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Abstract

In this paper, we have been acquired the soliton solutions of the Variant Boussinesq
equations. Primarily, we have used the enhanced (G'/G)-expansion method to
find exact solutions of Variant Boussinesg equations. Then, we attain some exact
solutions including soliton solutions, hyperbolic and trigonometric function
solutions of this equation.

Keywords: Enhanced (G/G)-expansion method; Traveling wave; NLEEs; Variant
Boussinesq equations

Mathematics subject classification: 35 K99; 35P05; 35P99

Background
The theory of nonlinear evolution equations (NLEEs) has become one of the most
important fields of study in mathematical physics and engineering. This is essentially
due to the frequent occurrence of NLEEs in many branches of physics, mathematics,
and other branches of sciences. With much interest and great demand for applications
of NLEEs in various areas of sciences, several analytical methods to find exact solutions
of NLEEs have been developed by diverse group of mathematician and physicist. It is
significant that many equations of physics, chemistry, and biology contain empirical
parameters or empirical functions. Exact solutions allow researchers to design and
run experiments, by creating appropriate natural conditions, to determine these
parameters or functions. A variety of powerful methods, such as the sine—cosine
method (Wazwaz 2004a; Bekir 2008), The first integral method (Bekir et al. 2014;
Jafari et al. 2012), the homotopy perturbation method (Mohyud-Din and Noor 2009;
Mohyud-Din et al. 2011), the (G'/G)-expansion method (Wang et al. 2008; Zayed
and Gepreel 2009; Guo and Zhou 2010), the Exp-function method (Bekir and Boz
2008; Akbar and Ali 2011; Naher et al. 2010; Ebadi et al. 2013), the modified simple
equation method (Jawad et al. 2010; Zayed 2011; Khan and Akbar 2013a, b), the exp
(-D(€))-expansion method (Khan and Akbar 2013c), the Enhanced (G '/G)-expansion
Method (Khan and Akbar 2013d, e; Islam et al. 2014), the tanh-function method
(Wazwaz 2004b, 2005, 2007), and the modified tanh—coth function method (Lee and
Sakthivel 2011) were used to find new exact traveling wave solutions of nonlinear
evolution equations in mathematical physics.

Various ansdtz have been proposed for seeking traveling wave solutions of nonlinear
differential equations. Recently, Wang et al. (2008) have introduced a simple method
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which is called the (G'/G) -expansion method to look for traveling wave solutions of
nonlinear evolution equations, where G = G(¢) satisfies the second order linear ordin-
ary differential equation G” + AG" + uG =0, where A and p are arbitrary constants and

u(€) =ay (%)m 4o be the traveling wave solution of NLEEs. By means of this

method they have solved the KdV equation, the mKdV equation, the variant Boussinesq
equations and the Hirota—Satsuma equations. Guo and Zhou (2010) have intro-
duced an another method so called extended (G'/G)-expansion method where
G = G(¢) satisfies the second order linear ordinary differential equation G + uG =0,

where G':di—(j), G”:dzdi(;c), E=x-Vt V is a constant and u(§) =ay+

" N
Z ai(Gy/G)i + b,-(G'/G)F1 o (1 + @) be the traveling wave solution.
i=1

They proposed extended (G'/G) -expansion method to construct travelling wave
solutions of Whitham-Broer—Kaup-Like equations and coupled Hirota—Satsuma
KdV equations.

Among those approaches, an enhanced (G'/G) -expansion method is a powerful tool
to reveal more general solitons and periodic wave solutions of NLEEs in mathematical
physics and engineering. The focal ideas of the enhanced (G'/G) -expansion method
are that the traveling wave solutions of NLEEs can be expressed as rational functions of
(G'/G), where G = G(¢) satisfies the second order linear ordinary differential equation
G +uG=0.

The objective of this article is to present an enhanced (G'/G) -expansion method to
construct the exact solitary wave solutions for NLEEs in mathematical physics via the
Variant Boussinesq equations.

