Papadakis and Malevris SpringerPlus 2013, 2:121
http://www.springerplus.com/content/2/1/121

® SpringerPlus

a SpringerOpen Journal

Searching and generating test inputs for

mutation testing

Mike Papadakis'~ and Nicos Malevris®”

Abstract

Mutation testing is usually regarded as an important method towards fault revealing. Despite this advantage, it has
proved to be impractical for industrial use because of its expenses. To this extend, automated techniques are
needed in order to apply and reduce the method’s demands. Whilst there is much evidence that automated test
data generation techniques can effectively automate the testing process, there has been little work on applying
them in the context of mutation testing. In this paper, search-based testing is used in order to effectively generate
test inputs capable of revealing mutants. To this end, a dynamic execution scheme capable of introducing and
guiding the search towards the sought mutants is proposed. Experimentation with the proposed approach reveals
its superiority from the previously proposed methods. Additionally, the framework’s feasibility and practicality of
producing mutation based test cases are also demonstrated.

Keywords: Test case generation, Search based testing, Mutation testing

Introduction

Software testing can account for more than half of the
cost of the software under development. As the main
purpose is to reduce such an excessive cost, the testing
activity should incorporate effective and efficient methods
experiencing the highest possible level of automation. The
test data generation process plays a crucial role in both
the effectiveness and efficiency of the software testing
phase. Unfortunately, as it is evident from the current
practice, the level of automation achieved to date is not as
high as it ought to be, thus resulting in a rather low qual-
ity testing activity due to the unavoidably high cost of the
imperative laborious manual activity. Hence, the need for
producing the required test data automatically is essential
in order to increase the test thoroughness and to reduce
the testing expenses at the same time.

Testing quality is usually measured by the test ad-
equacy criteria. Adequacy criteria, often referred to as
coverage criteria, pose certain requirements that should
be fulfilled by the test cases. Mutation testing or muta-
tion analysis, is a fault-based technique introduced by
Hamlet (1977) and DeMillo et al. (1978). Mutation

* Correspondence: michail papadakis@uni.lu; ngm@aueb.gr
'Interdisciplinary Center for Security, Reliability and Trust, University of
Luxembourg, Luxembourg, Luxembourg

Full list of author information is available at the end of the article

@ Springer

analysis makes alterations, called mutants, to the code
under test based on a set of simple syntactic rules called
mutant operators. The purpose of injecting mutants into
programs is to both guide the generation of test cases to
reveal them on the one hand and to assess the test data
quality on the other. To this extent, testing seeks to re-
veal the mutants, which when detected are termed
“killed” and “live” in the opposite case. Testing adequacy
is measured using the mutation score, defined as the ra-
tio of the number of the killed mutants to the entire
number of candidate mutants reduced by the number of
equivalent ones. Equivalent mutants are those mutants
that cannot be killed by any test case. This is an analo-
gous form of the infeasibility element problem encoun-
tered in structural testing (Offutt and Pan 1997).

The strength of the method relies on the hypothesis -
ability of the introduced mutants to produce realistic
faults. In a study made by Andrews et al. (2006), this hy-
pothesis is reinforced. Additionally, mutation has been
empirically found to be more effective than other struc-
tural testing criteria (Offutt and Untch 2001) and it
provides significant assistance in various debugging ac-
tivities (Papadakis and Le Traon 2012). Thus, it is evi-
dent that developers can benefit from applying mutation
testing. Although powerful, mutation lacks practical use.
The practical use of an adequacy criterion requires the

© 2013 Papadakis and Malevris; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:michail.papadakis@uni.lu
mailto:ngm@aueb.gr
http://creativecommons.org/licenses/by/2.0

Papadakis and Malevris SpringerPlus 2013, 2:121
http://www.springerplus.com/content/2/1/121

automated generation of test cases according to its re-
quirements. This can prove to be a very laborious task
(Offutt and Untch 2001) while, little has been done into
automating effectively the mutation-based test produc-
tion. Additionally, little has also been done into auto-
mating effectively the production of the sought mutation
based test cases. This constitutes the main issue of the
present research.

