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Abstract

engineering and mathematical physics.

Homogeneous balance

In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact
traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to
illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As

a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the
proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics,
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Introduction

The world around us is inherently nonlinear and nonlin-
ear evolution equations (NLEEs) are extensively used to
model the complex physical phenomena. The exact solu-
tions of NLEEs play a crucial role in nonlinear science
and engineering. Therefore, investigation of exact solu-
tions of nonlinear partial differential equations has be-
come a major concern for both mathematicians and
physicists. One of the fundamental problems for these
models is to obtain their traveling wave solutions. There-
fore, the interest on finding traveling wave solution of
NLEEs is increasing day by day and now it becomes a
hot topic to the researchers. In recent years, many re-
searchers who are interested in the nonlinear physical
phenomena investigated exact solutions of NLEEs. They
established many powerful and direct methods to
comprehend the internal mechanisms of these physical
phenomena. Some of the existing methods are, the
Backlund transformation method (Miura, 1978; Wang
and Wang, 2001), the Darboux transformation method
(Matveev and Salle, 1991), the Riccati equation method
(Cai et al.,, 2009), the tanh-function method (Fan, 2000;
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Wazwaz, 2004a), the Exp-function method (He and W,
2006), the sine-cosine method (Wazwaz, 2004b), the
Frobenius integrable decomposition method (Ma et al.,
2007), the rational function transformation method (Ma
and Lee, 2009), the multiple Exp-function method (Ma
and Zhu, 2012; Ma et al, 2010), the generalized bilinear
transformation method (Ma, 2011), the Cole-Hopf trans-
formation method (Ma and Fuchssteiner, 1996), the
bilinear differential operator scheme (Ma, 2013), the
homogeneous balance method (Fan and Zhang, 1998),
the auxiliary equation method (Sirendaoerji, 2003), the Lie
group transformation method (Olver, 1986) and so on.

Recently, Wang et al. (Wang et al., 2008) established a
prolific method called the (G'/G)-expansion method. Ap-
plications of this method can be found in the works,
Zayed and Gepreel (2008); Ozis and Aslan (2009); Kheiri
and Jabbari (2010); Naher et al. (2011); Akbar et al.
(2012a); Guo et al. (2010); Zayed and Al-Joudi (2010) and
references therein for better comprehension. Then diverse
group of researchers extended this method in different
names like, extended (G'/G)-expansion method (Guo and
Zhou, 2010), further extended (G'/G)-expansion method
(Li et al, 2010), improved (G'/G)-expansion method
(Zayed, 2011), generalized and improved (G'/G)-ex-
pansion method (Akbar et al., 2012b) etc.
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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In this article, following the above extensions of the
(G'/G)-expansion method, we offer a scheme -called
the new extended (G'/G)-expansion method in
which the solution is presented in the form

= ; M (a s 1, 2
u(f)—iz_;{[HMG,/G)TM,(G/G) W}

where G=G(§) satisfies the differential equation
G” +u G =0, =0. Using this method, we achieve several
new traveling wave solutions of the (3 + 1)-dimensional
potential-YTSF equation.

The method
For the independent variables %, y, z and t, we consider
the NLEEs in the following form

F(uautauxyuttvuxx7uxta """ ) = 07 (1)

where u = u(x,y,z,t) is an unknown function and F is a
polynomial in u(x,, z, t) and its partial derivatives.
Consider the traveling wave transformation

u(x,y,z,t) =u(§),§ =x+y+z-Vt 2)

where V is the speed of the traveling wave to be deter-
mined. The principal steps of the method are as follows:
Step 1. Using the traveling wave transformation (2),
Eq. (1) can be converted into an ordinary differential
equation (ODE):
Q(uvuv:u'7u”7um7”'> :Oa (3)
where prime stands for ordinary derivative with respect
to { and Q is a polynomial in u = u(§) and its derivatives.
Step 2. Assume that the solution of Eq. (3) can be
expressed in the following form

R (<L) u\/rﬁ
M(E)_iz,,{[HA(G'/G)}”ML(G /G) 0[1 +”(G /G)] ,
(4)
where G = G(¢) satisfies the differential equation
G +uG=0, (5)

where y#0,0=+1 and a;b; (i=-n,---,n),A are con-
stants to be determined.