The article is arranged as follows: Methodology, Application of the enhanced (G'/G)-
expansion method, Graphical representation, Comparisons and conclusions.

Methodology
In this section, we discuss an analytical method, so called enhanced (G '/G)-expansion
method, for deriving traveling wave solutions to PDEs. We will first discuss the method
applied to a problem defined in terms of a nonlinear partial differential equation having
two independent variables, one space dimension x, and another the time dimension
t. Subsequently, it will be shown that the arguments extend naturally to coupled
equations and also to problems defined in terms of two or more spatial dimensions,
plus time.

Suppose the evolutionary equation, say in two independent variables x and ¢, for
which we wish to find traveling wave solutions is given by

m(u7ut7ux7utt7uxxauxt7 """""" ) = 07 (1)

where u() = u(x, £) is an unknown function, # is a polynomial of u(x, £) and its partial
derivatives in which the highest order derivatives and nonlinear terms are involved. In
the following, we give the main steps of this method (Khan and Akbar 2013a, 2013b;
Islam et al. 2014):
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Step 1. Combining the independent variables x and ¢ into one variable &, we suppose
that

u(€) =ux,t),E=x+Vt, (2)

where Ve # - {0} is the wave velocity.
The traveling wave transformation Eq. (2) permits us to reduce Eq. (1) to the follow-
ing ODE:

({a(u,u',u”, ......... ) =0, (3)

where  is a polynomial in «(§) and its derivatives, while u () = %, u ' (§) = ’{%’2‘ and
so on.

Step 2. We suppose that Eq. (3) has the formal solution

u(s“):i: %+bi(G'/G)i'1Ja<l+w> , (4)

= \(1+1G /G H

where G = G(¢) satisfy the equation
G +uG=0, (5)

in which a;, b; (-n<i<mn;neN) and A are constants to be determined later, and o=+
L,u=0.

Step 3. The positive integer # can be determined by considering the homogeneous
balance between the highest order derivatives and the nonlinear terms appearing in
Eq. (1) or Eq. (3). Moreover precisely, we define the degree of u({) as D(u(§)) = n which
gives rise to the degree of other expression as follows:

D(ZLEZ) :n+q,D<up<%>s> =np+s(n+q) (6)

Therefore we can find the value of # in Eq. (4), using Eq. (6).
Step 4. We substitute Eq. (4) into Eq. (3) using Eq. (5) and then collect all terms of

same powers of (G'/GY and (G'/G)/ \/0(1 + /% (G'/G)2> together, then set each coeffi-

cient of them to zero to yield an over-determined system of algebraic equations, solve
this system for a;, b;, A and V.

Step 5. From the general solution of Eq. (5), we get

When 4 <0,

S~ Jmtanh(4 + ) (7)

And % = /[~ coth(A + \/=u€) (8)
Again, when y >0,

% = /utan(A-\/uf) ©)

And%: Vi cot(A + ué) (10)
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where A is an arbitrary constant. Finally, substituting a;, b;(-n<i<mneN), A, V and
Egs. (7)-(10) into Eq. (4) we obtain traveling wave solutions of Eq. (1).

Application
In this section we will exert the enhanced (G'/G)-expansion method to derive the exact

traveling wave solutions of the Variant Boussinesq equations in the form (Wang et al.

2008)
Hi+ (Hu), + thyxx = 0, (11)
u+H, +uu, =0, (12)

where u =u(x,t) represents the velocity and H = H(x, t) represents the total depth of
water waves.

