

RESEARCH Open Access

Certain class of higher-dimensional simplicial complexes and universal C*-algebras

Saleh Omran^{1,2}

Abstract

In this article we introduce a universal C^* -algebras associated to certain simplicial flag complexes. We denote it by \mathcal{C}_{Γ^n} it is a subalgebra of the noncommutative n-sphere which introduced by J.Cuntz. We present a technical lemma to determine the quotient of the skeleton filtration of a general universal C^* -algebra associated to a simplicial flag complex. We examine the K-theory of this algebra. Moreover we prove that any such algebra divided by the ideal l_2 is commutative.

2000 AMS: 19 K 46

Keywords: Simplicial complexes; K- theory of C*-algebras; Universal C*-algebras

Introduction

In this section, we give a survey of some basic definitions and properties of the universal C^* -algebra associated to a certain flag complex which we will use in the sequel. Such algebras in general was introduced first by Cuntz (2002) and studied by Omran (2005, 2013).

Definition 1. A simplicial complex Σ consists of a set of vertices V_{Σ} and a set of non-empty subsets of V_{Σ} , the simplexes in Σ , such that:

- If $s \in V_{\Sigma}$, then $\{s\} \in \Sigma$.
- If $F \in \Sigma$ and $\emptyset \neq E \subset F$ then $E \in \Sigma$.

A simplicial complex Σ is called flag or full, if it is determined by its 1-simplexes in the sense that $\{s_0, \ldots, s_n\} \in \Sigma \iff \{s_i, s_j\} \in \Sigma$ for all $0 \le i < j \le n$.

 Σ is called locally finite if every vertex of Σ is contained in only finitely many simplexes of Σ , and finite-dimensional (of dimension $\leq n$) if it contains no simplexes with more than n+1-vertices. For a simplicial complex Σ one can define the topological space $|\Sigma|$ associated to this complex. It is called the "geometric realization" of the complex and can be defined as the space of maps

 $f: V_{\Sigma} \longrightarrow [0,1]$ such that $\sum_{s \in V_{\Sigma}} f(s) = 1$ and $f(s_0)$ $f(s_i) = 0$ whenever $\{s_0, \ldots, s_i\} \notin \Sigma$. If Σ is locally finite, then $|\Sigma|$ is locally compact.

Let Σ be a locally finite flag simplicial complex. Denote by V_{Σ} the set of its vertices. Define \mathcal{C}_{Σ} as the universal C^* -algebra with positive generators $h_s, s \in V$, satisfying the relations

$$h_{s_0}h_{s_1}\dots h_{s_n}=0$$
 whenever $\{s_0,s_1,\dots,s_n\}\notin V_{\Sigma},$
$$\sum_{s\in V_{\Sigma}}h_sh_t=h_t\quad\forall\ t\in V_{\Sigma}.$$

Here the sum is finite, because Σ is locally finite.

 $\mathcal{C}_{\Sigma}^{ab}$ is the abelian version of the universal C^* -algebra above, i.e. satisfying in addition $h_sh_t=h_th_s$ forall $s,t\in V_{\Sigma}$. Denote by I_k the ideal in \mathcal{C}_{Σ} generated by products containing at least n+1 different generators. The filtration (I_k) of \mathcal{C}_{Σ} is called the skeleton filtration.

Let

$$\Delta := \left\{ (s_0, \dots, s_n) \in \mathbb{R}^{n+1} \mid 0 \le s_i \le 1, \sum_{i=1}^n s_i = 1 \right\}$$

be the standard n-simplex. Denote by \mathcal{C}_{Δ} the associated universal C^* -algebra with generators h_s , $s \in \{s_0, \ldots, s_n\}$, such that $h_s \geq 0$ and $\sum_s h_s = 1$. Denote by \mathcal{I}_{Δ} the ideal in \mathcal{C}_{Δ} generated by products of generators containing all the h_{s_i} , $i = 0, \ldots, n$. For each k, denote by I_k the ideal in \mathcal{C}_{Δ} generated by all products of generators h_s containing at least k+1 pairwise different generators. We also denote by I_k^{ab} the image of I_k in $\mathcal{C}_{\Delta}^{ab}$. The algebra \mathcal{C}_{Δ} and their

²Faculty of science, Math. Department, KSA South valley university, Qena, Fount

Correspondence: salehomran@yahoo.com

Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia

K-Theory was studied in details in (Omran and Gouda 2012). For any vertex t in Δ there is a natural evaluation map $\mathcal{C}_{\Delta} \longrightarrow \mathbb{C}$ mapping the generators h_t to 1 and all the other generators to 0. The following propositions are due to Cuntz (2002).

