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Abstract

In this paper, we introduce a new iterative scheme that converges strongly to a common fixed point of a countable
family of strictly pseudo-contractive mappings in a real Hilbert space which is also a solution of variational inequality
problem related to quadratic minimization problems. Our results extend ones of Yao et al. [Math. and Comput. Modell.
52(9-10):1697–1705, 2010], Gu et al. [J. Appl. Math. 2011:17 p., 2011] and some authors.
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Introduction
Throughout this paper, we assume that H is a real Hilbert
space with inner product and norm denoted by 〈·, ·〉 and
‖ · ‖, respectively and let C is a nonempty closed and
convex subset of H. A mapping f : C → H is called a con-
traction on C if there exists a constant ρ ∈ [0, 1) such
that

‖ f (x) − f ( y)‖ ≤ ρ‖x − y‖, ∀x, y ∈ C.

A mapping T : C → H is called a nonexpansive on C if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.

A mapping M : H → H is called a strongly monotone
operator with coefficient α if there exists a constant α > 0
such that

〈x − y,Mx − My〉 ≥ α‖x − y‖2, ∀x, y ∈ H

andM is called amonotone operator if

〈x − y,Mx − My〉 ≥ 0, ∀x, y ∈ H .

It is well known that the mapping (I − T) is a mono-
tone operator, if T is a nonexpansive mapping and I is a
identity mapping.
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A mapping T : C → H is called k-strict pseudo-
contraction if there exists a constant k ∈ [0, 1) such that

‖Tx−Ty‖2 ≤ ‖x−y‖2+k‖(I−T)x−(I−T)y‖2, ∀x, y ∈ C.

If there exists a point x ∈ C such that x = Tx, then x is
said to be fixed point of T. We denote the set of all fixed
pionts of T by F(T). It is well known that F(T) is closed
and convex if T is nonexpansive.
Note that the class of k-strict pseudo-contraction map-

pings includes the class of nonexpansive mappings on
C as a subclass. i.e., T is nonexpansive if and only
if T is 0-strict pseudo-contraction. Recently, many
authors have been devoting the studies on the prob-
lems of finding fixed points for k-strict pseudo-contraction
mappings; see Acedo and Xu (2007); Cho et al. (2009);
Jung (2010); Jung (2011); Zhou (2008) and the references
therein.
A variational inequality in a real Hilbert space H is

formulated as finding a point x∗ ∈ C such that

〈Fx∗, x − x∗〉 ≥ 0, ∀x ∈ C, (1)

where F : C → H is a nonlinear mapping. We denote
the set of solution of (1) by VI(C, F). If F is a monotone
operator, then (1) is also known as a monotone variational
inequality.
For given nonlinear operators F , g, we consider the

problem of finding u ∈ H such that

〈F(u), g(v) − g(u)〉 ≥ 0, ∀ g(v), g(u) ∈ C (2)
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which is known as the general variational inequality prob-
lem. For given nonlinear operators F , g, h, we consider the
problem of finding u ∈ H : h(u) ∈ C such that

〈F(u), g(v) − h(u)〉 ≥ 0, ∀g(v) ∈ C (3)

which is called the extended general variational inequality.
The variational inequalities have been studied widely

and are being used as a mathematical programming tool
in modeling a wide class of problems arising in sev-
eral branches of pure and applied sciences; see Baiocchi
and Capelo (1984); Giannessi and Maugeri (1995);
Kinderlehrer and Stampacchia (1980). For general vari-
ational inequalities and extended general variational
inequalities, we can refer Noor (2004,2009); Noor et al.
(2012a,2012b) and references therein.
It is well-known that the variational inequality (1) is

equivalent to the fixed point equation

x∗ = PC[(I − γ F)x∗] , (4)

where γ > 0 and PC is the metric projection of H onto
C which assigns, to each x ∈ H , the unique point in C,
denoted PC[x], such that

‖x − PC[x] ‖ = inf{‖x − y‖ : y ∈ C}.
Therefore, fixed point algorithms can be applied to solve

variational inequalities.
The following problem is called a hierarchical fixed

point problem: Find x∗ ∈ F(T) such that

〈x∗ − Sx∗, x − x∗〉 ≥ 0, ∀x ∈ F(T). (5)

where S : C → H be a mapping. It is known that
the hierarchical fixed point problem (5) links with some
monotone variational inequalities and convex program-
ming problems; see Gu et al. (2011); Yao et al. (2010).
In order to solve the hierarchical fixed point problem

(5), Moudafi (2007) intoduced the following Krasnoselski-
Mann algorithm:

xn+1 = (1 − αn)xn + αn(βnSxn + (1 − βn)Txn), (6)

where S,T : C → C are two nonexpansive mappings, {αn}
and {βn} are two sequences in (0, 1). Then he showed that
{xn} converges weakly to a fixed point of T which is a solu-
tion of problem (5). For obtaining a strong convergence
result, in Mainge and Moudafi (2007) and Marino and Xu
(2011) introduced the following algorithm:

xn+1 = (1 − αn)f (xn) + αn(βnSxn + (1 − βn)Txn), (7)

where f : C → C is a contraction mapping, S and T :
C → C are two nonexpansive mappings, {αn} and {βn}
are two sequences in (0, 1). Then they showed that {xn}
converges strongly to a fixed point of T which is a solution
of problem (5).

