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Certain class of higher-dimensional simplicial
complexes and universal C∗-algebras
Saleh Omran1,2

Abstract

In this article we introduce a universal C∗-algebras associated to certain simplicial flag complexes. We denote it by C�n

it is a subalgebra of the noncommutative n-sphere which introduced by J.Cuntz. We present a technical lemma to
determine the quotient of the skeleton filtration of a general universal C∗-algebra associated to a simplicial flag
complex. We examine the K-theory of this algebra. Moreover we prove that any such algebra divided by the ideal I2 is
commutative.
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Introduction
In this section, we give a survey of some basic definitions
and properties of the universal C∗-algebra associated to a
certain flag complex which we will use in the sequel. Such
algebras in general was introduced first by Cuntz (2002)
and studied by Omran (2005, 2013).

Definition 1. A simplicial complex � consists of a set
of vertices V� and a set of non-empty subsets of V� , the
simplexes in �, such that:

• If s ∈ V� , then {s} ∈ �.
• If F ∈ � and ∅ �= E ⊂ F then E ∈ �.

A simplicial complex � is called flag or full, if it is deter-
mined by its 1-simplexes in the sense that {s0, . . . , sn} ∈
� ⇐⇒ {si, sj} ∈ � for all 0 ≤ i < j ≤ n.

� is called locally finite if every vertex of � is con-
tained in only finitely many simplexes of �, and finite-
dimensional (of dimension� n) if it contains no simplexes
with more than n + 1-vertices. For a simplicial complex
� one can define the topological space |�| associated to
this complex. It is called the “geometric realization” of
the complex and can be defined as the space of maps
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f : V� −→[ 0, 1] such that
∑

s∈V�
f (s) = 1 and f (s0).....

f (si) = 0 whenever {s0, . . . , si} /∈ �. If � is locally finite,
then |�| is locally compact.
Let � be a locally finite flag simplicial complex. Denote

byV� the set of its vertices. Define C� as the universalC∗-
algebra with positive generators hs, s ∈ V , satisfying the
relations

hs0hs1 . . . hsn = 0 whenever {s0, s1, . . . , sn} /∈ V� ,∑
s∈V�

hsht = ht ∀ t ∈ V� .

Here the sum is finite, because � is locally finite.
Cab� is the abelian version of the universal C∗-algebra

above, i.e. satisfying in addition hsht = hths forall s, t ∈
V� . Denote by Ik the ideal in C� generated by products
containing at least n+1 different generators. The filtration
(Ik) of C� is called the skeleton filtration.
Let

� :=
{

(s0, . . . , sn) ∈ Rn+1 | 0 ≤ si ≤ 1,
n∑

i=1
si = 1

}

be the standard n-simplex. Denote by C� the associated
universal C∗-algebra with generators hs, s ∈ {s0, . . . , sn},
such that hs ≥ 0 and

∑
s hs = 1. Denote by I� the ideal

in C� generated by products of generators containing all
the hsi , i = 0, . . . , n. For each k, denote by Ik the ideal in
C� generated by all products of generators hs containing
at least k+1 pairwise different generators. We also denote
by Iabk the image of Ik in Cab� . The algebra C� and their
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K-Theory was studied in details in (Omran and Gouda
2012). For any vertex t in � there is a natural evaluation
map C
 −→ Cmapping the generators ht to 1 and all the
other generators to 0. The following propositions are due
to Cuntz (2002).

Proposition 1. (i) The evaluation map C
 −→ C
defined above induces an isomorphism in K-theory. (ii)
The surjective map I
 −→ Iab
 induces an isomorphism
in K-theory, where Iab
 is the abelianization of I
.

We can observe that Ik is the kernel of the evaluation
map which define above so we can conclude that Ik is
closed.

Remark 1. Let � and I
 ⊂ C
 as above. Then
K∗(I
) ∼= K∗(C), ∗ = 0, 1, if the dimension n of 
 is even
and K∗(I
) ∼= K∗(C0(0, 1)), ∗ = 0, 1, if the dimension n of

 is odd.

Proposition 2. Let � be a locally finite simplicial com-
plex. Then Cab� is isomorphic to C0(|�|), the algebra of
continuous functions vanishing at infinity on the geometric
realization |�| of �.

UniversalC∗-algebras associated to certain
complexes
UniversalC∗-algebras is aC∗-algebras generated by gener-
ators and relations. Many C∗-algebras can be constructed
in the form of universalC∗-algebras an important example
for universal C∗-algebras is Cuntz algebras On the exis-
tence of this algebras and their K-theory was introduced
by Cuntz (1981, 1984) more other examples of universal
C∗-algebras can be found in (Cuntz 1993; Davidson 1996).
In the following, we introduce a general technical lemma
to compute the quotient of the skeleton filtration for a
general algebra associated to simplicial complex.
For a subset W ⊂ V� , let � ⊂ � be the subcomplex

generated byW and let I� be the ideal in C� generated by
products containing all generators of C� .