Proposition 1. (i) The evaluation map $\mathcal{C}_{\triangle} \longrightarrow \mathbb{C}$ defined above induces an isomorphism in K-theory. (ii) The surjective map $\mathcal{I}_{\triangle} \longrightarrow \mathcal{I}_{\triangle}^{ab}$ induces an isomorphism in K-theory, where $\mathcal{I}_{\triangle}^{b}$ is the abelianization of \mathcal{I}_{\triangle} .

We can observe that I_k is the kernel of the evaluation map which define above so we can conclude that I_k is closed.

Remark 1. Let Δ and $\mathcal{I}_{\triangle} \subset \mathcal{C}_{\triangle}$ as above. Then $K_*(\mathcal{I}_{\triangle}) \cong K_*(\mathbb{C})$, *=0,1, if the dimension n of \triangle is even and $K_*(\mathcal{I}_{\triangle}) \cong K_*(C_0(0,1))$, *=0,1, if the dimension n of \triangle is odd.

Proposition 2. Let Σ be a locally finite simplicial complex. Then C_{Σ}^{ab} is isomorphic to $C_0(|\Sigma|)$, the algebra of continuous functions vanishing at infinity on the geometric realization $|\Sigma|$ of Σ .

Universal C^* -algebras associated to certain complexes

Universal C^* -algebras is a C^* -algebras generated by generators and relations. Many C^* -algebras can be constructed in the form of universal C^* -algebras an important example for universal C^* -algebras is Cuntz algebras O_n the existence of this algebras and their K-theory was introduced by Cuntz (1981, 1984) more other examples of universal C^* -algebras can be found in (Cuntz 1993; Davidson 1996). In the following, we introduce a general technical lemma to compute the quotient of the skeleton filtration for a general algebra associated to simplicial complex.

For a subset $W \subset V_{\Sigma}$, let $\Gamma \subset \Sigma$ be the subcomplex generated by W and let \mathcal{I}_{Γ} be the ideal in \mathcal{C}_{Γ} generated by products containing all generators of \mathcal{C}_{Γ} .

Lemma 1. Let C_{Σ} and C_{Γ} as above, then we have

$$I_k/I_{k+1} \cong \bigoplus_{W \subset V_{\Sigma}, |W|=k+1} \mathcal{I}_{\Gamma}$$

Proof. C_{Σ}/I_{k+1} is generated by the images \dot{h}_i , $i \in V_{\Sigma}$ of the generators in the quotient.

Given a subset $W \subset V_{\Sigma}$ with |W| = k + 1, let

$$C_{\Gamma'} = C^*(\{\dot{h}_i | i \in W\}) \subset C_{\Sigma}/I_{k+1}.$$

Let $\mathcal{I}_{\Gamma'}$ denote the ideal in $\mathcal{C}_{\Gamma'}$ generated by products containing all generators $\dot{h_i}$, $i \in \Gamma'$, and let \mathcal{B}_{Γ} denote its closure. If $W \neq W'$, then $\mathcal{B}_{\Gamma}\mathcal{B}_{\Gamma'} = 0$, because the product

of any two elements in \mathcal{B}_{Γ} and $\mathcal{B}_{\Gamma'}$ contains products of more than k+1-different generators, which are equal to zero in the algebra $\mathcal{C}_{\Sigma}/I_{k+1}$

It is clear that $\mathcal{B}_{\Gamma} \subset I_k/I_{k+1}$ so that

$$\bigoplus_{W\subset V_{\Sigma},|W|=k+1}\mathcal{B}_{\Gamma}\subset I_k/I_{k+1}.$$

Conversely, let $x \in I_k/I_{k+1}$. Then there is a sequence (x_n) converging to x, such that each x_n is a sum of monomials m_s in h_i containing at least k+1-different generators. Then $m_s \in \mathcal{B}_{\Gamma}$ for some W and

$$x_n = \sum m_s \in \bigoplus_{W \subset V_{\Sigma}, |W| = k+1} \mathcal{B}_{\Gamma}.$$