Step 3. The value of # can be determined by balancing
the highest-order derivative term with the nonlinear
term of the highest order come out in the reduced equa-
tion (3).

Step 4. Inserting (4) into Eq. (3) and making use of
Eq. (5) and then extracting all terms of powers of (G'/G)

and (G'/G)j\/o[l + (G'/G)Z//z} and setting each co-

efficient of them to zero yields an over-determined system
of algebraic equations. Solving this system of algebraic
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equations for a;, b; (i=-n,---,n) and 1,V, we obtain the
value of the unknown parameters.

Step 5. The substitution y=(G'/G) transforms the
linear Eq. (5) into the following Riccati equation:

y =uy (6)
where y=(G’'/G). The general solutions of the Riccati

Eq. (6) are well-known (see Ma and Fuchssteiner, 1996)
and are given below:

<€> . ﬂtanh(ﬂ5+%) =)
G \/ﬁcoth<\/ﬁ€+%> =f12()

where ¢ >0 and & = +1

(7)

G\ _[-vaan(yas+ed) =118 o0
(G)f{ﬁcot(ﬁfﬂfo):m(& here 1 <0
®)

Inserting the values of a;, b; (i=-mn, -, n), A,Vand (7)
and (8) into Eq. (4), we obtain abundant traveling wave
solutions of Eq. (1). In Ref. Ma and Fuchssteiner (1996),
a solution for the condition x# =0 also presented. But,
since in step 5, we assumed g =0, this solution is not
presented here. If y =0, the assumed solution (4) will
collapse.

Application of the method
To show the efficiency of the proposed method, we con-
sider the (3 + 1)-dimensional potential-YTSF equation

Attt + Upnnz + Ul +2Ugxti; + 31y, =0 (9)

Under the traveling wave transformation provided in
Eq. (2), Eq. (9) will be transformed to an ODE and inte-
grating once, we obtain

K+4Vu +u +3u”+3u =0 (10)

where K is an integration constant. The balance of the
highest-order derivative term z" and nonlinear term of
the highest order x'* in Eq. (10) yields 7 = 1. Therefore,
according to our preamble, the solution of Eq. (11) is

+ by /a[l +i(G'/G)2] +b.4(G/G) /a[l +i(G'/G)2]‘

a1(G'/G)
“IIAG6)

u() =

(11)

where G = G(§) satisfies Eq. (5). Substituting Eq. (11) and
Eq. (5) into Eq. (10) and collecting the terms of like
powers of (G'/G) and (6/6)\/o[1+(6/6)"/u], and setting
them to zero, we obtain an over-determined system of
algebraic equation that consists of twenty-five equations
(the equations are omitted here for minimalism). Solving
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this over-determined system of algebraic equations with

the assist of Maple, we obtain the following solutions:
Case-1:

K=0,V=pu-3/4, A=0, a1 =1, by =a_

:b_l:O7 blzi\/é, ag = agp
g

When p > 0, using (7) into solution Eq. (1
810g(€o)>

1), we obtain

u—ao—ﬁ—\/“tanh(\/-f—f—

+ \/ﬁ\/l + tanh? <\/ﬁ €+ €l°g2(£°)) (12)
and
u=ao+ \/ﬁcoth<\/_ £+ 810g(5°)>
+ \/‘\/1 + coth2 f £+ elog(f")) (13)

where {=x+y+z-Vitand V=y-3/4.

Again, when y# <0, using (8) into solution Eq. (11),

we obtain

U= ao—ﬁtan(ﬁf + & fo)

j:\/ﬁ\/l—tanz(ﬁf+sfo) (14)
and
u=ag+ ﬁcot(ﬁf—i—sfo)
i\/ﬁ\/l—cotZ(\/:ﬁf—i-sfo) (15)

Case-2:

K=0, V=p-3/4 A=A a;=2\u+2,
apg = aop, b():b_lzbl:O.