On the other hand, Cianciaruso et al. (2009) introduced
a two step algorithm to solve the problem (5) as follows:

{
yn = βnSxn + (1 − βn)xn,

xn+1 = αn f (xn) + (1 − αn)Tyn,
(8)

where f : C → C is a contraction mapping, S and
T : C → C are two nonexpansive mappings, {αn} and {βn}
are two sequences in (0, 1). Under some certain restric-
tions on parameters, the authors proved the sequence {xn}
generated by (8) converges strongly to x∗ ∈ F(T), which is
a unique solution of the following variational inequality:

〈(I − f )x∗, x − x∗〉 ≥ 0, ∀x ∈ F(T). (9)

By changing the restrictions on parameters, the authors
obtained another result on the iterative scheme (8) , i.e.,
the sequence {xn} generated by (8) converges strongly to
x∗ ∈ F(T), which is a unique solution of the following
variational inequality:

〈1
τ

(I − f )x∗ + (I − S)x∗, x − x∗〉 ≥ 0, ∀x ∈ F(T), (10)

where τ ∈ (0,∞) is a constant.
In 2010, Yao et al. (2010) modified the two step algo-

rithm (8) to extend Range of f from C to H by using
the metric projection of H onto C. They introduced the
following iterative scheme:

{
yn = βnSxn + (1 − βn)xn,

xn+1 = PC[αn f (xn) + (1 − αn)Tyn] ,
(11)

where f : C → H is a contraction mapping, S and
T : C → C are two nonexpansive mappings, {αn} and
{βn} are two sequences in (0, 1). The authors proved the
sequence {xn} generated by (11) converges strongly to x∗ ∈
F(T), which is a unique solution of one of the variational
inequalities (9) and (10).
In 2011, Gu et al. (2011) introduced the following itera-

tive algorithm:

{
yn = PC[βnSxn + (1 − βn)xn] ,

xn+1 = PC[αn f (xn) + ∑n
i=1(αi−1 − αi)Tiyn] , ∀n ≥ 1,

(12)

where f : C → H is a contraction mapping, S : C → H
is a nonexpansive mapping, {Ti}∞i=1 : C → C is a count-
able family of nonexpansive mappings, α0 = 1, {αn} and
{βn} are two sequences in (0, 1). The authors proved the
sequence {xn} generated by (12) converges strongly to x∗ ∈
F(T), which is a unique solution of one of the variational
inequalities (9) and (10).
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In this paper, motivated and inspired by the results of
Gu et al. (2011), we introduce and study the following
iterative scheme:{

yn = PC[βnSxn + (1 − βn)xn] ,

xn+1 = PC[αn f (xn) + ∑n
i=1(αi−1 − αi)Viyn] , ∀n ≥ 1,

(13)

where Vi = kiI + (1 − ki)Ti and {Ti}∞i=1 : C → C is
a countable family of ki-strict pseudo-contraction map-
pings. Under some certain condition on parameters, we
first prove that the sequence {xn} generated by (13) con-
verges strongly to x∗ ∈ ∩∞

i=1F(Ti) which is a unique
solution of the following variational inequality:

〈(I − f )x∗, x − x∗〉 ≥ 0, ∀x ∈ ∩∞
i=1F(Ti). (14)

By changing the restrictions on parameters, we also
prove that the sequence {xn} generated by (13) converges
strongly to x∗ ∈ ∩∞

i=1F(Ti), which is a unique solution of
the following variational inequality:

〈1
τ

(I− f )x∗ + (I−S)x∗, x−x∗〉 ≥ 0, ∀x ∈ ∩∞
i=1F(Ti),

(15)

where τ ∈ (0,∞) is a constant. It is easy to see that,
if ki = 0 for each i ≥ 1, then our algorithm (13) is
reduced to algorithm (12) of Gu et al. Also our results
extend the corresponding one of Yao et al. (2010); Xu
(2004); Cianciaruso et al. (2009); Moudafi (2000) and Gu
et al. (2011) from the countable family of nonexpansive
mappings to more general the countable family of strictly
pseudo contraction mappings.

Preliminaries
This section collects some lemma which be use in the
proofs for the main results in the next section. Some of
them are known; others are not hard to derive.
We will use the following notation:

(i) → for strong convergence and ⇀ for weak
convergence.

(ii) ωw(xn) = {x : xni ⇀ x} denotes the weak ω-limit set
of {xn}.

Lemma 1. Browder (1976) Let H be a Hilbert space, C is
a closed convex subset of H and T : C → C be a nonex-
pansive mapping with F(T) = ∅. If {xn} is a sequence in C
weakly converging to x and if {(I−T)xn} converges strongly
to y, then (I−T)x = y; in particular, if y = 0 then x ∈ F(T).

Lemma 2. Acedo and Xu (2007) Let C be a nonempty
closed convex subset of a real Hilbert space H. If T : C → C
is a k-strict pseudo-contraction, then the mapping I − T is
demiclosed at 0. That is, if {xn} is a sequence in C weakly

converging to x and {(I−T)xn} converges strongly to 0, then
(I − T)x = 0.

Lemma 3. Let x ∈ H and z ∈ C be any points. Then we
have the following:

1. That z = PC[x] if and only if there holds the relation:

〈x − z, y − z〉 ≤ 0, ∀y ∈ C.

2. That z = PC[x] if and only if there holds the relation:

‖x − z‖2 ≤ ‖x − y‖2 − ‖y − z‖2, ∀y ∈ C.

3. There holds the relation:

〈PC[x]−PC[y] , x−y〉 ≥ ‖PC[x]−PC[y] ‖2, ∀x, y ∈ H .

Consequently, PC is nonexpansive and monotone.

Lemma 4. Marino and Xu (2006) Let H be a Hilbert space,
C be a closed convex subset of H, f : C → H be a con-
traction with coefficient 0 < ρ < 1 and T : C → C
be a nonexpansive mapping. Then, for 0 < γ < γ̄ /ρ, for
x, y ∈ C,

1. the mapping (I − f ) is strongly monotone with
coefficient (1 − ρ) that is

〈x − y, (I − f )x − (I − f )y〉 ≥ (1 − ρ)‖x − y‖2.
2. the mapping (I − T) is monotone, that is

〈x − y, (I − T)x − (I − T)y〉 ≥ 0.

Lemma 5. Xu (2002) Assume that {an} is a sequence of
nonnegative numbers such that

an+1 ≤ (1 − γn)an + δn, ∀n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in
R such that

1.
∑∞

n=1 γn = ∞,
2. lim supn→∞ δn

γn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ an = 0.