Automating mutation testing requires the production
of the candidate mutant programs and their execution
with the candidate test cases. This can be efficiently
automated with the mutant schemata approach (Untch
et al. 1993), (Papadakis et al. 2010), (Ma et al. 2005)
which embeds all the candidate mutants into one sche-
matic meta-program and thus, all tests are executed
against this schematic program. Test execution poses an
additional barrier to mutation analysis as it requires test
cases to be executed against all live mutants. To effect-
ively reduce the execution time required for mutation,
alternative methods called weak or firm mutation (Jia
and Harman 2010), (Howden 1982), (Offutt and Untch
2001) have been proposed. According to these methods
the program execution may stop after the mutated or a
succeeding program expression. Evaluation of the mutant
can be performed by checking the program state at the
stopping execution statement. Thus, remarkable execution
savings can be achieved. Additionally, by utilizing weak
mutation and mutant schemata techniques all the weakly
killable mutants can be recorded with only one execution
run (Papadakis et al. 2010), (Papadakis and Malevris
2011). The framework proposed in this paper takes advan-
tage of this fact and executes only the weakly killed mu-
tants in order to determine the strongly killed ones. Thus,
the mutant execution cost is kept to a low level.

The practical use of an adequacy criterion requires the
automated generation of test cases according to its re-
quirements. This can be a very laborious task (Offutt
and Untch 2001) for any selected criterion including
mutation. Recently, search based optimization techniques
and tools have succeeded in automating the test case
generation activity effectively i.e. (Harman and McMinn
2007) and (Lakhotia et al. 2010). This paper introduces an
automated framework that produces test cases based on
strong mutation testing. In the proposed framework, the
mutants are automatically generated based on a novel ver-
sion of the mutant schemata technique (Untch et al. 1993)
for performing both mutation and search based testing.
The use of mutant schemata for mutation test data gener-
ation purposes has also been investigated by (Papadakis
and Malevris 2011), (Papadakis et al. 2010) in the context
of weak mutation, utilizing existing structural testing tools,
and in the context of strong mutation using dynamic sym-
bolic execution (Papadakis and Malevris 2010a). Here the
proposed approach incorporates a hill climbing algorithm

Page 2 of 12

known as the alternating variable method (AVM) pro-
posed by Korel (1990) for searching and producing the
sought test cases for strong mutation. The choice of the
AVM method was due to its simplicity and the high
expected effectiveness in the context of structural testing
(Harman and McMinn 2007) and (Lakhotia et al. 2010).

The origins of the present approach are due to the uti-
lized dynamic fitness scheme. Thus, it becomes possible
to effectively direct the search process towards reaching,
infecting and impacting the targeted mutants. A performed
case study suggests that it can be more effective than ran-
dom testing and a previously proposed approach (Ayari
et al. 2007).

The contribution of the present work can be summa-
rized into the following points:

e A novel scheme able to perform both mutation and
search based testing.

e A novel fitness function for strongly killing mutants.

e A novel dynamically adjusted fitness scheme able to
improve the effectiveness of search based
approaches.

The rest of this paper is organized as follows: Section
2 presents the proposed system by detailing the pro-
posed approach. In Section 3 presents and analyzes the
obtained results from the application of the proposed
approach. Sections 4 and 5 discuss the relevance and the
benefits of the application of the proposed system with
previously proposed systems and approaches. Finally in
section 6 conclusions and future directions are given.

Framework description

The proposed framework tries to effectively automate
the production and evaluation of mutation based test
data. The framework embeds all the candidate mutants
into one schematic meta-program suitable for both exe-
cuting mutants and recording the required test cases fit-
ness calculations. Then it produces test cases according
to the alternating variable method (Korel 1990) guided
by the schematic program. In the succeeding subsections
details of the framework are given.