When u > 0, using (7) into solution Eq. (11), we obtain
2 E(1 +A2M) tanh(\/ﬁ £+ %)
1 +A\/ﬁtanh(\/ﬁg+%) 7

2 7 (1+ A% coth (/7 € + €552
1 —l—)L\/ﬁcoth(\/ﬁ{_Fﬂ%(fo))

where {=x+y+z-Vt, V=yu-3/4

U=ay+ (16)

u=ap+ (17)

And when ux<0, using (8) into solution Eq. (11),

we obtain

2 \/——/2(1 +)L2ﬂ> tan(\/:ﬁf—f— eefo)
I—A\/—'/Ztan(\/—'ﬂf—l—efo) ’

u = ap- (18)
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2/~ (1 +22u) cot(\/~f €+ &)

Uu=ap+ , 19
0 14+ A /ucot(\/~u €+ e&p) (19)
where {=x+y+z-Vt, V=p-3/4.
Case-3:

K=0, V=u-3/4, A=A, a1 =-2u, ay=ay,
ﬂlzbozh_lzblzo.

When g > 0, using (7) into solution Eq. (11), we obtain
_ 2u(1+Af1,(6))

Uu=a 20
A 20
where {=x+y+2z-Vt,V=p-3/4and i=12.
And when u <0, using (8) into solution Eq. (11), we
obtain
2u(1+Af, ;
U= ao- /'{( + f2 1(5)) (21)

f2:(8)

where {=x+y+2z-Vt,V=pu-3/4andi=12.
Case-4:
K=0, V=4u-3/4, A =0m, a; =2,
61_1:—2,0[7 aog — Aao, b():b_libl:().

When g > 0, using (7) into solution Eq. (11), we obtain

u=ao+2f (€ - 2u(f, ()" (22)
where {=x+y+2z-Vt,V=4u-3/4and i=12.
And when y <0, we obtain
u=ao+2f5()-2u(f>(6)" (23)
where {=x+y+2z-Vt,V=4u-3/4andi=12.
Case-5:
K=0, V=4u-3/4, A=A, a = —pu,
ap =ag, a1 =b_y =b; =0, bOi\/ga
When y > 0, we obtain
(L+Af1(8))
U=ag - py————-
ST
T G (24)
af14(¢) “ e
where {=x+y+z-Vt,V=4u-3/4andi=1 2.
And when yu < 0, we obtain
(1+4f5:(8)
Uu=ag - y-——=--"~
TR
S T G (25)
afy () H 2 ’

where {=x+y+2z-Vt,V=4u-3/4and i=12.
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Comparison

It is worth declaring that one of our obtained solutions
is in good agreement with already published results
which is presented in the following Table 1.

Moreover, in this article, abundant traveling wave solu-
tions of the (3 + 1)-dimensional potential YTSF equation
is constructed by applying the proposed method. Solu-
tions obtained by means of the new extended (G'/G)-
expansion method are distinct from the solutions obtained
by Ma et al. (2010). The solutions (12)-(19) and (21)-(25)
were not obtained by Ma et al. (2010). On the other hand,
the auxiliary equation used in this article is different, so
obtained solutions is also different.

Remark

The solutions obtained in this article have been checked
by putting them back into the original equation and
found correct.

Discussions
The advantages and validity of the method over ex-
tended (G'/G)-expansion method have been discussed in
the following.

Advantages

The vital advantage of the new extended (G'/G)-expan-
sion method over the basic (G'/G)-expansion method is
that the method provides more general and large
amount of new exact traveling wave solutions with sev-
eral free parameters. The exact solutions have its great
importance to expose the inner mechanism of the com-
plex physical phenomena. Apart from the physical appli-
cation, the close-form solutions of nonlinear evolution
equations assist the numerical solvers to compare the
accuracy of their results and help them in the stability
analysis.