Lemma 6. Acedo and Xu (2007) Let C be a closed convex
subset of H. Let {xn} be a bounded sequence in H . Assume
that

(1) The weak ω-limit set ωw(xn) ⊂ C,
(2) For each z ∈ C, limn→∞ ‖xn − z‖ exists.

Then {xn} is weakly convergent to a point in C.

Lemma 7. Zhou (2008) Let H be a real Hilbert space, C be
a closed and convex subset of H, and T be a k-strict pseudo-
contraction mapping on C, then F(T) is closed convex, so
that the projection PF(T) is well defined.
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Lemma 8. Zhou (2008) Let H be a Hilbert space, C be a
closed and convex subset of H, and T : C → H be a k-strict
pseudo-contraction mapping. Define a mapping V : C →
H by Vx = λx+ (1−λ)Tx for all x ∈ C. Then, as λ ∈[k, 1),
V is a nonexpansive mapping such that F(V ) = F(T).

Lemma 9. Gu et al. (2011) Let H be a Hilbert space and
C be a nonempty closed and convex subset of H. Let T be a
nonexpansive mapping of C into itself such that F(T) = ∅.
Then ‖Tx − x‖2 ≤ 2〈x − Tx, x − x′〉, ∀x′ ∈ F(T),∀x ∈ C.

Main results
Let us consider the net iterative scheme as follows:

{
yn = PC[βnSxn + (1 − βn)xn] ,

xn+1 = PC[αn f (xn) + ∑n
i=1(αi−1 − αi)Viyn] , ∀n ≥ 1,

(16)

where Vi = kiI + (1 − ki)Ti, f : C → H is a ρ-
contraction mapping, S : C → H is a nonexpansive
mapping, {Ti}∞i=1 : C → C is a countable family of ki-
strict pseudo-contraction mappings and ∩∞

i=1F(Ti) = ∅.
Set α0 = 1, {αn} ⊂ (0, 1) is a strictly decreasing sequence
and {βn} ⊂ (0, 1). As we will see the convergence of the
scheme depends on the choice of the parameters {αn} and
{βn}. We list some possible hypotheses on them:

(H1) there exists γ > 0 such that βn ≤ γαn;
(H2) limn→∞ βn/αn = τ ∈ [0,∞);
(H3) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(H4)
∑∞

n=1 |αn − αn−1| < ∞;
(H5)

∑∞
n=1 |βn − βn−1| < ∞;

(H6) limn→∞ |αn − αn−1|/αn = 0;
(H7) limn→∞ |βn − βn−1|/βn = 0;
(H8) limn→∞[|αn−αn−1|+|βn−βn−1|] /αnβn = 0;
(H9) there exists a constant K > 0 such that

1
αn

| 1
βn

− 1
βni1

| ≤ K .

Proposition 1. Assume that (H1) holds. Then {xn} and
{yn} are bounded.

Proof. Let z ∈ ∩∞
i=1F(Ti) = ∩∞

i=1F(Vi). Then we have

‖xn+1 − z‖ =
∥∥∥∥∥PC[αnf (xn)+

n∑
i=1

(αi−1−αi)Viyn]−PC[z]

∥∥∥∥∥

≤
∥∥∥∥∥αnf (xn) +

n∑
i=1

(αi−1 − αi)Viyn − z

∥∥∥∥∥

=
∥∥∥∥∥αn(f (xn) − z) +

n∑
i=1

(αi−1 − αi)(Viyn − z)

∥∥∥∥∥

≤ αn‖f (xn) − f (z)‖ + αn‖f (z) − z‖

+
n∑

i=1
(αi−1 − αi)‖Viyn − z‖

≤ αnρ‖xn − z‖ + αn‖f (z) − z‖

+
n∑

i=1
(αi−1 − αi)‖yn − z‖

≤ αnρ‖xn − z‖ + αn‖f (z) − z‖

+
n∑

i=1
(αi−1 − αi)‖βnSxn + (1 − βn)xn − z‖

≤αnρ‖xn−z‖+αn‖f (z)−z‖+(1−βn)‖xn−z‖)

+
n∑

i=1
(αi−1−αi)(βn‖Sxn − Sz‖+βn‖Sz − z‖

≤αnρ‖xn−z‖+αn‖f (z)−z‖+(1−βn)‖xn−z‖)

+
n∑

i=1
(αi−1 − αi)(βn‖xn − z‖ + βn‖Sz − z‖

= αnρ‖xn − z‖ + αn‖f (z) − z‖

+
n∑

i=1
(αi−1 − αi)(‖xn − z‖ + βn‖Sz − z‖)

= αnρ‖xn − z‖ + αn‖f (z) − z‖
+ (1 − αn)(‖xn − z‖ + βn‖Sz − z‖)

= (1 − αn(1 − ρ))‖xn − z‖ + αn‖f (z) − z‖
+ (1 − αn)βn‖Sz − z‖

≤ (1 − αn(1 − ρ))‖xn − z‖ + αn‖f (z) − z‖
+ βn‖Sz − z‖

≤ (1 − αn(1 − ρ))‖xn − z‖ + αn[‖f (z) − z‖
+ γ ‖Sz − z‖] . (17)

So, by induction, one can obtain that

‖xn−z‖ ≤max
{
‖x0 − z‖, 1

1 − ρ
[‖ f (z) − z‖+γ ‖Sz − z‖

}
.

(18)

Hence {xn} is bounded. Of course {yn} is bounded too.

Proposition 2. Suppose that (H1) and (H3) hold. Also,
assume that either (H4) and (H5) hold, or (H6) and (H7)
hold. Then



Chamnarnpan et al. SpringerPlus 2013, 2:540 Page 5 of 12
http://www.springerplus.com/content/2/1/540

(1) {xn} is asymptotically regular, that is,

lim
n→∞ ‖xn+1 − xn‖ = 0, (19)

(2) the weak cluster points set ωw(xn) ⊂ ∩∞
i=1F(Ti).