The traveling wave transformation equation u = u(x, t), H(x, t), {=x - V't converted
Eq. (11) and Eq. (12) to the following ordinary differential equations for u = u(¢) and

H=H().
-VH +(Hu) +u =0 (13)
~-Vu +H +uu =0 (14)

Integrating Egs. (13) and (14) once with respect to &, we obtain

R-VH+Hu+u =0, (15)
1
S—Vu+H+§u2:O, (16)

where R and S are constants of integration.
Now Eq. (16) yields,

1
H= Vu—iuz—S (17)
Substituting Eq. (17) into Eq. (15), we get
y 3 1
u —(V2+S)u+§Vu2—§u3+VS+R:0 (18)

The homogeneous balance between %" and > yields 7 = 1.
Hence for n =1, Eq. (4) reduces to

+ bo(G'/G)‘l\/a<1 +£(G'/G)2> + bl\/0<1 +/14 (G'/G)2>,

where G = G(§) satisfies Eq. (5). Substituting Eq. (4) along with Eq. (5) into Eq. (3), we

(19)

get a polynomial of (G'/G)Y and (G'/G)j\/(r(l + /% (G'/G)z). From these polynomials,

we equate the coefficients of (G'/GY and (G'/G)j\/a(l +,%(G'/G)2) , and setting

them to zero, we get an over-determined system that consists of twenty-five algebraic
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equations. Solving this system for a;, b;,, A and V, we obtain the following values with
the aid of symbolic computer software Maple 13.
Case 1: R=0,5 = 8u+3ao*,V = ap,A = 0,a_y = -2p, a0 = ap,a1 = 2,b_y = by = by =0,
Case 2: R=0,8S =8u+3a},V =a9,A=0,a_, =2u,a0 = ap,a; = -2,b_y = by = b; =0,

Case 3: R=0,S =fu+3ao®, V=a9,A =0,a_1 =0,a0 = ap,ay = 1,b_y = by = 0,b; = j:\/g,
Case 4: R=0,S = Lu+1ag®, V =aod = 0,a, = 0,a0 = ag,ay = ~1,b_y = by = 0,b; = i\/g,
Case 5: R=0,S = 24°A> + 2u + 2 ppao + 3ao®, V = 2ud + ag,A = 1,a_; = 24,
ag = ag,a1 = 0,b_; = by =b; =0,
Case 6: R = —-82A(1 + puA?), S = ~4p®A*~4p + 2 pag + 1a®, V = 2ud + ag,A = 1,
a_; =2u,a0 = ap,a; =2+ 2;{/12,19,1 =by=b, =0,
Case 7: R=0,S = 24°A> + 2u-2\uao + ao®, V = 2ul + ap, A = A,
a1 = -2u,a0 = ag,a; = 0,b_1 = by =b; =0,
Case 8: R = 84°A(1 + uA?), S = ~42A>~4pu—2Mpao + 2 ag®, V = -2u) + ag, A = A,
ay = -2u,ag = ag,a; = —2—2/4/12,19_1 =byg=b, =0,
Case 9: R=0,S=-pu+3a0’>,V =ao,A=MNa=0,a0=ap,a1 =0,b_; =by =0,
by = £2, /%,
Case 10: R=0,S = 24°A> + 2p + 2Mpao + 1ao?, V = 2ud + ag,A = 1,a_; = 0,
dag = dg,d; = 2—|—2;M2,b_1 =by=b, =0,
Case 11: R=0,S = 24\ + 2u-20pao + 3ao®, V = -2ud + ag,A = A,a_; =0,
ag = dag,d; = —2—2/,t/12,b_1 =by=b, =0,
Case 12: R=0,5 = -u +1ao>, V =ap,A = A,ay = 0,a0 = ag,ay = b.y = 0,by = £ % by = 0.
Case 13: R=0,S = -Apao + S ao? + 341> + 3, V = -l + ag,A = L,a_y = —p, a0 = ao,

U
=0,b.1=0,bp =+—,b; =0.
ai ) 1 » 0 \/ga 1

Case 14: R=0,S = pag + Lao® +1uA* +3p, V =+ ag, A = 1,a_1 = p,ag = ay,

aq :O,b_l :O,b()::t\/ia,bl =0.