Generating mutants

Dynamic approaches are based on the information
gained through dynamic program runtime execution. In
the context of structural testing the programs under test
host all the needed information in their structure and
thus, it is straightforward to implement a monitoring
mechanism for the data evolution purpose. In the con-
text of mutation, there is a special need for unifying both
the original’s and the mutants’ runtime information. The
difficulties originate from the mutations’ method nature,
as the needed information is spanned across the original

Papadakis and Malevris SpringerPlus 2013, 2:121
http://www.springerplus.com/content/2/1/121

and the various mutants versions (Papadakis et al. 2010),
(Papadakis and Malevris 2009) programs. To efficiently
overcome this difficulty a special form of the mutant
schemata technique was employed in order to unify all
the mutation analysis requirements into a unique version
suitable for the test evolution representation. This ap-
proach was initially introduced in (Papadakis et al. 2010)
in the context of using existing test data generation tools
for performing mutation. Here the technique has been ex-
tended in order to effectively guide the test data gener-
ation process. This is achieved by embedding a fitness
guide and evaluation inside the schematic functions.

The Mutant Schemata Generation (MSG) (Untch et al.
1993) technique encodes into one meta-program all the
introduced mutants. This is achieved by appropriately
replacing each pair of operands participating in an
operation with a call to a schematic function, with this
pair of operands as parameters (e.g. a>b becomes
Relational GT (a, b)). Expanding the suggestions of the
MSG approach, the evaluation of the mutants’ execution
and all the required fitness calculations are performed
within the schematic function. This as it is shown in
(Papadakis et al. 2010) reflects the killing mutants prob-
lem to a path - branch coverage problem. By incorporat-
ing the mutant evaluation into the schematic function,
the necessary conditions for killing each considered mu-
tant are also embedded. These conditions, which take
the following expression, are formed as decisions in the
schematic function. These conditions are of the follow-
ing form:

Original expression # Mutated expression (1)

The above decision expression (1) consists of two pos-
sible outcomes (i.e. the original is either equal to the
mutated or not). Thus, entailing the introduction of true
(mutant is killed) and false (mutant is alive) cases. Meas-
uring the closeness of making the above decision (1)
true, results in an effective measure of the test case fit-
ness according to the weak mutation testing criterion
(Papadakis et al. 2010) and forms a part of the proposed
fitness function (section 2.4). After the mutants’ evalu-
ation point, the program execution continues in order to
evaluate the mutant’s output and its propagation fitness,
as it is required by strong mutation.

Executing mutants with tests

The present approach takes advantage of the unified
representation of all mutants and their killing conditions
into one meta-program. Based on the use of the intro-
duced schemata technique, mutant execution can be
performed straightforwardly utilizing only one program.
This is a direct consequence of the parameterized intro-
duced mutants (Untch et al. 1993), (Papadakis and

Page 3 of 12

Malevris 2011). Additionally, the fitness function calcula-
tions have also been embedded into the schematic classes.
Thus, test execution requires only an initialization of the
mutant schemata class at the beginning of the execution
and an additional call to the calculation function at the end
in order to produce all the required fitness calculations.

The proposed system employs the reflection mechan-
ism of the Java language in order to execute the meta-
program with the produced test cases and extracts the
fitness function calculations. As the proposed system
performs a different search per live mutant, it executes
all the live mutants only when a search has come to a
success (kills the targeted mutant). This approach might
be less effective than executing all mutants against all
produced tests (fitness evaluations) but keeps mutation
execution overheads at a low level. Additionally, for fur-
ther savings it determines the strongly killed mutants by
executing only those that have been previously weakly
killed, as pointed out in the introduction section.

Search based testing

Search based testing (Harman and McMinn 2007),
(Wegener et al. 2001) formulates the test case gener-
ation problem to a search problem and tries to tackle it
using search based optimization techniques. The search
process is guided by an appropriate fitness function
which indicates how close the tests are in covering the
aimed program elements. To achieve this, a separate
search is performed according to each live mutant. To
keep mutation execution overheads at a low level the
framework executes all the live mutants only when a
search has come to a success (kills the targeted mutant),
as suggested in Fraser and Zeller (2010).