Proof. Set un = αnf (xn) + ∑n
i=1(αi−1 − αi)Viyn. From

(16) and since PC is a nonexpansive mapping, we have

‖xn+1−xn‖ = ‖PC[un]−PC[un−1] ‖
≤ ‖un − un−1‖ (20)

= ∥∥αn(f (xn)−f (xn−1))+(αn − αn−1)f (xn−1)

+
n∑

i=1
(αi−1 − αi)(Viyn − Viyn−1)

+(αn−1−αn)Vnyn−1
∥∥≤αn‖ f(xn)−f(xn−1)‖

+
n∑

i=1
(αi−1 − αi)‖yn − yn−1‖

+ |αn − αn−1|(‖f (xn−1)‖ + ‖Vnyn−1‖)
≤ αnρ‖xn − xn−1‖ + (1 − αn)‖yn − yn−1‖

+ |αn − αn−1|(‖f (xn−1)‖ + ‖Vnyn−1‖).
(21)

By definition of yn one obtain that

‖yn−yn−1‖= ‖PC[βnSxn + (1 − βn)xn]

− PC[βn−1Sxn−1 + (1 − βn−1)xn−1] ‖
≤ ‖(βnSxn + (1 − βn)xn)

− (βn−1Sxn−1 + (1 − βn−1)xn−1)‖
= ‖βn(Sxn − Sxn−1) + (βn − βn−1)Sxn−1

+ (1−βn−1)(xn−xn−1)+(βn−1 − βn) xn−1‖
≤‖xn−xn−1‖+|βn−βn−1|(‖Sxn−1‖+‖xn−1‖).

(22)

So, substituting (22) in (21), we obtain

‖xn+1 − xn‖ ≤ αnρ‖xn − xn−1‖ + (1 − αn)[ ‖xn − xn−1‖
+ |βn − βn−1|(‖Sxn−1‖ + ‖xn−1‖)]
+ |αn − αn−1|(‖f (xn−1)‖ + ‖Vnyn−1‖)

≤ (1 − (1 − ρ)αn)‖xn − xn−1‖
+ |βn − βn−1|(‖Sxn−1‖ + ‖xn−1‖)
+ |αn − αn−1|(‖f (xn−1)‖ + ‖Vnyn−1‖).

(23)

By Proposition 1, we say

M := max
{
sup
n≥1

{‖Sxn−1‖ + ‖xn−1‖},

sup
n≥1

{‖f (xn−1)‖ + ‖Vnyn−1‖}
}
.

So, we have

‖xn+1−xn‖ ≤ (1−(1−ρ)αn)‖xn−xn−1‖
+ M[|αn−αn−1| + |βn − βn−1|] .

(24)

So, if (H4) and (H5) hold, we obtain the asymptotic reg-
ularity by Lemma 5, if instead, (H6) and (H7) hold, from
(H1), we can write

‖xn+1 − xn‖ ≤ (1 − (1 − ρ)αn)‖xn − xn−1‖

+ Mαn

[ |αn − αn−1|
αn

+ |βn − βn−1|
αn

]

≤ (1 − (1 − ρ)αn)‖xn − xn−1‖

+ Mαn

[ |αn − αn−1|
αn

+ γ
|βn − βn−1|

βn

]
.

(25)

By Lemma 5, we obtain the asymptotics regularity.
In order to prove (2), since Vixn ∈ C for each i ≥ 1 and∑∞
n=1(αn−1 − αn) + αn = 1, we have

n∑
i=1

(αi−1 − αi)Vixn + αnp ∈ C, ∀p ∈ C. (26)

Now, fixing p ∈ ∩∞
i=1F(Vi), from (16), we have∑n

i=1(αi−1− αi)(xn−Vixn)

=PC [un] + (1−αn)xn−
( n∑

i=1
(αi−1 − αi)Vixn + αnp

)

+ αnp−xn+1

= PC[un]−PC

[ n∑
i=1

(αi−1−αi)Vixn + αnp
]

+ (1 − αn)(xn − xn+1) + αn( p − xn+1).
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It follows that
∑n

i=1(αi−1 − αi)〈xn − Vixn, xn − z〉

=
〈
PC [un] − PC

[ n∑
i=1

(αi−1 − αi)Vixn + αnp
]
, xn − z

〉

+ (1 − αn)〈xn − xn+1, xn − z〉 + αn〈p − xn+1, xn − z〉

≤
∥∥∥∥∥un −

n∑
i=1

(αi−1 − αi)Vixn + αnp

∥∥∥∥∥ ‖xn − z‖

+ (1−αn)‖xn− xn+1‖‖xn − z‖+αn‖p − xn+1‖‖xn−z‖

=
∥∥∥∥∥αn( f (xn) − p)+

n∑
i=1

(αi−1−αi)(Viyn − Vixn)

∥∥∥∥∥ ‖xn − z‖

+ (1 − αn)‖xn− xn+1‖‖xn−z‖+αn‖p − xn+1‖‖xn−z‖

≤ αn‖ f (xn)−p‖‖xn−z‖+
n∑

i=1
(αi−1−αi)‖yn−xn‖‖xn−z‖

+ (1−αn)‖xn − xn+1‖‖xn − z‖+ αn‖p−xn+1‖‖xn−z‖

≤αn‖f (xn)−p‖‖xn−z‖+
n∑

i=1
(αi−1−αi)βn‖Sxn−xn‖‖xn−z‖

+ (1−αn)‖xn − xn+1‖‖xn − z‖+ αn‖p−xn+1‖‖xn−z‖

= αn‖ f (xn)−p‖‖xn − z‖ + (1 − αn)βn‖Sxn−xn‖‖xn−z‖

+ (1 − αn)‖xn − xn+1‖‖xn−z‖+αn‖p−xn+1‖‖xn−z‖.
(27)

Now, from Lemma 9 and (27), we get 1
2

∑n
i=1(αi−1 −

αi)‖xn − Vixn‖2

≤
n∑

i=1
(αi−1−αi)〈xn−Vixn, xn−z〉

≤ αn‖ f (xn) −p‖‖xn−z‖ + (1−αn)βn‖Sxn−xn‖‖xn−z‖

+ (1−αn)‖xn−xn+1‖‖xn−z‖ + αn‖p − xn+1‖‖xn − z‖.