Lemma 1. Let C� and C� as above, then we have

Ik/Ik+1 ∼=
⊕

W⊂V� ,|W |=k+1
I�

Proof. C�/Ik+1 is generated by the images ḣi, i ∈ V� of
the generators in the quotient.
Given a subsetW ⊂ V� with |W | = k + 1, let

C�′ = C∗({ḣi|i ∈ W }) ⊂ C�/Ik+1.

Let I
�

′ denote the ideal in C
�

′ generated by products
containing all generators ḣi, i ∈ �′, and let B� denote its
closure. IfW �= W ′ , then B�B�

′ = 0, because the product

of any two elements in B� and B
�

′ contains products of
more than k + 1-different generators, which are equal to
zero in the algebra C�/Ik+1
It is clear that B� ⊂ Ik/Ik+1 so that⊕

W⊂V� ,|W |=k+1
B� ⊂ Ik/Ik+1.

Conversely, let x ∈ Ik/Ik+1. Then there is a sequence
(xn) converging to x, such that each xn is a sum of mono-
mialsms in ḣi containing at least k+1-different generators.
Thenms ∈ B� for someW and

xn =
∑

ms ∈
⊕

W⊂V� ,|W |=k+1
B� .

The space
⊕

W⊂V ,|W |=k+1B� is closed, because it is a
direct sum of closed ideals. It follows that

Ik/Ik+1 =
⊕

W⊂V� ,|W |=k+1
B�

Let now

πW : C� −→ C� .

be the canonical evaluation map defined by

πW (hi) =
⎧⎨
⎩
hi

′ ∀i ∈ W

0 if i /∈ W ,

where hi
′
denotes the generator in C� corresponding to

the index i inW , in other words

C� = C∗(h′
i|i ∈ W ).

We prove that πW (Ik+1) = 0. Since polynomials of the
form∑

. . . hi0 . . . hij . . . hik+1 . . . , i0, . . . , ij, . . . , ik+1, . . . ∈ V�

are dense in Ik+1 , it is enough to show that πW (x) = 0 for
each such polynomial x. We have

πW (x) =
∑

. . . h
′
i0 . . . h

′
ij . . . h

′
ik+1

. . . = 0,

since there is at least one il which is not in W . For this
index πW (hil ) = 0. Thus πW (x) = 0. Therefore πW
descends to a homomorphism

˙πW : C�/Ik+1 −→ C�

Now we show that πW is surjective as follows: Since
πW (Ik+1) = 0 , we have KerπW ⊃ Ik+1. It follows that the
following diagram

C� −→ C�

↘ ↑
C�/Ik+1

commutes and ˙πW (ḣi) := πW (hi) = hi
′
, i ∈ W is well

defined. This shows that πW (C�) is a closed subalgebra in
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C� and isomorphic to ˙πW (C�/Ik+1). We have ˙πW (B�) =
I� . It is clear that KerπW is the ideal generated by hi for
i not in W and therefore Ker ˙πW is generated by ḣi for
i not in W . This comes at once from the definitions of
˙πW (ḣi) and πW (hi) above and the fact that both are equal.

We conclude that B�Ker ˙πW = 0. This again implies that
B� ∩ Ker ˙πW = 0. Moreover the following diagram is
commutative:

C� −→ C�⋃ ⋃
B� −→ I�

↘ ↑
B�/Ker ˙πW .

So, ˙πW (B�) is dense and closed in I� . Therefore ˙πW :
B� −→ I� is injective and surjective.

As a consequence of the above lemma we have the
following.

Proposition 3. Let C� and Ik defined as above. Then we
have an isomorphism

Ik/Ik+1 ∼=
⊕



I
,

where the sum is taken over all k-simplexes 
 in �.

Proof. As in the proof of lemma 1 above with � = �,
we find that:

Ik/Ik+1 =
⊕



I
.

In the following we study theC∗-algebras C�n associated
to simplicial flag complexes � of a specific simple type.
These simplicial complexes is a subcomplex of the “non-
commutative spheres” in the sense of Cuntz work (Cuntz
2002). We determine the K-theory of C�n and also the
K-theory of its skeleton filtration. The K-theory of C∗-
algebras is a powerful tool for classifying C∗-algebras up
to their Projections and unitaries , more details about K-
theory of C∗-algebras found in the references (Blackadar
1986; Murphy 1990; Rørdam et al. 2000; Wegge-Olsen
1993).
We denote by �n the simplicial complex with n + 2

vertices, given in the form

V�n = {0+, 0−, 1, . . . , n},
and

�n = {γ ⊂ V�n | {0+, 0−} � γ }.

Let

C�n = C∗(h0− , h0+ , h1, h2, . . . , hn | h0−h0+

= 0, hi � 0,
∑
i
hi = 1,∀i)

be the universal C∗- algebra associated to �n. The exis-
tence of such algebras is due to Cuntz (2002). It is clear
that for any element hi ∈ C�n , we have ‖hi‖ ≤ 1.
Denote by I the natural ideal in C�n generated by prod-

ucts of generators containing all hi, i ∈ V�n . Then we have
the skeleton filtration

C�n = I0 ⊃ I1 ⊃ I2 ⊃ ..... ⊃ In+1 := I

The aim of this section is to prove that the K-theory of the
ideals I in the algebras C�n is equal to zero. We have the
following

Lemma 2. Let C�n be as above. Then C�n is homotopy
equivalent to C.