The proposed framework uses the alternating variable
method, proposed by Korel (1990). This method forms a
hill climbing algorithm which has been shown to be
quite effective compared with other search algorithms in
the context of structural testing (Harman and McMinn
2007). Hence, it forms an ideal choice as it is a quite
simple to implement method and as expected, a quite
powerful one. Here, it should be noted that mutation, in
particular weak mutation, can be transformed to branch
testing (Papadakis and Malevris 2011), (Papadakis et al.
2010) and since hill climbing performs similarly to its
rivals, in the structural testing context (Harman and
McMinn 2007), there is no reason why this should not
hold for mutants too. Nevertheless, this is beyond the
scope of the present paper and is left open for future
research.

The method starts by randomly initializing the input
program variable values. Then it selects repeatedly and
adjusts one of those values by alternating it. This is
performed until no further fitness improvement can be
obtained i.e. no further alternations are fruitful. In this

Papadakis and Malevris SpringerPlus 2013, 2:121
http://www.springerplus.com/content/2/1/121

case the method switches to the next input variable. The
algorithm stops when no further fitness improvement
can be recorded by selecting and alternating any of the
input variables. Details of the method can be found in
Korel (1990).

Fitness function

Search based testing requires the employment of an ap-
propriate fitness function in order to be effective. The
present framework utilizes a fitness function composed
of four parts. The first two are known as the approach
level and the branch distance introduced by Wegener
et al. (2001) in the context of structural testing. The
third one is named mutation distance and the fourth
one is named impact distance.

The approach level measures the closeness, of a candi-
date test case, for executing a target mutant statement.
It is calculated by counting the number of the target
mutant’s control dependent nodes missed by the candi-
date input test. The branch distance quantifies the dis-
tance from flipping a branch i.e. making it from true to
false or the opposite. It is computed using the runtime
values of the branch expression of interest. The expres-
sion of interest is the topmost of the missed ones from
the mutant control dependencies. This measure is calcu-
lated based on the expression formulas of Table 1 which
was taken from the Awedikian et al. (2009) study on
MC/DC testing. Mutation distance as introduced in this
paper reflects the branch distance measure on mutants.
This approach is in line with the suggestions made by
Bottaci (2001) for the mutation testing fitness calcula-
tions. It should be noted that these three measures guide
the search towards fulfilling the reachability and mutant
necessity constraints proposed by Demillo and Offutt
(1991). Table 2 presents the expression formulas based
on which mutation distance fitness calculations were
made. These formulas were obtained by simplifying and
reducing the necessity constraints and provide useful in-
formation for killing the considered mutants (based on
the expression 1). In Table 2 the Ffit(x) and Tfit(x)

Table 1 Branch fitness

Expression True branch False branch
a== abs(a - b) a==Db%:0
al=b al=b?0:k abs (@!=b?a-b:0)
a<b abs (@a<b?0:a-b+k) abs (a<b?a-b+k:0)
a<=b abs (a<=b?0:a-b) abs (a<=Db?a-b:0)
a>b abs (@>b?0:a-b+k) abs @>b?a-b+k:0)
a>=b abs (@a>=b?0:a-b) abs (@a>=Db?a-b:0)
allb min[fit(a), fit(b)] fit(a) + fit(b)
a&&b fit(a) + fit(b) min([fit@), fit(b)]

Page 4 of 12

signify the True and False branch fitness of clause x re-
spectively. Fulfilling the necessity constraints has been
found to be relatively ineffective at killing mutants that
involve changes to predicate expressions (DeMillo and
Offutt 1991). Thus, mutation fitness calculations should
quantify the distance of making changes to the mutant
and original program predicates (at the mutated state-
ment). To achieve this it is needed to quantify the dis-
tance of fulfilling the following expression:

(Original pred == T && Mutated pred == F)||
(Original pred ==F && Mutated pred == T)

Following the branch fitness calculations of Table 2, the
fitness of the above expression named predicate mutation
distance (pmd), is defined according to expression 2.

pmd = min|Tfit(O) + Efit(M), Tfit(M) + Efit(O)]
(2)

The O and M denote the original and the mutant
predicates fitness calculations.