By (H1) and (H3), it follows that βn → 0, as n → ∞, so
that

lim
n→∞

n∑
i=1

(αi−1 − αi)‖xn − Vixn‖2 = 0. (28)

Since (αi−1 − αi)‖xn − Vixn‖2 ≤ ∑n
i=1(αi−1 − αi)‖xn −

Vixn‖2 for each i ≥ 1 and {αn} is strictly decreasing,
one has

lim
n→∞ ‖xn − Vixn‖ = 0, ∀i ≥ 1. (29)

Hence, we obtain

lim
n→∞ ‖xn − Tixn‖ = lim

n→∞
‖xn − Vixn‖

(1 − ki)
= 0, ∀i ≥ 1.

Since {xn} is asymptotically regular and demiclosedness
principle, we obtain the proposition.

Corollary 1. Suppose that the hypotheses of Proposition 2
hold. Then

(i) limn→∞ ‖xn − yn‖ = 0;
(ii) limn→∞ ‖xn − Viyn‖ = 0, ∀i ≥ 1;
(iii) limn→∞ ‖yn − Viyn‖ = 0, ∀i ≥ 1.

Proof. To prove (i), we can observe that

‖xn − yn‖ ≤ βn‖xn − Sxn‖.
Since βn → 0 as n → ∞, we obtain (i).

To prove (ii), we observe that

‖yn − Vixn‖ ≤ ‖yn − xn‖ + ‖xn − Vixn‖, ∀i ≥ 1

and

‖xn − Viyn‖ ≤ ‖xn − yn‖ + ‖yn − Vixn‖, ∀i ≥ 1.

Since ‖yn − xn‖ → 0 and ‖xn − Vixn‖ → 0 as n → ∞,
∀i ≥ 1, then ‖yn − Vixn‖ → 0, that is, we obtain (ii). To
prove (iii), we can observe that

‖yn − Viyn‖ ≤ ‖xn − yn‖ + ‖xn − Viyn‖, ∀i ≥ 1.

By (i) and (ii), we obtain (iii).

Theorem 1. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C → H be a
ρ-contraction mapping, S : C → H be a nonexpansive
mapping and {Ti}∞i=1 : C → C be a countable family of ki-
strict pseudo-contraction mappings andF = ∩∞

i=1F(Ti) =
∅. Let α0 = 1, and x1 ∈ C and define the sequence {xn} by{

yn = PC[βnSxn + (1 − βn)xn] ,

xn+1 = PC[αnf (xn) + ∑n
i=1(αi−1 − αi)Viyn] , ∀n ≥ 1,

(30)

where {αn} ⊂ (0, 1) and {αn} is a strictly decreasing
sequence, Vi = kiI + (1 − ki)Ti, {βn} ⊂ (0, 1) and {αn}
and {βn} are sequences satisfying the conditions (H2) with
τ = 0, (H3), either (H4) and (H5) , or (H6) and (H7). Then
the sequence {xn} converges strongly to a point z ∈ F , which
is the unique solution of the variational inequality:

〈(I − f )z, x − z〉 ≥ 0, ∀x ∈ F . (31)
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Proof. First of all, since PF f is a contraction. By Banach
contraction principle, so there exists a unique z ∈ F such
that z = PF f (z), Moreover, from Lemma 3(1), we have

〈f (z) − z, y − z〉 ≤ 0, ∀y ∈ F .

Since (H2) implies (H1), thus {xn} is bounded. More-
over, since either (H4) and (H5) or (H6) and (H7) then {xn}
is asymptotically regular. Similarly, by Proposition 2, the
weak cluster points set of xn, that is, ωw(xn), is a subset
of F .
Let {xnk } be a subsequence of {xn} such that

lim sup
n→∞

〈 f (z) − z, xn − z〉 = lim
k→∞

〈 f (z) − z, xnk − z〉,

and xnk → x’. So, it follows that x′ ∈ F . Then, we also have

lim
k→∞

〈 f (z) − z, xnk − z〉 = 〈f (z) − z, x′ − z〉 ≤ 0.

Set un = αnf (xn) + ∑n
i=1(αi−1 − αi)Viyn, we obtain

‖xn+1−z‖2 = 〈PC[un]−un,PC[un]−z〉+〈un−z, xn+1−z〉.
(32)

By Lemma 3(1), we have

〈PC[un]−un,PC[un]−z〉 ≤ 0. (33)

From (32) and (33), it follows that
‖xn+1−z‖2

≤ 〈un−z, xn+1−z〉 = αn〈 f(xn)−f (z), xn+1−z〉

+ αn〈f (z) − z, xn+1 − z〉
n∑

i=1
(αi−1 − αi)

× 〈Viyn − z, xn+1 − z〉
≤αnρ‖xn−z‖‖xn+1−z‖+αn〈 f(z)−z, xn+1−z〉

× (1−αn)‖yn−z‖‖xn+1−z‖≤αnρ‖xn − z‖

× ‖xn+1 − z‖ + αn〈f (z) − z, xn+1 − z〉

×(1−αn)‖βnSxn+(1−βn)xn−z‖‖xn+1−z‖

≤αnρ‖xn−z‖‖xn+1−z‖+αn〈 f (z)−z, xn+1−z〉

× (1 − αn)‖xn − z‖‖xn+1 − z‖

+ (1 − αn)βn‖Sz − z‖‖xn+1 − z‖

= [1 − αn(1 − ρ)] ‖xn − z‖‖xn+1 − z‖

+ αn〈f (z) − z, xn+1 − z〉

+ (1 − αn)βn‖Sz − z‖‖xn+1 − z‖

≤
[
1 − αn(1 − ρ)