Proof. Let β : C−→C�n be the natural homomorphism
which sends 1 to 1C�n . For a fixed i ∈ V�n such that i �=
0−, 0+, define the homomorphism

α : C�n−→C

by α(hi) = 1 and α(hj) = 0 for any j �= i. Notice that
α ◦ β = idC. Now define ϕt : C�n −→ C�n , hi �−→ hi +
(1 − t)(

∑
j �=i hj), hj �−→ t(hj)j ∈ V�n \ {i}. The elements

ϕt(hj), j ∈ V�n , satisfy the same relations as the elements
hj in C�n :

(i) ϕt(hj) ≥ 0

(ii) ϕt
(∑

j hj
)

= ϕt(hi) + ∑
j �=i ϕt(hj)

= hi + (1 − t)
(∑

j �=i
hj

)
+ t

(∑
j �=i

hj
)

= hi +
∑
j �=i

hj for fixed i

=
∑

j
hj = 1 for all j,

(iii) ϕt(h0−)ϕt(h0+) = t2(h0−h0+) = 0.

We note that ϕ1 = idC�n and ϕ0 = β ◦ α.
This implies that

ϕ0 = β ◦ α ∼ IdC�n .

This means that C�n is homotopy equivalent to C.

From the above lemma , we have K∗(C�n) = K∗(C), for
∗ = 0, 1.
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Now we describe the subquotients of the skeleton filtra-
tion in C�n .

Proposition 4. In the C∗-algebra C�n one has

Ik/Ik+1 ∼=
⊕


I
⊕
⊕

γ
Iγ ,

where the sum is taken over all subcomplexes
 of�n which
are isomorphic to the standard k-simplex 
 and over all
subcomplexes γ of �n which contain both vertices 0+, 0−
and the second sum is taken over every subcomplex γ which
contains both vertices 0+, 0− and whose number of vertices
is k + 1.

Proof. We use Lemma 1 above. For everyW ⊂ V�n with
|W | = k + 1, we have two cases. Either {0+, 0−} is not a
subset ofW , then � is a k- simplex, or {0+, 0−} is a subset
ofW , then � is a subcomplex in �n isomorphic to γ . This
proves our proposition.

Lemma 3. For the complex �n with n+2 vertices, C�n/I1
is commutative and isomorphic to Cn+2.

Proof. Let ḣi denote the image of a generator hi for C�n .
One has the following relations:∑

i
ḣi = 1, ḣiḣj = 0, i �= j.

For every ḣi in C�n/I1 we have

ḣi = ḣi

(∑
i
ḣi

)
= ḣ2i .

Hence C�n/I1 is generated by n+ 2 different orthogonal
projections and therefore C�n/I1 ∼= Cn+2.

Lemma 4. I1/I2 in C�n is isomorphic to Iab1 /Iab2 in Cab�n .

Proof. From the proposition 4 above, one has

I1/I2 ∼=
⊕


1I
1

where 
1 is 1-simplex, and

Iab1 /Iab2 ∼=
⊕


1I
ab

1 .

Since I
1 ⊂ C
1 is commutative because the generators
of C
1 commute (since hs1 = 1 − hs0 ). We get

I
1 ∼= Iab

1

∼= C0(0, 1).

Lemma 5. In C�n , we have K0(I1/I2) = 0 and
K1(I1/I2) = Z(n2)+2n.

Proof. By applying above lemma , and proposition 4, we
have

I1/I2 ∼=
⊕


1I
1

The sum contain
(n
2
) + 2n 1-simplex, 
1 ∼= C0(0, 1).

where K0(C0(0, 1)) = 0 and K1(C0(0, 1)) = Z.

Lemma 6. C�n/I2 is a commutative C∗-algebra.

Proof. Consider the extension

0 −→ I1/I2 −→ C�n/I2 −→ C�n/I1 −→ 0

and the analogous extension for the abelianized algebras.
The extensions above induce the following commutative

diagram:

0 −→ I1/I2 −→ C�n/I2 −→ C�n/I1 −→ 0
↓ ↓ ↓

0 −→ Iab1 /Iab2 −→ Cab�n/Iab2 −→ Cab�n/Iab1 −→ 0

We have from 3 isomorphisms C�n/I1 ∼= Cab�n/Iab1 ∼= Cn+2

and from 4 that I1/I2 ∼= Iab1 /Iab2 , so

C�n/I2 ∼= Cab�n/Iab2 .

Lemma 7. C∗-algebra C�1 is commutative and K∗(I2) =
0, ∗ = 0, 1 where I2 is an ideal in C�1 defined as in the
above.

Proof. C�1 is generated by three positive generators,
h0− , h0+ , h1. Consider the product of two generators, say
h1h0− . We have that 1, h0− and h0+ commute with h0− ,
therefore also h1 = 1 − h0− − h0+ .
By a similar computation we can show that h0+ and h1

commute. This implies that C�1 is commutative. There-
fore I2 = 0 in C�1 Then, at once K∗(I2) = 0.
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