Now putting the values of a;, b;, A and V into Eq. (19) and Eq. (17), we obtain the
following exact solutions.
Hyperbolic Function Solutions for y < 0:

Family 1: u;(§) = aﬁ-Zﬁ(tanh(A + ﬁf) + Coth(A + ﬁf)),
H, () = 2u(tanh?(A + /=€) + coth?(A + /=€) -2),

where & =x — agt.

Family 2: u,(€) = a,-2,/=p( tanh(A + /=€) + coth(A + /=u€)),

Page 5 of 17
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H,(&) = 2u(tanh* (A + /=p€) + coth® (A + /=p)-2),

where £ =x — agt.

Family 3: u3(€) = ay+/~f(tanh (A + /=€) F Isech(A + /=i¢f)),
ua(§) = ag++/~p( coth(A + /=€) ¥ csch(A + /=uf)),
Hs(&) = —p( sech® (A + /=€) + I'tanh(A + \/=u€) sech(A + \/=uf)),
Hy(€) = ~p( csch® (A + /=€) £ coth(A + /=€) esch(A + /~4€)),

where € =x - aqt.
l:amii’ 4: us(€) = ay—/~p(tanh (A + \/=p€) ¥ Isech(A + /=uf)),
ue(€) = ay—/~#(coth(A + /=u€) ¥ csch(A+ /~uf)),
Hs(€) = —u(sech? (A + =u€) F Itanh(A + /=) sech(A + \/~pf)).
He(§) = —p(csch? (A + /=€) F I coth(A + /=€) csch(A + /=Hk)),
where € = x - aqt.
Family 5: u7(€) = a,-2,/=( coth(A + \/=p&) + A\/~H),
ug(€) = ag-2y/~p(tanh (A + /=p€) + 1/~H),
H7(€) = 2uesch® (A + /=€),
Hu(§) = ~2psech? (A + 7).

where E=x - (2ul +ag) t.
(2+2/¢A2)ﬁtanh(A+ﬁ£) 4 2/4(1+)Lﬁtanh(A+ﬁ£))

Family 6: uo(&) = ao +

1+A\/'—T¢tanh<A+\/'—T4£) \/'—_utanh(A+\/'_—/45) )
wro€) = ao + (24 2u)*) /i coth(A + /=p€) N 2u(1 + A/~ coth(A + \/=uf))
O T T A coth (A + /=€) Jocoth(A + )
B il (2 + Zuiz)\/:ﬁtanh(A + \/:ﬁf) 2/4(1 + A\/:ﬁtanh(A + \/:ﬁf))
Ho(§) = (Au+ °)< ot 1+ A /~atanh(A + /7€) * J/Atanh(A + /7€) )
_l o+ (2 + 2;4/12)ﬁtanh(A + ﬁf) N 2;{(1 +/1ﬁtanh(A + ﬁ{)) 2
2\ 1+ A/ utanh(A + ) J/Ftanh(A + /=€)

1
- (4;42/12 + du-2 pao- 5&102) ,

B (2 +2uA%) /=i coth (A + /=€) 2u(1 + Ly/~fcoth(A + /=)
Hiol8) = (24 +a0) (“0 T Ficoh(A+ ) Jcoth(A+ ) )

(2 2’) yTeoth(A + ) 2u(1 4 coth(4 + yE))
0 1 +Aﬁcoth(A + \/-—‘ﬂf) ﬁcoth(A + \/—745)

2
212 L,y
_(4-p¢ A +4~/,t—2/1pm0—§ao ),

where §=x - (2Ay + ay) ¢.
Family 7: uy1(€) = ay+2,/=(coth(A + \/=p) + A\/~H),

up(€) = a0+2ﬁ(tanh(A + ﬁf) +Aﬁ),



Khan and Akbar SpringerPlus 2014, 3:324 Page 7 of 17
http://www.springerplus.com/content/3/1/324

Hu(§) = Z#CSChZ(A + ﬁf)v
Hp;(€) =2u sechz(A + ﬁf),
where §=x - (ag — 2Ap) ¢.