Impact distance tries to approximate the mutant suffi-
ciency condition (DeMillo and Offutt 1991), which is a
difficult task to formalize (DeMillo and Offutt 1991).
Following the suggestions made in Fraser and Zeller
(2010), one way of approximating this condition is to
measure the impact on the mutant program execution.
As this approach does not guide the search towards
some specific program parts, able to expose the intro-
duced mutants, it was found to be ineffective with the
AVM method. Thus, the proposed fitness function tries
to guide the search towards some specific program ele-
ments which will hopefully be capable of exposing the
mutants. To achieve this, it is suggested to record the
impact (differences on the execution paths between the
original and mutant program versions) (Fraser and
Zeller 2010) of each mutant during the test generation
process. For each program node that has been impacted
the ratio of the killed over the total number of mutants
is recorded. Informally, as tests are produced and exe-
cuted with mutants the nodes are ranked according to
their ability to expose mutants, when they are impacted.
Impact distance reflects the approach level and the
branch distance on the mutant program towards cover-
ing a selected top ranked node.

Conclusively, the proposed fitness function guides the
search towards reaching (approach level + branch dis-
tance) a mutant, causing a discrepancy at the mutation
point (mutation distance), propagate it to the outcome
of the mutant statement (predicate mutation distance)
and impact specific likely to expose mutants, program
nodes (here referred to as impact nodes). Computing the
overall fitness of the test cases requires a unification of
the three used measures. This is done based on the

Papadakis and Malevris SpringerPlus 2013, 2:121
http://www.springerplus.com/content/2/1/121

Table 2 Mutation fitness

Page 5 of 12

Operator Original expression Mutant fitness
a> = b:abs(a-b) a l=b:abs(a-b + k) true:abs(a-b)
a>b a<bk a == b:abs(a-b) false:abs(a-b + k)
a<="ho
a > b:abs(a-b) a l=b:abs(a-b) true:abs(a-b + k)
a>=b a<bo a == b:abs(a-b + k) alse:abs(a-b)
a<=bk
a>bk a !=b:abs(a-b + k) true:abs(a-b)
a<b a>="hbo0 a == b:abs(a-b) false:abs(a-b + k)
a < = b.abs(a-b)
Relational
a>b0 a l=b:abs(a-b) true:abs(a-b + k)
a<=b a>=bk a == b:abs(a-b + k) false:abs(a-b)
a<b.abs(a-b)
a> b:abs(a-b + k) a< = b:abs(a-b) true:abs(a-b)
al=b a> = b:abs(a-b) a==Dbo0 false:k
a<b.abs(a-b+k)
a>b.abs(a - b) a <= b:abs(a-b + k) true:k
a==>b a> = babs(a-b + k) al=bo false:abs(a-b)
a<b:abs(a - b)
a- bk a/ bk ak
a+b
a* bk a% bk bk
b a+bk a/ bk ak
a-
a* bk a% bk bk
a+bk a/ bk ak
Arithmetic a*b
a- bk a% bk b:k
a+ bk a* bk ak
a/b
a-bk a% bk bk
a+bk a* bk ak
a% b
a-bk a/ bk bk
Absolute a abs(a):.abs(a + k) -abs (a):abs(a) O:abs(a)
8&b a||b:min[Tfit(a) + Ffit(b), Ffit(a) + Tfit(b)] a:Tfit(a) + Ffit(b) true:min [Ffit(a), Ffit(b)]
a
b:Ffit(a) + Tfit(b) false:Tfit(a) + Tfit(b)
Logical a&&b:min(Tfit(a)+ aFfit(a) + Tit(b) true:Ffit(a) + Ffit(b)
allb Ffit(b), Ffit(a) + Tfit(b)] o-Tit(a) + Ffit(b) falsemin[Tit(a), Thit(b)]

following equation where branch and mutation distances
are normalized as in (Arcuri 2010):

fitness=reach dis-+mutation dis+impact dis

reach dis=2xapproach level+normalized(branch distance)

mutation dis=normalized(mutation distance)
“+normalized(pmd)

impact dis=approach level+normalized(branch distance)

(3)

Dynamic approach level
Mutation testing introduces a vast number of mutants
which are spanned across the whole program structure.