The space $\bigoplus_{W \subset V, |W| = k+1} \mathcal{B}_{\Gamma}$ is closed, because it is a direct sum of closed ideals. It follows that

$$I_k/I_{k+1} = \bigoplus_{W \subset V_{\Sigma} \mid W \mid = k+1} \mathcal{B}_{\Gamma}$$

Let now

$$\pi_W: \mathcal{C}_{\Sigma} \longrightarrow \mathcal{C}_{\Gamma}.$$

be the canonical evaluation map defined by

$$\pi_{W}(h_{i}) = \begin{cases} h_{i}^{'} \ \forall i \in W \\ 0 \ \text{if } i \notin W, \end{cases}$$

where $h_i^{'}$ denotes the generator in \mathcal{C}_{Γ} corresponding to the index i in W, in other words

$$C_{\Gamma} = C^*(h_i^{\prime}|i \in W).$$

We prove that $\pi_W(I_{k+1}) = 0$. Since polynomials of the form

$$\sum \ldots h_{i_0} \ldots h_{i_j} \ldots h_{i_{k+1}} \ldots, \quad i_0, \ldots, i_j, \ldots, i_{k+1}, \ldots \in V_{\Sigma}$$

are dense in I_{k+1} , it is enough to show that $\pi_W(x)=0$ for each such polynomial x. We have

$$\pi_{W}(x) = \sum \dots h_{i_{0}}^{'} \dots h_{i_{i}}^{'} \dots h_{i_{k+1}}^{'} \dots = 0,$$

since there is at least one i_l which is not in W. For this index $\pi_W(h_{i_l})=0$. Thus $\pi_W(x)=0$. Therefore π_W descends to a homomorphism

$$\dot{\pi_W}: \mathcal{C}_{\Sigma}/I_{k+1} \longrightarrow \mathcal{C}_{\Gamma}$$

Now we show that π_W is surjective as follows: Since $\pi_W(I_{k+1})=0$, we have $\operatorname{Ker} \pi_W\supset I_{k+1}$. It follows that the following diagram

$$\begin{array}{ccc} \mathcal{C}_{\Sigma} & \longrightarrow & \mathcal{C}_{\Gamma} \\ & \searrow & \uparrow \\ & & \mathcal{C}_{\Sigma}/I_{k+1} \end{array}$$

commutes and $\pi_{W}(\dot{h_{i}}) := \pi_{W}(h_{i}) = h_{i}^{'}, i \in W$ is well defined. This shows that $\pi_{W}(\mathcal{C}_{\Sigma})$ is a closed subalgebra in

 \mathcal{C}_{Γ} and isomorphic to $\pi_W(\mathcal{C}_{\Sigma}/I_{k+1})$. We have $\pi_W(\mathcal{B}_{\Gamma})=\mathcal{I}_{\Gamma}$. It is clear that $\operatorname{Ker}\pi_W$ is the ideal generated by h_i for i not in W and therefore $\operatorname{Ker}\pi_W$ is generated by \dot{h}_i for i not in W. This comes at once from the definitions of $\pi_W(\dot{h}_i)$ and $\pi_W(h_i)$ above and the fact that both are equal. We conclude that $\mathcal{B}_{\Gamma}\operatorname{Ker}\pi_W=0$. This again implies that $\mathcal{B}_{\Gamma}\cap\operatorname{Ker}\pi_W=0$. Moreover the following diagram is commutative:

$$\begin{array}{ccc} \mathcal{C}_{\Sigma} \longrightarrow & \mathcal{C}_{\Gamma} \\ \bigcup & & \bigcup \\ \mathcal{B}_{\Gamma} \longrightarrow & \mathcal{I}_{\Gamma} \\ & & \uparrow \\ & & \mathcal{B}_{\Gamma}/\mathrm{Ker}\,\dot{\pi_{W}}. \end{array}$$

So, $\pi_W^i(\mathcal{B}_{\Gamma})$ is dense and closed in \mathcal{I}_{Γ} . Therefore $\pi_W^i: \mathcal{B}_{\Gamma} \longrightarrow \mathcal{I}_{\Gamma}$ is injective and surjective.