Validity

Zayed and El-Malky (2010) investigated solutions of the
(3 + 1)-dimensional potential-YTSF equation by using
extended (G'/G)-expansion method. They got four set of
solutions of the algebraic equations and the solutions of
the potential-YTSF equation are given in Egs. (A.1)-
(A.8) (see Appendix). On the other hand in this article
we obtained five set of solutions of the algebraic equa-
tions. It is observed that using a simple transformation

Table 1 Comparison between Ma et al. (2010) solutions
and our solutions

Ma et al. (2010) solutions

i.If bp=0and b, =1, solutlons
Eq. (3.5) becomes: u = K *egb‘e

Obtained solutions

i ao=0,ko=—2u,a,=—2uA fy () =
¢ then the solutiofn of equation
Qo) isu = fothe
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then Zayed and El-Malky’s (2010) solutions (A.1) and
(A.2) are identical to our solutions (12)-(15) and solu-
tions (22) and (23) are similar to (A.7) and (A.8). Now if
we set A =0, then solutions (16) and (17) are identical to
(A.4), solutions (18) and (19) are identical to (A.3), solu-
tion (20) is identical to (A.6) and solution (21) is identi-
cal with (A.5). If A #0, solutions (16)-(21) are different
from the solutions (A.3)-(A.6). Therefore, we can make a
decision that solutions (A.3)-(A.6) are particular cases of
solutions (16)-(21). Further we obtain solutions (24) and
(25) which are not obtained by Zayed and El-Malky
(2010).

Conclusion

A new extended (G'/G)-expansion method has been
established in this article to search for exact traveling
wave solutions for nonlinear evolution equations. The
method is direct, straightforward and easy to implement.
In order to illustrate the validity and advantages of the
algorithm, we apply the method to the (3 + 1)-dimen-
sional potential-YTSF equation and abundant traveling
wave solutions are achieved. The solutions are obtained
in the form of trigonometric and hyperbolic functions.
The performance this method is effective and product-
ive. The method might be applied to solve different non-
linear PDEs which frequently arise in mathematical
physics, engineering sciences and many scientific real
time application fields.

Appendix

Appendix: Zayed and El-Malky’s solutions (2010)

Zayed and El-Malky (2010) established exact solutions
of the well-known (3 + 1)-dimensional potential-YTSF
equation by using the extended (G'/G)-expansion method.
They found the following solutions

A cosh(,/=pi€) + Ay sinh (/=€)

Alsmh(\/_cf)JrAzcosh
\/—$ (1 \/_<A1 cosh(\/_f) + Ay smh

u(f) =ap+ \/:/7<A1 Sinh(ﬁf) + Ay COSh(ﬁf))

))

where {=x+y+z+ (3/4 — uld)t

_ A cos(\/ﬁf) -A, sin(\/ﬁf)
u() = a0+ \//Z(Al sin(\/ﬁf) + A, cos(ﬂf))

Bl bt )
(A.2)
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where {=x+y+2z+ (3/4 - uld)t

_ A sinh(ﬁf) + A, cosh(ﬁf)
uE) = a0+ 2y <A1 cosh (/=€) + Az sinh(ﬁf))’ (A-3)

where {=x+y+2z+ (3/4 - u)t

A Cos(\/ﬁrf) A, sin(\/ﬁf)
Ay sin (/i) + Az cos(\/ué) |’

where E=x+y+2z+ (3/4 - u)t

u(€) =ao+2/p (A.4)

Aj cosh (/=€) + Ay sinh (/=€)
(A.5)

u(€) = ao + 2/~ (Al sinh(/=p€) + Ay cosh(ﬁf)) |

where E=x+y+2z+ (3/4 - )t

B A cos(\/ﬁf)—A2 sin(\/ﬁf) -
u(&) = a0+ 2/ <A1 sin(\/ﬁf) + Ay cos(\/ﬁf)) (A'6)

where {=x+y+2z+ (3/4 - p)t
B Ay sinh(y/=€) + A, cosh (/7€)
(&) =ao+ 2y <A1 cosh(,/=i€) + Az sinh (/=€)

Ay sinh (/7€) + Ay cosh (y/772) |
SV <A1 cosh (/=€) + A, sinh(ﬁf))

(A.7)

where {=x+y+z+ (3/4-4u)t
Aj cos (/&) -Ay sin((/i€) )
(A.8)

u(§) = ao + 2\//7<A1 sin(\/€) + A, cos (\/i€)
_2\//7< Ay cos(\/EE)-As sin(\/ﬁf)) ) -1

Ay sin(/a€) + Az cos(\/ué
where {=x+y+2z+(3/4-4u)t.
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