It was observed that trying to kill them, results into cov-
ering - reaching many other mutants (possible hard to
reach) collaterally i.e. without aiming at them. It is noted
that many mutants are equivalent and thus by their def-
inition aiming at them will result in a waste of effort. In
practice, these two characteristics of mutation can pro-
vide useful information to assist the killing of some
other mutants. This paper proposes the concept of dy-
namic approach level that will serve as a yardstick for
improving the search process.

Search based approaches utilizing approach level and
branch distance fitness functions have the drawback of
leading to random testing (McMinn and Holcombe

Papadakis and Malevris SpringerPlus 2013, 2:121
http://www.springerplus.com/content/2/1/121

2006) for certain types of programs. This is due to the
use of certain programming constructs such as the use
of flags, enumeration types and various data dependen-
cies (Awedikian et al. 2009). To avoid such a situation,
the dynamic approach level tries to include some data
dependencies in the fitness evaluation. These data de-
pendencies are not included in the “static” predefined
approach level. The need for such an inclusion has also
been pointed out by Awedikian et al. (2009), who also
argued that doing so is quite easy and leads to an im-
proved performance.

The rationale behind the use of the standard approach
level (Wegener et al. 2001) is to include only the struc-
tural elements (control dependencies) that must be tra-
versed by any of the possible sought test cases. Consider
a case where in order to traverse a targeted branch re-
quires the program execution to execute a specific pro-
gram statement (data dependency) that is not part of the
control dependencies of the targeted branch. Then, all
the possible test cases that traverse this branch also
traverse the specific program statement. The dynamic
approach level identifies all the common structural ele-
ments that traverse the produced test cases and thus,
necessary data dependencies too. This way the path in-
formation gained during the whole search process can
be used and reproduced for infecting and eventually kill-
ing the aimed mutants.

The dynamic approach level is defined as the intersec-
tion of all nodes that are contained in all the encoun-
tered execution paths that reach a targeted node. Thus,
for example if a target node is x and during the search
process 5 different execution paths have been encoun-
tered that lead to node x, then the dynamic approach
level is formed as the common nodes of these 5 paths. If
there is no path leading to node x, then the standard ap-
proach level is used. It is noted that in the absence of
data dependencies the dynamic approach level could ap-
proximate the standard approach level if most of the en-
countered paths have been executed. This approach
relies on the excessive search performed to kill all the in-
troduced mutants.

The mutation AVM method

The proposed approach uses the alternating variable
method, proposed by Korel (1990). This method forms a
Hill climbing algorithm which has been shown to be
quite effective compared to other search algorithms in
the context of structural testing (Harman and McMinn
2007) and has also been incorporated to automated test
data generation tools such as the AUSTIN tool (Lakhotia
et al. 2010) for structurally testing. Hence, it forms an
ideal choice as it is a quite simple to implement method
and as it is also expected to be a quite powerful one.
Here, it should be noted that mutation testing, in

Page 6 of 12

particular weak mutation, can be transformed to branch
testing (Papadakis and Malevris 2009), (Papadakis et al.
2010), (Papadakis and Malevris 2011), (Papadakis and
Malevris 2012) and since hill climbing performs similarly
to its rivals, in the structural testing context (Harman
and McMinn 2007), there is no reason why this should
not hold for mutants too. Nevertheless, this is beyond
the scope of the present paper and is left open for future
research.

The method starts by randomly initializing the input
program variable values. Then it selects repeatedly and
adjusts one of those values by alternating it. This is
performed until no further fitness improvement can be
obtained i.e. no further alternations are fruitful. In this
case the method switches to the next input variable. The
algorithm stops when no further fitness improvement
can be recorded by selecting and alternating any of the
input variables. Consider the example of Figure 1. To
make this example more understandable, let us assume
that when a mutant is weakly killed, it is also strongly
killed. The same approach holds and in the opposite
case with the difference in the fitness calculations. In the
left part of Figure 1 the original sample program is
presented. In its right part the mutated meta-program is
detailed. The introduction of the mutants is recorded in
the alterations made to the original program e.g. the
statement if (i<k) has become if (RelationalGT(i, k,
15)). The variables i and j are the two original operand
variables while 15 signifies that this expression contains
the mutants identified by the relational operator (7 mu-
tants) with identification numbers from 15 to 21. Let the
initial random inputs be: i = 150, j = 400, k =300 and the
target mutant the 15th one i.e. (i<k to i< =k with mu-
tant fitness abs(i—k)). The process at first selects the i in-
put variable and performs exploratory steps (small
increases and decreases say p - here 1 for integer and
0.1 for real variables - of the input variable). These steps
indicate the search direction. In the example here, i
should be increased as it results in better fitness values.
After the determination of the search direction the