As a consequence of the above lemma we have the following.

Proposition 3. Let C_{Δ} and I_k defined as above. Then we have an isomorphism

$$I_k/I_{k+1}\cong\bigoplus_{\wedge}\mathcal{I}_{\triangle}$$
,

where the sum is taken over all k-simplexes \triangle in Σ .

Proof. As in the proof of lemma 1 above with $\Sigma = \Delta$, we find that:

$$I_k/I_{k+1}=\bigoplus_{\wedge}\mathcal{I}_{\triangle}.$$

In the following we study the C^* -algebras \mathcal{C}_{Γ^n} associated to simplicial flag complexes Γ of a specific simple type. These simplicial complexes is a subcomplex of the "noncommutative spheres" in the sense of Cuntz work (Cuntz 2002). We determine the K-theory of \mathcal{C}_{Γ^n} and also the K-theory of its skeleton filtration. The K-theory of C^* -algebras is a powerful tool for classifying C^* -algebras up to their Projections and unitaries , more details about K-theory of C^* -algebras found in the references (Blackadar 1986; Murphy 1990; Rørdam et al. 2000; Wegge-Olsen 1993).

We denote by Γ^n the simplicial complex with n+2 vertices, given in the form

$$V_{\Gamma^n} = \{0^+, 0^-, 1, \dots, n\},\$$

and

$$\Gamma^n = \{ \gamma \subset V_{\Gamma^n} \mid \{0^+, 0^-\} \not\subseteq \gamma \}.$$

Let

$$C_{\Gamma^n} = C^*(h_{0^-}, h_{0^+}, h_1, h_2, \dots, h_n \mid h_{0^-}h_{0^+}$$

= 0, $h_i \ge 0$, $\sum_i h_i = 1, \forall i$)

be the universal C^* - algebra associated to Γ^n . The existence of such algebras is due to Cuntz (2002). It is clear that for any element $h_i \in \mathcal{C}_{\Gamma^n}$, we have $||h_i|| \leq 1$.

Denote by $\mathcal I$ the natural ideal in $\mathcal C_{\Gamma^n}$ generated by products of generators containing all $h_i,\ i\in V_{\Gamma^n}$. Then we have the skeleton filtration

$$C_{\Gamma^n} = I_0 \supset I_1 \supset I_2 \supset \supset I_{n+1} := \mathcal{I}$$

The aim of this section is to prove that the K-theory of the ideals \mathcal{I} in the algebras \mathcal{C}_{Γ^n} is equal to zero. We have the following

Lemma 2. Let C_{Γ^n} be as above. Then C_{Γ^n} is homotopy equivalent to \mathbb{C} .

Proof. Let $\beta: \mathbb{C} \longrightarrow \mathcal{C}_{\Gamma^n}$ be the natural homomorphism which sends 1 to $1_{\mathcal{C}_{\Gamma^n}}$. For a fixed $i \in V_{\Gamma^n}$ such that $i \neq 0^-, 0^+$, define the homomorphism

$$\alpha:\mathcal{C}_{\Gamma^n}{\longrightarrow}\mathbb{C}$$

by $\alpha(h_i)=1$ and $\alpha(h_j)=0$ for any $j\neq i$. Notice that $\alpha\circ\beta=id_{\mathbb{C}}$. Now define $\varphi_t:\mathcal{C}_{\Gamma^n}\longrightarrow\mathcal{C}_{\Gamma^n},\,h_i\longmapsto h_i+(1-t)(\sum_{j\neq i}h_j),\,h_j\longmapsto t(h_j)j\in V_{\Gamma^n}\setminus\{i\}$. The elements $\varphi_t(h_j),\,j\in V_{\Gamma^n}$, satisfy the same relations as the elements h_j in \mathcal{C}_{Γ^n} :