Family 8: 115(€) = ao - (2+261%) ypitanh (A+y7€)  2u(1+A /i tanh(A+/7E) ) |

141/~ tanh (A+ /=€) V/~Fi tanh (A+ /7€)
(€)= a0 (2 +2u1*) /= coth(A + /=€) 2u(1 + Ay/~picoth(A + /=)
e T + A/~ coth(A + /=€) A coth(A + /=pé) '
Hual€) = (ao-20p) [ a2 A )oRanh(A + o7a6) (14 Ay=ptanh(d + /=t))
1+ A/~ tanh(A + /=€) /—fitanh(A + /=)
1 (2+2?) /Tatanh(A + 7€) 2u(1+ )y Tatanh(4 + )\
2\®7 14 A utanh (4 + ) /~7itanh (A + /=€)

1
- <4/42/12 + 4y + 2 pap- 56102) ,

Ha(€) = (a0-2p0) (ﬂo (2+ Zpt/lz)ﬁcoth(A + /HE) ~ 2 (1 + A/~ coth(A + ﬁf)))

14 A/~ coth(A + /=p&) /i coth(A + /=€)
1, 2422 yacoth(A+ =) 2u(1+Ay/icoth(A + /E)) 2
2\ T+ Ay coth(A4 + e) JHicoth(A + /=)

_ (4;&2 + 4y + 2hgpao- %aoz) 7
where §=x - (a0 - 2\u) t.

Family 9: u15(§) = ay+2. /i sech(A + \/~pf),
u16(§) = a, iIZ\/ﬁcsch(A + ﬁg%
Hi5(8) = p(1-2sech® (A + /=u€)),

Hi(€) = u(1 + 2 csch? (A + /—pk) ),

where & =x — agt.

tanh(AJrﬁf)

141/~ tanh (A+/=p€) )’
coth(A + /=€)

1+A/~fcoth(A + /=u€) )’

- ) sech(A + /=p€) ’
Hi7(§) = —2/4(1 + ud ) (1 +A\/:ﬁtanh(z4 + ﬁf)) 7

csch(A + ﬁf) ?
1+A/~coth(A+ /~u€) )’

Family 10: u17(&) = ay+2/~4(1 + pA?) (

ulg(f) = ﬂo+2ﬁ(1 + /xl/12> (

Hig(§) = 2u(1+ ud?) (

where E=x - (2ud +ag) t.

Family 11: u19(&) = ay-2/~(1 + u)?) (

tanh (A+ /=€ )
14+1y/~ tanh (A+/~€) )’
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ux(§) = “o—zﬁ(l Jrﬂ/lz) ( Coth(A + ﬁf) )7

1 +)L\/1_/,7C0th(14 + \/——ﬂf)
B 5 sech(AJrﬁf) ’
Hio(€) = —2u(1 + u?) (1 +Ay/~fitanh(A + ﬁf)) ’
B 5 csch(A + /~u€) ’
Hao(§) = 2u(1 + pd*) (1 + Ay/~ficoth(A + ﬁf)) 7

where §=x - (ag — 2Ap) ¢.
Family 12: u(§) = a, 72/l csch(A + \/=pf),

Uz (€) = ay ¥ 12/l sech(A + /—uf),
Ha(€) = u(1 + 2 csch? (A + /—Hf)),
H (&) = p(1-2sech® (A + /=u€)),
where € =x - aqt.
Family 13: u53(§) = ay+/~( coth (A + /=€) F csch(A + /) + Ay/=h),
124(§) = ag+/=p(tanh (A + /=uE) FIsech(A + \/=p) + A\/=),
Hy3(€) = 3u(coth(A + /7€) esch(A + /7€) F csch® (A + k).
Haa(€) = Fpu(Ttanh(4 + /=) sech(4 + /fat) + sedl (A + /4¢)).