2

][
‖xn−z‖2 + ‖xn+1−z‖2

]

+ αn〈 f (z)−z, xn+1−z〉+(1−αn)βn‖Sz−z‖

×‖xn+1−z‖≤
[
1− 2(1−ρ)αn

1 + (1−ρ)αn

]
‖xn−z‖2

+
[

2αn
1 + (1 − ρ)αn

]
· 〈f (z) − z, xn+1 − z〉

+
[

2(1 − αn)βn
1 + (1 − ρ)αn

]
‖Sz − z‖‖xn+1 − z‖

=
[
1− 2(1−ρ)αn

1+(1−ρ)αn

]
‖xn−z‖2+

[
2(1−ρ)αn
1+(1−ρ)αn

]

×
{

1
1 − ρ

〈f (z) − z, xn+1 − z〉 + (1 − αn)βn
(1 − ρ)αn

× ‖Sz − z‖‖xn+1 − z‖
}
.

Let γn = 2(1−ρ)αn
1+(1−ρ)αn

and δn = 2(1−ρ)αn
1+(1−ρ)αn

{
1

1−ρ
〈f (z) − z ,

xn+1 − z〉 + (1−αn)βn
(1−ρ)αn

· ‖Sz − z‖‖xn+1 − z‖
}
for all n ≥ 1.

Since

lim sup
n→∞

{
1

1 − ρ
〈f (z) − z, xn+1 − z〉 + (1 − αn)βn

(1 − ρ)αn

× ‖Sz − z‖‖xn+1 − z‖
}

≤ 0,

∑∞
i=1 αn = ∞ and 2(1−ρ)αn

1+(1−ρ)αn
≥ (1 − ρ)αn, we have

∞∑
n=1

γn = ∞ and lim sup
n→∞

δn
γn

≤ 0.

Hence, by Lemma 5, we conclude that xn → z as
n → ∞.
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Remark 1. In the iterative scheme (30), if we set f ≡ 0,
then we get xn → z = PF0. In this case, from (31), it
follows that

〈z, z − x〉 ≤ 0, ∀x ∈ F .

That is

‖z‖2 ≤ 〈z, x〉 ≤ ‖z‖‖x‖, ∀x ∈ F .

Therefore, the point z is the unique solution to the
following quadratic minimization problem:

z = argmin
x∈F ‖x‖2.

By changing the restrictions on parameters in
Theorem 1, we obtain the following results.

Theorem 2. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C → H be a ρ-
contraction mapping, S : C → C be a nonexpansive map-
ping and {Ti}∞i=1 : C → C be a countable family of ki-strict
pseudo-contraction mappings and F = ∩∞

i=1F(Ti) =
∅. Let α0 = 1, and x1 ∈ C and define the sequence
{xn} by
⎧⎨
⎩
yn = PC[βnSxn + (1 − βn)xn]= βnSxn + (1 − βn)xn

xn+1 = PC[αn f (xn) + ∑n
i=1(αi−1 − αi)Viyn] , ∀n ≥ 1

(34)

where {αn} ⊂ (0, 1) and {αn} is a strictly decreas-
ing sequence, Vi = kiI + (1 − ki)Ti, {βn} ⊂ (0, 1)
and {αn} and {βn} are sequences satisfying the con-
ditions (H2) with τ ∈ (0,∞), (H3), (H8) and (H9).
Then the sequence {xn} converges strongly to a point
x∗ ∈ F , which is the unique solution of the variational
inequality:

〈1
τ

(I − f )x∗ + (I − S)x∗, x − x∗〉 ≥ 0, ∀x ∈ F . (35)

Proof. First, we shows that (49) has the unique solution.
Let x′ and x∗ be two solutions. Then, since x′ is solution,
for y = x∗ one has

〈(I − f )x′, x′ − x∗〉 ≤ τ 〈(I − S)x′, x∗ − x′〉 (36)

and

〈(I − f )x∗, x∗ − x′〉 ≤ τ 〈(I − S)x∗, x′ − x∗〉. (37)

Adding (36) and (37), we obtain

(1 − ρ)‖x′ − x∗‖2 ≤ 〈(I − f )x′ − (I − f )x∗, x′ − x∗〉

≤ −ρ〈(I − S)x′−(I−S)x∗, x′−x∗〉 ≤ 0

so x′ = x∗. Also now the condition (H2) with 0 < τ < ∞
implies (H1) so the sequence {xn} is bounded. Moreover,
since (H8) implies (H6) and (H7), then {xn} is asymptoti-
cally regular. Similarly, by Proposition 2, the weak cluster
points set of xn, i.e., ωw(xn), is a subset of F .
From (20)-(24), we observe that

‖xn+1−xn‖
βn

≤ ‖un−un−1‖
βn

≤ [1 −(1−ρ))αn]
‖xn−xn−1‖

βn

+ M
[ |αn − αn−1|

βn
+ |βn − βn−1|

βn

]

= [1 − (1 − ρ))αn]
‖xn − xn−1‖

βn−1

+[1−(1−ρ))αn] ‖xn−xn−1‖
[
1
βn

v− 1
βn−1

]

+ M
[ |αn − αn−1|

βn
+ |βn − βn−1|

βn

]

≤ [1 − (1 − ρ))αn]
‖xn − xn−1‖

βn−1

+ ‖xn − xn−1‖
[
1
βn

− 1
βn−1

]

+ M
[ |αn − αn−1|

βn
+ |βn − βn−1|

βn

]

≤ [1−(1−ρ))αn]
‖xn−xn−1‖

βn−1
+αnK‖xn−xn−1‖

+ M
[ |αn − αn−1|

βn
+ |βn − βn−1|

βn

]

≤ [1−(1−ρ))αn]
‖un−un−1‖

βn−1
+αnK‖xn−xn−1‖

+ M
[ |αn − αn−1|

βn
+ |βn − βn−1|

βn

]
.
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Let γn = (1 − ρ)αn and δn = αnK‖xn − xn−1‖ +
M

[ |αn−αn−1|
βn

+ |βn−βn−1|
βn

]
. From condition (H3) and (H8),

we have

∞∑
i=1

γn = ∞ and lim
n→∞

δn
γn

= 0.