(i)
$$\varphi_t(h_i) \geq 0$$

(ii)
$$\varphi_t\left(\sum_j h_j\right) = \varphi_t(h_i) + \sum_{j \neq i} \varphi_t(h_j)$$

$$= h_i + (1 - t) \left(\sum_{j \neq i} h_j\right) + t \left(\sum_{j \neq i} h_j\right)$$

$$= h_i + \sum_{j \neq i} h_j \text{ for fixed } i$$

$$= \sum_j h_j = 1 \text{ for all } j,$$

(iii)
$$\varphi_t(h_{0^-})\varphi_t(h_{0^+}) = t^2(h_{0^-}h_{0^+}) = 0.$$

We note that $\varphi_1 = id_{\mathcal{C}_{\Gamma^n}}$ and $\varphi_0 = \beta \circ \alpha$. This implies that

$$\varphi_0 = \beta \circ \alpha \sim Id_{\mathcal{C}_{\Gamma^n}}.$$

This means that \mathcal{C}_{Γ^n} is homotopy equivalent to \mathbb{C} .

From the above lemma , we have $K_*(\mathcal{C}_{\Gamma^n})=K_*(\mathbb{C})$, for *=0,1.

Now we describe the subquotients of the skeleton filtration in \mathcal{C}_{Γ^n} .

Proposition 4. *In the* C^* *-algebra* \mathcal{C}_{Γ^n} *one has*

$$I_k/I_{k+1}\cong \bigoplus_{\wedge} \mathcal{I}_{\triangle} \oplus \bigoplus_{\gamma} \mathcal{I}_{\gamma}$$
 ,

where the sum is taken over all subcomplexes \triangle of Γ^n which are isomorphic to the standard k-simplex \triangle and over all subcomplexes γ of Γ^n which contain both vertices $0^+, 0^-$ and the second sum is taken over every subcomplex γ which contains both vertices $0^+, 0^-$ and whose number of vertices is k+1.

Proof. We use Lemma 1 above. For every $W \subset V_{\Gamma^n}$ with |W| = k + 1, we have two cases. Either $\{0^+, 0^-\}$ is not a subset of W, then Γ is a k- simplex, or $\{0^+, 0^-\}$ is a subset of W, then Γ is a subcomplex in Γ^n isomorphic to γ . This proves our proposition.

Lemma 3. For the complex Γ^n with n+2 vertices, C_{Γ^n}/I_1 is commutative and isomorphic to \mathbb{C}^{n+2} .

Proof. Let \dot{h}_i denote the image of a generator h_i for C_{Γ^n} . One has the following relations:

$$\sum_{i} \dot{h}_{i} = 1, \quad \dot{h}_{i} \dot{h}_{j} = 0, \quad i \neq j.$$

For every \dot{h}_i in C_{Γ^n}/I_1 we have

$$\dot{h_i} = \dot{h_i} \left(\sum_i \dot{h_i} \right) = \dot{h}_i^2.$$

Hence C_{Γ^n}/I_1 is generated by n+2 different orthogonal projections and therefore $C_{\Gamma^n}/I_1 \cong \mathbb{C}^{n+2}$.

Lemma 4. I_1/I_2 in \mathcal{C}_{Γ^n} is isomorphic to I_1^{ab}/I_2^{ab} in $\mathcal{C}_{\Gamma^n}^{ab}$.

Proof. From the proposition 4 above, one has

$$I_1/I_2 \cong \bigoplus_{\wedge^1} \mathcal{I}_{\triangle^1}$$

where \triangle^1 is 1-simplex, and

$$I_1^{ab}/I_2^{ab} \cong \bigoplus_{a,b} \mathcal{I}_{\wedge^1}^{ab}.$$

Since $\mathcal{I}_{\triangle^1} \subset \mathcal{C}_{\triangle^1}$ is commutative because the generators of $\mathcal{C}_{\triangle^1}$ commute (since $h_{s_1} = 1 - h_{s_0}$). We get

$$\mathcal{I}_{\triangle^1}\cong\mathcal{I}_{\triangle^1}^{ab}\cong C_0(0,1).$$

Lemma 5. In C_{Γ^n} , we have $K_0(I_1/I_2) = 0$ and $K_1(I_1/I_2) = \mathbb{Z}^{\binom{n}{2}+2n}$.

Proof. By applying above lemma , and proposition 4, we have

$$I_1/I_2 \cong \bigoplus_{\wedge^1} \mathcal{I}_{\triangle^1}$$

The sum contain $\binom{n}{2} + 2n$ 1-simplex, $\Delta^1 \cong C_0(0,1)$. where $K_0(C_0(0,1)) = 0$ and $K_1(C_0(0,1)) = \mathbb{Z}$.

