervelli et al. 2009). This
suggests that the pathways regulating proliferation and
differentiation of ASCs are partially distinct. Platelet-
derived growth factors clinically ameliorated efficacy of
fat grafting, likely favoring ASC proliferation (Cervelli
et al. 2009). Insulin further increase long-term fat graft
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maintenance and greatly promoted adipogenic differenti-
ation by increasing Akt activity and down-regulating the
expression and activity of EGFR and ErbB2 receptors,
without significant proliferative arrest of ASCs (Cervelli
et al. 2012). Adipogenic differentiation also associated to
the increased FGFR-2 and FGFR-1 transcript levels, sug-
gests a complex receptor-mediated control of adipogenesis
in ASCs (Cervelli et al. 2012). Although the clinical use of
growth factors may improve long-term fat graft volume
maintenance, growth factors may also influence the activ-
ity of resting cancer cells (Liu et al. 2009). As reported
above, estrogen sustains growth in breast cancer through
the transcriptional up-regulation of various growth
factors, such as EGFR, and Akt phosphorylation (Liu
et al. 2009). Moreover, a cross-talk between erbB and
estrogen receptor-mediated signaling has been reported in
tumor progression and resistance to endocrine therapy of
breast cancer cells (Normanno et al. 2005). In addition,
aberrant expression and activation of FGFR activity is in-
volved in the progression of breast cancer (Grose et al.
2007). In particular, FGFR1 expression is associated with
an early relapse and poor survival of breast cancer patients
(Turner et al. 2010). In vitro data alone seem to suggest
the caution in the local use of growth factors in addition
to fat graft and further investigation of the interplay be-
tween ASCs and breast cancer cells should be performed
also in vivo.

Breast lipografting: clinical studies and follow-up
Autologous fat grafting is a procedure widely used in
breast reconstruction after cancer surgical treatment
(Gentile et al. 2012b; Coleman and Saboeiro 2007).
Clinical trials documented the absence of significant dif-
ferences between patients undergoing lipofilling after
mastectomy compared to untreated group. To minimize
adverse effects, many attempts have been made to im-
prove long term fat graft maintenance. A recent series
of cases of breast reconstruction performed using autolo-
gous fat graft documented that, after a 10 years follow-up,
there is no increased risk of relapse or new cancer devel-
opment (Delay et al. 2009). In another study, 321 patients
after breast cancer surgery treatment were subjected to
lipofilling treatment (Petit et al. 2012). After six month,
patients with lipofilling showed no relapse compared to
untreated group. Nevertheless, when the study focused on
patients previously diagnosed with breast intraepithelial
neoplasia, the lipofilling group displayed a slightly higher
risk of local recurrence, although not statistically signifi-
cant, compared to the untreated group (Petit et al. 2012).
However, a similar study carried out on 158 patients sub-
jected to fat grafting procedures after a history of breast
cancer surgery, did not show any increase risk of relapse
after 18 month of follow-up (Rietjens et al. 2011). Other
works compare the local recurrence before and after
lipotransfer in patients undergoing mastectomy, with no
statically significant differences between groups (Rigotti
et al. 2010). Preliminary data from a relatively small num-
ber of patients describe that SVF enrichment improves fat
graft survival, with no evidence of breast malignant trans-
formation (Kolle et al. 2013). A recently introduced new
technique combine the use of autologous SVF enrichment
with platelet-derived growth factors to improve fat grafting
maintenance after breast reconstruction. A series of 23
patients with breast cancer undergoing post-surgical
breast reconstruction with fat grafting-SVF and platelet-
derived growth factors did not show increased risk of
new cancer development after 1 year follow-up com-
pared with the control group, but evidenced the amelio-
rated maintenance of breast volume (Cervelli et al.
2012). Although preliminary, these results seem to sup-
port that the addition of platelet-derived growth factors
to lipografting induces a safe improvement of breast
volume maintenance (Gentile et al. 2013), likely for the
ability of platelet-derived growth factors to stimulate
vascularization (Coleman and Saboeiro 2007; Gentile
et al. 2013). Clinical studies with more patients and a
longer follow-up are needed to confirm the safety of
SVF/ASCs enrichment during fat grafting procedures
with or without platelet-derived growth factors and hor-
mones in breast cancer patients.