By Lemma 5, we obtain

lim
n→∞

‖xn+1 − xn‖
βn

= 0,

lim
n→∞

‖un+1 − un‖
βn

= lim
n→∞

‖un+1 − un‖
αn

= 0.

From (34), we have

xn − xn−1 = (1 − αn)xn −
[
PC[un]−un + αnf (xn)

+
n∑

i=1
(αi−1 − αi)(Viyn − yn) + (1 − αn)yn

]

= (1 − αn)βn(xn − Sxn) + (un − PC[un] )

+
n∑

i=1
(αi−1−αi)(yn−Viyn)+αn(xn − f (xn)).

It follows that

xn − xn−1
(1 − αn)βn

= (xn − Sxn) + 1
(1 − αn)βn

(un − PC[un] )

+ 1
(1 − αn)βn

n∑
i=1

(αi−1 − αi)(yn − Viyn)

+ αn
(1 − αn)βn

(xn − f (xn)).

Let vn = xn−xn−1
(1−αn)βn

. For all z ∈ F = ∩∞
i=1F(Ti) =

∩∞
i=1F(Vi), we get

〈vn, xn − z〉 = 1
(1 − αn)βn

〈un − PC[un] ,PC[un−1]−z〉

+ αn
(1 − αn)βn

〈(I − f )xn, xn − z〉

+ 〈xn − Sxn, xn − z〉 + 1
(1 − αn)βn

n∑
i=1

(αi−1 − αi)〈yn − Viyn, xn − z〉. (38)

By Lemma 4, we have

〈xn − Sxn, xn − z〉 = 〈(I − S)xn − (I − S)z, xn − z〉

+ 〈(I−S)z, xn−z〉≥〈(I−S)z, xn−z〉,
(39)

〈(I − f )xn, xn − z〉 = 〈(I − f )xn − (I − f )z, xn − z〉
+ 〈(I−f )z, xn−z〉≥(1 − ρ)‖xn − z‖2

+ 〈(I − f )z, xn − z〉 (40)

and

〈yn − Viyn, xn − z〉 = 〈(I − Vi)yn − (I − Vi)z, xn − yn〉

+ 〈(I − Vi)yn − (I − Vi)z, yn − z〉

≥ 〈(I − Vi)yn − (I − Vi)z, xn − yn〉

= βn〈(I − Vi)yn, xn − Sxn〉, ∀i ≥ 1.
(41)

By Lemma 3(1), we obtain

〈un − PC[un] ,PC[un−1]−z〉

= 〈un − PC[un] ,PC[un−1]−PC[un] 〉

+ 〈un − PC[un] ,PC[un]−z〉

≥ 〈un − PC[un] ,PC[un−1]−PC[un] 〉. (42)

Now, from (38)-(42), it follows that

‖xn − z‖2 ≤ (1 − αn)βn
(1 − ρ)αn

[〈vn, xn − z〉 − 〈(I − S)z, xn − z〉]

+ ‖un−1 − un‖
(1 − ρ)αn

‖un − PC[un] ‖

− 1
1 − ρ

〈(I − f )z, xn − z〉 − βn
(1 − ρ)αn

n∑
i=1

(αi−1 − αi)〈(I − Vi)yn, xn − Sxn〉, (43)

since vn → 0 and (I − Vi)yn → 0, as n → ∞, then
every weak cluster point of {xn} is also a strong cluster
point. By Proposition 2, {xn} is bounded, thus there exists
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a subsequence {xnk } converging to x∗. For all z ∈ F by
(38), we compute

〈(I − f )xnk , xnk − z〉 = (1 − αnk )βnk
αnk

〈vnk , xnk − z〉

− 1
αnk

〈unk −PC[unk ],PC[unk−1]−z〉

− (1 − αnk )βnk
αnk

〈xnk −Sxnk , xnk − z〉

− 1
(αnk

nk∑
i=1

(αi−1 − αi)

× 〈ynk − Viynk , xnk − z〉

≤ (1 − αnk )βnk
αnk

〈vnk , xnk − z〉 − βnk
(αnk

nk∑
i=1

(αi−1−αi〈(I−Vi)ynk , xnk −Sxnk 〉

− 1
αnk

‖unk−1−unk‖‖unk −PC[unk ]‖

− (1 − αnk )βnk
αnk

〈(I − S)z, xnk − z〉.
(44)

Since vn → 0, (I − Vi)yn → 0 for all i ≥ 1, and ‖un −
un−1‖/αn → 0, letting k → ∞ in (44), we obtain

〈(I − f )x∗, x∗ − z〉 ≤ −τ 〈(I − S)z, x∗ − z〉, ∀z ∈ F .

Since (49) has the unique solution, it follows that
ωw(xn) = {x∗}. Since every weak cluster point of {xn} is
also a strong cluster point, we conclude that xn → x∗ as
n → ∞. This completes the proof.
If we take Ti = T , for all i ≥ 1, where T : C → C is a

k-strict pseudo-contraction mapping in Theorem 1, then
we get the following result:

Corollary 2. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C → H be a
ρ-contraction mapping, S : C → H be a nonexpansive
mapping and T : C → C be a k-strict pseudo-contraction
mapping such that F(T) = ∅. Let x1 ∈ C and define the
sequence {xn} by⎧⎨

⎩
yn = PC[βnSxn + (1 − βn)xn] ,

xn+1 = PC[αn f (xn) + (1 − αn)Vyn] , ∀n ≥ 1,
(45)

where V = kI + (1 − k)T , {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1)
are sequences satisfying the conditions (H2) with τ = 0,

(H3), either (H4) and (H5), or (H6) and (H7). Then the
sequence {xn} converges strongly to a point z ∈ F(T), which
is the unique solution of the variational inequality:

〈(I − f )z, x − z〉 ≥ 0, ∀x ∈ F(T).