where E=x - (ag—pu ) t.
Family 14: 125 (§) = ag=/( coth(A + /=) + esch(A + =€) +1y/~f),

u(§) = ao—ﬁ(tanh(A + ﬁf) + Isech(A + ﬁf) +)Lﬁ),
Hy5(&) = £p( coth(A + /=p€) csch(A + /=p€) £ csch® (A + /=€),
Has(©) = {1 1anh(4 5 E)sech(A + V)54 + 7).

where {=x - (u A +ag) t.
Trigonometric Function Solutions for g > 0:

Family 15: u,(€) = ay+2./f( tan(A-/ié) - cot (A~ Jaf) ),
w2s(€) = ay+ 2/ cot(A + VRE)~tan(A + VEE)).
Hy(€) = -2u(tan® (A~ /i) + cot*(A-\/u) +2),
Has(€) = -2u(tan® (A + \Ju€) + cot? (A + \Jué) +2),

where £ =x - agt.

Family 16: (&) = a, - 2,/f(tan(A - \ /&) - cot(A - /if)),
us0(§) = ag - 2/i( cot(A + \/u€) - tan(A + Ef)),
Hyy(€) = -2u( tan® (A - \/u€) + cot (A -\/u€) +2),
Hizo(€) = -2u(tan? (A + u€) + cot? (A + ué) +2),

where € =x — agt.
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Family 17: u31 () = ao+ /i (tan (A-/i€) + sec(A-\/uf)),
uz(§) = ag+/i( cot(A + /i) £ csc(A + Juf)),
Hz1(€) = —u(sec? (A-/p€) £ tan(A-\/u€) sec(A-\/uf)),
i) = - cot(A -+ V&) eslA -+ VE) & (A + V).

where £ =x — agt.

Family 18: u33(€) = a, — /i ( tan(A - /&) 7 sec(A-/Ef)),
uza(§) = ag — v/ cot(A + \Jug) ¥ esc(A + Jug)),
Ha3(€) = —p(sec? (A —/j€) ¥ tan(A—/i€) sec(A - \/i€)),
Hsa(€) = —p(esc? (A + u€) F cot(A + \JuE) esc(A + k),

where & =x — agt.

Family 19: u35(€) = ay+2./fi( cot(A-\/ié) + A\/i),
u36(€) = ag+2/u( tan(A + Vué) + A /i),
H35(8) = —2u s (A-\/ué),

Hzo(€) = —2usec (A + Jaf),

where E=x - (2u +ag) t.
(2+2u2?) litan(A-a€) | 2,/u(1+Aitan (A - Jug))

Family 20: u3; (&) = ao + l+/l\/ﬁtan<A—\/ﬁ£) tan(A—\/ﬁf) )
s (€) = do + (2 +2u1%) \J cot (A + /€ N 2/i(1 + A/ coth(A + \/u€))
3816 — 70 1 +A\/ﬁcoth(A + \/ﬁf) cot(A + \/ﬁf) ’
B (24 2p2°) Jitan(A-\/a€)  2\/f(1 + A/ tan(A- /) )
Hy(§) = (A + a0) (ag + 1+ A\/ﬁtan(A—\/ﬁ.f) + tanh(A—\/ﬁE) >
1, @t 2h) yRtan(A-yRE) | 2/R(1+ ) yRtan(A- RE)) ’
2\ 1T+ A mtan(A- ) tan (A /i)

1
+ 4PA* + du-20pag- 50102,

B it la (2+2u2?) i cot (A + u€) 21+ A cot(A + \Juf))
Hag(§) = 24+ O)<0+ 1+ /i cot(A + /€ * cot(A + /ué) >

1, +(2+2/4/12)\/;7cot(A+\/ﬁ5)+2\//7(1+/1\//7c0t(A+\/ﬁ5)) 2
° 14 A/ cot(A + /&) cot(A + /ué)

2
2y2 L,
+ 4u) +4-/4—2)L/,m0—§a0 ,

where £=x - 20y + ag)t.
Family 21: u30(§) = ay-2/i( cot(A—/ué) + A /i),

wiol€) = a2/ tan (4 + VE) + 1)

H3o(€) = —2ucsc® (A—\/ﬁ:f),
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Huo(§) = —2usec® (A + /ué),

where £=x - (ag - 2Apu) t.