Mutatest (int i, int j, int k){
int ret = 0;
if(i>j)
if (j<k)
if(i<k)

Original program

Mutatest (int i, int j, int k){
int ret = 0;
if (Relational GT(, j, 1))
if (RelationalLT(j, k, 8))
if(RelationalL(i, k,15))

Mutated program

Figure 1 Demonstrating Example.

Papadakis and Malevris SpringerPlus 2013, 2:121
http://www.springerplus.com/content/2/1/121

process continues with pattern steps (these steps are
computed based on the formula: 2*n*direction*p, where
direction is 1 for increase or -1 for decrease). Thus, in
the above example the next obtained input values (pat-
tern steps) will be for the i variable 152, 154, 158, 166,
182, 214, 278, 406. At this point the fitness function can-
not be further improved by altering the i input variable
as the fitness also relies on the second branch point (j <
k). The process continues with input variable j, it per-
forms exploratory steps and starts to decrease the j value
as follows: 398, 396, 392, 384, 368, 336, 272. At that
point the process chooses the k input variable and starts
increasing its value accordingly to 302, 304, 308, 316,
332, 364, 428. After value 428 it performs exploratory
steps again and starts to decrease its value to 426, 424,
420, 412, 396. Here it changes direction again and con-
tinues to 398, 400, 404, 412 where it decreases to 410,
408, 404 and finally finds the required value 406 that
kills the mutant. The process has effectively achieved to
produce the test case (i =406, j =272, k=406) that kills
the mutant (i<k to i<= k). If this procedure fails to
kill the required mutant the process restarts by using
new randomly selected inputs for i, j and k. Of course,
this could be a consequence of hitting a local minimum
or a consequence of an equivalent mutant.

Evaluation

This section empirically evaluates the effectiveness of
the propositions made in this paper based on two ex-
periments. The first experiment compares the effective-
ness of the proposed framework to perform mutation
using three fitness functions and random testing. The
second experiment, examines the impact on the frame-
work’s effectiveness to when utilizing the dynamic
approach level.

Experimental design

The experiment described in this section uses the pro-
posed mutation testing framework on a set of Java pro-
grams using the mutation operators presented in Table 2
along with the incorporated fitness necessity formulas.
The framework works on Java programs (produces mu-
tation operators) with a primary target at the intra
method level (Ma et al. 2005), similar to non Object-
Oriented languages (see section V.A for details about
the framework capabilities and limitations). The experi-
ment described in this section empirically investigates
the following Research Questions (RQs):

e RQ 1: How effective are the adopted fitness
functions compared to a previously proposed one
(Ayari et al. 2007) and random testing?

e RQ 2: What is the relative efficiency of the adopted
fitness functions?

Page 7 of 12

e RQ 3: What is the impact of the dynamic approach
level on the effectiveness of the examined
approaches?

To answer the above questions, the proposed frame-
work was employed to generate test cases for a set of
programs based on the mutation operators presented in
Table 2. It is noted that the results reported here are the
average values obtained from applying the examined ap-
proaches 10 times independently. In order to answer
RQ1 the number of killed mutants was measured. With
respect to RQ2 the required fitness evaluations to pro-
duce the sought test data were measured. With respect
to RQ3 the experiment was repeated by utilizing the dy-
namic approach level. Specifically, in the conducted ex-
periments random testing and three fitness functions
were utilized. The first fitness function named “Reach”
uses only the reach distance of expression 3 and corre-
sponds to the fitness function suggested by Ayari et al.
(2007). The second one called “Infect” uses the Reach
and Infect distances of expression 3 and the third one
named “Impact” utilizes expression 3. In the second ex-
periment the followed process was to iteratively and
continuously perform one attempt to kill all the live mu-
tants using the standard approach level and one using
the dynamic approach level. For each test subject the
test generation process considered up to 50,000 fitness
evaluations or random test generations (for random test-
ing) for all the introduced mutants. This is a consider-
ably high number of evaluations but it is forced due to
the existence of equivalent mutants.