Taking ki = 0, for all i ≥ 1 in Theorem 1, then we get
the following result:

Corollary 3. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C → H be a
ρ-contraction mapping, S : C → H be a nonexpansive
mapping and {Ti}∞i=1 : C → C be a countable family of
nonexpansive mappings and F = ∩∞

i=1F(Ti) = ∅. Let
α0 = 1, x1 ∈ C and define the sequence {xn} by
⎧⎨
⎩
yn = PC[βnSxn + (1 − βn)xn] ,

xn+1 = PC[αn f (xn) + ∑n
i=1(αi−1 − αi)Tiyn] , ∀n ≥ 1,

(46)

where {αn} ⊂ (0, 1) and {αn} is a strictly decreasing
sequence, {βn} ⊂ (0, 1) and {αn} and {βn} are sequences
satisfying the conditions (H2) with τ = 0, (H3), either
(H4) and (H5), or (H6) and (H7). Then the sequence {xn}
converges strongly to a point z ∈ F , which is the unique
solution of the variational inequality:

〈(I − f )z, x − z〉 ≥ 0, ∀x ∈ F .

If we take k = 0 in Corollary 2, then we get the following
result:

Corollary 4. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C → H be a
ρ-contraction mapping, S : C → H be a nonexpansive
mapping and T : C → C be a nonexpansive mapping such
that F(T) = ∅. Let x1 ∈ C and define the sequence {xn} by⎧⎨
⎩
yn = PC[βnSxn + (1 − βn)xn] ,

xn+1 = PC[αn f (xn) + (1 − αn)Tyn] , ∀n ≥ 1,
(47)

where {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and {αn} and {βn} are
sequences satisfying the conditions (H2) with τ = 0, (H3),
either (H4) and (H5), or (H6) and (H7). Then the sequence
{xn} converges strongly to a point z ∈ F(T), which is the
unique solution of the variational inequality:

〈(I − f )z, x − z〉 ≥ 0, ∀x ∈ F(T).

If we take Ti = T, for all i ≥ 1, where T : C → C is a
k-strict pseudo-contraction mapping in Theorem 2, then
we obtain the following result:
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Corollary 5. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C → H be a
ρ-contraction mapping, S : C → C be a nonexpansive
mapping and T : C → C be a k-strict pseudo-contraction
mapping and F = F(T) = ∅. Let x1 ∈ C and define the
sequence {xn} by
⎧⎨
⎩
yn = βnSxn + (1 − βn)xn,

xn+1 = PC[αn f (xn) + (1 − αn)Vyn] , ∀n ≥ 1,
(48)

where V = kI + (1 − k)T, {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and
{αn} and {βn} are sequences satisfying the conditions (H2)
with τ ∈ (0,∞), (H3), (H8) and (H9). Then the sequence
{xn} converges strongly to a point x∗ ∈ F , which is the
unique solution of the variational inequality:

〈1
τ

(I − f )x∗ + (I − S)x∗, x − x∗〉 ≥ 0, ∀x ∈ F . (49)

If we take ki = 0, for all i ≥ 1 in Theorem 2, then we get
the following result:

Corollary 6. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C → H be a
ρ-contraction mapping, S : C → C be a nonexpansive
mapping and {Ti}∞i=1 : C → C be a countable family of
nonexpansive mappings and F = ∩∞

i=1F(Ti) = ∅. Let
α0 = 1, x1 ∈ C and define the sequence {xn} by

⎧⎨
⎩
yn = βnSxn + (1 − βn)xn,

xn+1 = PC[αn f (xn) + ∑n
i=1(αi−1 − αi)Tiyn] , ∀n ≥ 1,

(50)

where {αn} ⊂ (0, 1) and {αn} is a strictly decreasing
sequence, {βn} ⊂ (0, 1) and {αn} and {βn} are sequences
satisfying the conditions (H2) with τ ∈ (0,∞), (H3),
(H8) and (H9). Then the sequence {xn} converges strongly
to a point x∗ ∈ F , which is the unique solution of the
variational inequality:

〈1
τ

(I − f )x∗ + (I − S)x∗, x − x∗〉 ≥ 0, ∀x ∈ F . (51)

If k = 0 in Corollary 5, then we get the following
Corollary:

Corollary 7. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C → H be a
ρ-contraction mapping, S,T : C → C be nonexpansive

mappings and F = F(T) = ∅. Let x1 ∈ C and define the
sequence {xn} by⎧⎨
⎩
yn = βnSxn + (1 − βn)xn,

xn+1 = PC[αn f (xn) + (1 − αn)Tyn] , ∀n ≥ 1,
(52)

where {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and {αn} and {βn} are
sequences satisfying the conditions (H2) with τ ∈ (0,∞),
(H3), (H8) and (H9). Then the sequence {xn} converges
strongly to a point x∗ ∈ F , which is the unique solution of
the variational inequality:

〈1
τ

(I − f )x∗ + (I − S)x∗, x − x∗〉 ≥ 0, ∀x ∈ F . (53)

Remark 2. Prototypes for the iterative parameters are,
for example, αn = n−θ and βn = n−ω (with θ ,ω > 0).
Since |αn − αn−1| ≈ n−θ and |βn − βn−1| ≈ n−ω, it is not
difficult to prove that (H8) is satisfied for 0 < θ ,ω < 1and
(H9) is satisfied if θ + ω ≤ 1.

Remark 3. Theorem 1 and Theorem 2 extend and
improve the result of Gu et al. (2011) from the count-
able family of nonexpansive mappings to more general the
countable family of strictly pseudo contraction mappings.
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