Family 22: upy (€) = do_(z+2m )VAtan(A-y=ag)  2/E(1+dy/E an(A- /) )

1+/1\//7tan(A—\//7£) tan(A_\/ﬁg) )
€)= a2 2u\?) i cot(A + f) 2y /A(1+ A cot(A + i)
42 0 1 +,1\/ﬁcot(A + \/ﬁf) Cot(A + \/ﬁf) )
Hun(€) = (ao-20g) [ ap- 5 B )Vt (A-VE) 2JE(L 4 Aymtan(A- )
1+ )/ tan(A-/f€) tan (A-/i€)
1, (r2?)yatan(A-yEE) 2/E(1+ AR an(A- L)) ’
2\" 1 + A/ tan (A-/ué) tan (A— /7€)

1
+ 4PA% 4 4+ 2/1/4610—56102,

Ha(S) = (a0-2p) (ﬂo— (2 +2uA°) Jcot(A + /ag) 2 /a(L+A\Jficot(A + \/ﬁf))>

1+ A/ cot(A + \/ué) cot(A + v/il)
1 4 _(2+2M/12)\//7cot(A+\/ﬁ£)_2\//7(1+A\/ﬁcot(A+\/ﬁg)) 2
7\ #0 1+A\/ﬁcot(A+\/ﬁ£) Cot(A—|—\/ﬁ5)
+ 4/"2/124‘4#"‘2)%&10—%&102,

where §=x - (ag— 2Ap) ¢.
Family 23: u3(€) = a, + 2, /i sec(A- /i),

ug(§) = ay+ 2\/ﬁcsc(A + \//75),
Hyi(€)=p (1—2 sec? (A—\/ﬁf)),
Hu()=p (1— csc? (A + \/ﬁf)),

where & =x — agt.

tan(A- /i€ ))7

Family 24: u45(§) = aq +2,/i(1 + pu1*) <1+A\//7tan(A\/ﬁ€

cot(A + \/ﬁf)
1 +/1\/ﬁcot(A + \/ﬁf) ’

sec(A—\/ﬁf) 2
1+ Aptan(A-/ué) )’

csc(A + \//75) ?
1 +)L\/ﬁcot(A + \/ﬁf) ’

uge(€§) = a0+2\/ﬁ(1 +/M2) (

Hys(€) = -2u(1 + puA?) <

Hue(€) = —2u(1 +IMZ) (

where {=x - (2ul +ag) t.

tan (A- /i€ ) ))

Family 25: u47(§) = a, - 2\/ﬁ(1 * IMZ) <1+/1\/!7tan(A\//7£

cot (A + \/ﬁf) )

uag () = ag = 2/i(1 + pA?) (1 + A cot(A + /i€
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1+ A\/ﬁtan(A—\/ﬁf)

B 5 csc(A + /ué) ’
Hag(§) = ~2p (1 +pA*) (1 + A\ cot(A + ﬁf)) ,

Hyz(§) = =2p (1 + pA?) ( secld- /i) ) )

where £=x - (ag - 2Ap) t.
Family 26: u40(§) = a, + 2, /i csc(A- /i),

uso(€) = aO:tZ\/ﬁsec(A + \//75),
His(§) = p (1-2 es® (A~ /g,
Hso(§) = u (1-2sec® (A + \/ug)),

where € =x — agt.