Lemma 6. C_{Γ^n}/I_2 is a commutative C^* -algebra.

Proof. Consider the extension

$$0 \longrightarrow I_1/I_2 \longrightarrow \mathcal{C}_{\Gamma^n}/I_2 \longrightarrow \mathcal{C}_{\Gamma^n}/I_1 \longrightarrow 0$$

and the analogous extension for the abelianized algebras.

The extensions above induce the following commutative diagram:

$$0 \longrightarrow I_1/I_2 \longrightarrow \mathcal{C}_{\Gamma^n}/I_2 \longrightarrow \mathcal{C}_{\Gamma^n}/I_1 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow I_1^{ab}/I_2^{ab} \longrightarrow \mathcal{C}_{\Gamma^n}^{ab}/I_2^{ab} \longrightarrow \mathcal{C}_{\Gamma^n}^{ab}/I_1^{ab} \longrightarrow 0$$

We have from 3 isomorphisms $C_{\Gamma^n}/I_1 \cong C_{\Gamma^n}^{ab}/I_1^{ab} \cong \mathbb{C}^{n+2}$ and from 4 that $I_1/I_2 \cong I_1^{ab}/I_2^{ab}$, so

$$\mathcal{C}_{\Gamma^n}/I_2 \cong \mathcal{C}_{\Gamma^n}^{ab}/I_2^{ab}$$
.

Lemma 7. C^* -algebra C_{Γ^1} is commutative and $K_*(I_2) = 0$, *=0,1 where I_2 is an ideal in C_{Γ^1} defined as in the above.

Proof. \mathcal{C}_{Γ^1} is generated by three positive generators, h_{0^-}, h_{0^+}, h_1 . Consider the product of two generators, say $h_1h_{0^-}$. We have that $1, h_{0^-}$ and h_{0^+} commute with h_{0^-} , therefore also $h_1 = 1 - h_{0^-} - h_{0^+}$.

By a similar computation we can show that h_{0^+} and h_1 commute. This implies that \mathcal{C}_{Γ^1} is commutative. Therefore $I_2 = 0$ in \mathcal{C}_{Σ^1} Then, at once $K_*(I_2) = 0$.

Competing interests

The author declare that he has no competing interests.

Received: 20 December 2013 Accepted: 17 March 2014 Published: 21 May 2014

References

Blackadar B (1986) K-theory for operator algebras. MSRI Publ. 5, Cambridge University Press

Cuntz J (1981) K-theory for certain C*-algebras. Ann Math 113:181–197 Cuntz J (1984) K-theory and C*-algebras. Proc. Conf. on K-theory (Bielefeld,1982). Springer Lecture Notes in Math. 1046:55–79

Cuntz J (1993) A survey of some aspects of noncommutative geometry.

Jahresber D Dt Math-Verein 95:60–84

Cuntz J (2002) Non-commutative simplicial complexes and Baum-Connes-conjecture. GAFA, Geom Func Anal 12: 307–329 Davidson KR (1996) C*-algebras by example. Fields Institute monographs, Amer. Math. Soc, Providence

Murphy GJ (1990) C*-algebras and operator theory. Academic Press Omran S (2005) C*-algebras associated with higher-dimensional noncommutative simplicial complexes and their K-theory. Dissertation, Münster: Univ. Münster-Germany

- Omran S (2013) C*-algebras associated noncommutative circle and their K-theory. Aust J Math Anal Appl 10(1): 1–8. Article 8
- Omran S, Gouda GhY (2012) On the K-theory of C*-algebras associated with n-Simplexes. Int J Math Anal 6(17): 847–855
- Rørdam M, Larsen F, Laustsen N (2000) An introduction to K-theory for C*-algebras. London Mathematical Society Student Text 49, Cambridge University Press
- Wegge-Olsen NE (1993) K-theory and C^* -algebras. Oxford University Press, New York

doi:10.1186/2193-1801-3-258

Cite this article as: Omran: Certain class of higher-dimensional simplicial complexes and universal C^* -algebras. SpringerPlus 2014 **3**:258.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com