New stem cell therapies and surgical breast
cancer reconstruction
Conventional cancer therapies include surgery, chemo-
therapy and radiotherapy. A certain number of pre-
clinical studies recently proposed the use of MSCs as
candidates to deliver anti-cancer drugs. Chemokines se-
creted by breast tumor cells are capable of stimulating
MSCs migration and recruitment, suggesting a potential
role for MSCs as delivery agents for chemotherapeutic
purposes in breast tumours in vivo. MSCs can be readily
transduced via adenoviral, retroviral or lentiviral vectors
without compromising the capability for differentiation
or the expression of surface markers. Consequently,
MSCs are potentially suitable for a gene approach in
cancer therapy through the induction of a more chronic
and slow release of drugs that are often limited by their
toxicity or short life (Kucerova et al. 2008). Interferon-β
is a powerful inhibitor of tumor cell growth, but to be
efficacy it needs a dose higher than the maximally toler-
ated. In vitro, MSCs transduced with adenoviral vector
carrying human Interferon-β and co-cultured with breast
cancer cells induced the reduction of cancer cells growth
(Studeny et al. 2004). The same effect occurred, in vivo,
when Interferon-β − transfected MSC cells are injected
intravenously in a xenograft breast cancer mouse model
(Studeny et al. 2004). The most of gene approaches use
cytosine deaminase/5-fluorocytosine and thymidine
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kinase/ganciclovir. Ganciclovir is an inhibitor of DNA
polymerase and, after DNA incorporation, inhibits
chain elongation (Matuskova et al. 2012). The com-
bined use of yeast cytosine deaminase gene with 5-
fluorocytosine allows the activation of 5-fluorouracile,
a drug normally used in conventional chemotherapy
(Matuskova et al. 2012). However, when ASCs are trans-
duced with thymidine kinase/ganciclovir the growth of
breast cancer cells was inhibited, but the latters have
proved resistant to cytosine deaminase/5-fluorocytosine
treatment. These opposite effects are linked to the capabil-
ity of adult stem cells and tumor cells to communicate via
gap junctions, determining both chemosensitivity than
chemoresistance (Matuskova et al. 2012; Kucerova et al.
2012). In other works ASCs has been tested as vehicle to
deliver tumor necrosis factor-α and to induce TRAIL-
mediated apoptosis of cancer cells (Grisendi et al. 2010).
TRAIL is a member of the tumor necrosis factor
super-family that induces a selective apoptosis through
the activation of death receptors in cancer target cells,
with no relevant effects on healthy cells (Grisendi et al.
2010). More recently, PPARγ ligands were shown cap-
able of stimulating the differentiation of several cancer
cells types, including breast cancer cells lines, suggest-
ing a therapeutic utility in breast cancer treatment.
PPARγ ligands inhibit the expression of aromatase and
hence estrogen biosynthesis in adipose tissue sur-
rounding human breast cancer (Rubin et al. 2000). At
present, most hormonal therapies for breast cancer
aim to the inhibit estrogen receptor and/or aromatase
activity of cancer cells (den Hollander et al. 2013).
Tamoxifen is an antagonist of estrogen receptor widely
used in therapy of breast cancer, but after several years
of treatment clonal cell line tumors become unrespon-
sive to the drug (Higgins and Stearns 2009). The mech-
anism that underly tamoxifen resistance is still unclear.
It’s possible that the presence of cancer stem cell con-
fers a drugs resistance. In vitro studies documented
that cancer stem cell exert antiapoptotic effect on
breast cancer cells and counteract cell-cycle changes
caused by tamoxifen, so promoting tumor growth and
invasiveness (Wang et al. 2012b; Lin et al. 2013).
Aromatase inhibitors are used as second-line therapy

or as first-line adjuvant therapy, but they have the dis-
advantage to inhibit indiscriminately aromatases, in-
cluding those in bone and brain tissues, with adverse
effects in terms of bone mineralization and cognitive
function, respectively (Rubin et al. 2000). An ideal goal
is to develop a tissue-selective aromatase inhibitor. In
these sense, ASCs potentially retain many of the attri-
butes for an optimal cellular vehicle (Rubin et al.
2000). Additional studies need to document efficacy
and safety of engineered ASCs before their application
in clinical trials.
Conclusions
Current evidence sustains that ASCs represent a prom-
ising tool for innovative therapies in regenerative sur-
gery and play a significant role in lipofilling-mediated
breast reconstruction after breast cancer surgery. SVF/
ASCs enrichment seems to favor long-term fat graft
maintenance in reconstruction of tissue defects, likely
promoting vascularization and collagen synthesis. Pre-
liminary studies in vivo seem to confirm the efficacy of
SVF/ASCs enrichment and the beneficial additional use
of autologous platelet-derived growth factors and hor-
mones in breast reconstruction. The improvement in
long-term maintenance strongly supports the additional
combined use of fat grafts with autologous platelet-
derived growth factors and hormones, such as insulin.
However, additional translational research studies are
needed to better clarify the possible impact of these
procedures on tumor microenvironment, in particular
their potential effect on cancer cells. Different studies
confirmed the complex and dynamic interplay between
cancer cells and resident ASCs. Latters, in the tumor
microenvironment, seem to affect only active cancer
cells, so promoting neoangiogenesis, matrix remodeling
and intercellular communication via gap-junction. In
addiction, it has been hypothesized the presence of cancer
stem cells, from resident stem cell or dedifferentiated
tumor cells, that may favour the epithelial-mesenchymal
transition, supporting tumor growth and invasiveness. In
addition, the interaction between grafted ASCs and resting
cancer cells doesn’t seem to be responsible for cancer
recurrence because resting cancer cells are more resist-
ant to apoptosis and they don’t require stroma or vascu-
lar structure for their survival. Preliminary data describe
that SVF/ASCs enrichment did not show increased risk
of new cancer or relapse compared with control group.
Finally, ASCs characteristics appear promising for their

engineered use as “carrier” of adjuvant chemotherapeutic
agents against residual breast cancer cells. So, the growth
of malignant cells may be counteracted by local release of
drugs in tumor microenvironment while systemic plasma
concentration remain low, avoiding the problems related
to toxicity and short life.
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