Family 27: us1 (€) = a, — /i (cot(A - /i) F esc(A -\ J€) + A /),
us(€) = ay - /i (tan(A + Ju€) 7 sec(A + Ju€) + A/u),

(cot(A—a€) esc(A + Vi) ¥ esc*(A—t) ),

Hsy(8) = 7u (tan(A + /u€) sec(A + \/u€) + sec® (A + \/uf)),

where {=x - (ag—pu)t.
Family 28: us3(§) = a, - \/ﬁ(cot(A —\//76) + csc(A —\/ﬁf) + /1\//7),

usa(§) = ay -/ (tan(A + \/u€) £ sec(A + Vué) +A/u),
Hs3(€) = +p (cot(A —\/u€) esc(A - /) £+ csc® (A -/uk)),
Hsy(€) = tp (tan(A + \/ﬁf) seC(A + \/ﬁf) F secz(A + \/ﬁf)),

where E=x - (u A +ap) t.

Remark
All the obtained solutions have been checked with Maple by putting them back into
the original equations and found correct.

Graphical representations
Some of our obtained solutions are graphically represented in Figures 1, 2, 3, 4, 5, 6, 7,
and 8.

Comparisons with (G'/G) -expansion method

Wang et al. (2008) examined exact solutions of the Variant Boussinesq equations by
using the (G'/G) -expansion method and obtained three solutions. On the contrary by
using the enhanced (G'/G) -expansion method in this article we have obtained fifty six
solutions. Furthermore, If we set A =0, ay =5y then our solutions u,(§), u1;(€) (Family
5) coincide with the solution Eq. (1.2) obtained by Wang et al. (2008) for A =0, A; =0
and if we set A =0, ag = then our solutions ug(¢), u1,() coincide with the solution
Eq. (1.2) obtained by Wang et al. (2008) for A =0, A, = 0. Again if we set A =0 then our
solutions H,(§), Hy1(§) coincide with the solutions Eq. (1.1) obtained by Wang et al.
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Figure 1 Kink profile of us(§) for ap=1, A=0, y = — 1 within the interval - 3 <x, t < 3.
A\

Figure 2 Bell shaped soliton of H;(§) for ap=1, A=0, u = — 1 within the interval - 3 <x, t <3.
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Figure 3 Soliton profile of ug(§) for ag=1, A=5, u=— 1, A="1 within the interval - 3 <x, t<3.

Figure 4 Soliton profile of Hg(§) for ap=1, A=5, y = — 1, A=1 within the interval - 3 <x, t <3.
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10

Figure 5 Periodic wave of us;(§) for ap=1, A=0, y =3 within the interval - 10 < x, t < 10.

-300
-1000
-1500

H -2000
-2500
-3000

# 10 %

Figure 6 Periodic wave of Hs;(§) for ap=1, A=0, u =3 within the interval — 10 <x, t < 10.
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Figure 7 Periodic wave of usg(§) for ap=1, A=0, u=1, A = — 0.5 within the interval - 3 <x, t< 3.

Figure 8 Periodic wave of Hsg(§) for ap=1, A=0, y=1, A = — 0.5 within the interval - 3 <x, t<3.
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(2008) for A =0, A, =0 and if we set A =0 then our solutions Hg(§), Hi5(§) coincide
with the solutions Eq. (1.1) obtained by Wang et al. (2008) for A =0 A, =0. Corres-
pondingly, for similar conditions our solutions of Family 19 and Family 21 are coincide
with the solution Eq. (1.5) and Eq. (1.6) obtained by Wang et al. (2008). Rest of the
solutions are freshly derived using enhanced (G'/G) -expansion method.

Conclusions

Traveling wave solutions to nonlinear evolution equations arising in mathematical
Physics are of theoretical importance. In this paper, the enhanced (G ’/G)-expansion
method has been successfully applied for obtaining exact traveling wave solutions of
Variant Boussinesq equations. It has been shown that the enhanced (G /G)-expansion
method is quiet capable and well suited for finding exact solutions. The consistency
of the method gives this method a wider applicability. With the aid of Maple and by
putting them back into the original equation, we have assured the accuracy of the
obtained solutions. Finally, it is worthwhile to mention that the method is straightforward
and concise and it can be applied to other nonlinear evolution equations in engineering
and the physical sciences.
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