Results and analysis

The experimental evaluation of the proposed system was
performed based on the use of 8 program units. The se-
lected programs have been used in various studies
(DeMillo and Offutte1991), (Papadakis et al. 2010),
(Sthamer 1996), (Murrill 2008). The test objects are pro-
grams with various characteristics such as mathematical
computations, array manipulations, state based behavior
and complex branching conditions. A considerable num-
ber of mutants, 2,759, were produced based on the use
of all the operators employed by the framework. Particu-
lars of all the used programs are given in Table 3. Table 3
records details about the test objects’ lines of code, input
settings (input domain search space) and the number of
produced mutants.

The experiment tries to reveal the ability of the frame-
work to perform mutation testing and its effectiveness
compared to a previously proposed approach without
any particular assistance. That is, none of the equivalent
mutants was eliminated from the candidate mutant set,
fact that allows considerable overheads to the conducted
experiment. Furthermore, no data dependencies, state

Papadakis and Malevris SpringerPlus 2013, 2:121
http://www.springerplus.com/content/2/1/121

related information or flag removal approaches were
employed in order to make the test search more effi-
cient. The effective incorporation of such approaches is
considered out of the scope of the present paper and
thus, has been left for future work.

Results of the performed experiments are presented in
Table 4. Table 4 records per test subject the number of
killed mutants by the produced test data according to
random testing (Random) and the three employed fit-
ness functions utilizing the standard (Reach, Infect and
Impact) and the dynamic approach levels (DReach,
Dinfect and DImpact). Additionally, Figure 2 reports the
sum of the killed mutants for various fitness evaluation
limits when using either static or dynamic approach level.

The obtained results provide evidence in support of
the proposed fitness functions (Infect and Impact) which
outperform a previously proposed one (Reach) and ran-
dom testing (RQ1). Additionally, the use of dynamic
approach level improves the effectiveness of all the ex-
amined fitness functions (RQ3). Specifically, the Infect
and Impact fitness functions kill on average 113 and 122
more mutants than the Reach one respectively, using the
standard approach level. The use of the dynamic ap-
proach level results in an increase with all three exam-
ined functions by killing 71, 40 and 87 more mutants for
Reach, Infect and Impact fitness functions respectively.
Additionally, the convergence of all the examined fitness
functions is higher for the high number of evaluations.
This is due to the fact that for higher number of execu-
tions more paths are included in the dynamic approach
level. Recall that the dynamic approach level is adopted
according to all the encountered execution paths.

Considering the approach efficiency (RQ2) the number
of mutant evaluations should be examined. From Figure 2
it can be observed that both the Infect and Impact fitness
are more efficient than the Reach one even for a small
number of evaluations (approximately over 4,500 evalua-
tions). For less than 4,500 evaluations all the approaches
share a similar effectiveness and efficiency. The use of dy-
namic approach level generally improves the efficiency of
the utilized fitness functions as for the same number of
evaluations it kills more mutants.

Table 3 Test program details

Page 8 of 12

Compared with random testing it can be observed that
in general it performs worse than the Infect and Impact
fitness irrespective of the use or not of the dynamic ap-
proach level. However, it performs similarly to Reach
without the use of the dynamic approach level and
worsens when Reach utilizes it. Here it must be noted
that under the framework’s process of executing mu-
tants, which determines the collaterally killed ones when
and only when it has killed a targeted mutant, the com-
parison made is in favor of random testing (in random
testing all tests are executed against all mutants). Never-
theless, even in such a case the proposed approach out-
performs random testing.

By employing the proposed framework with 150,000
fitness evaluations on the Trityp program (DeMillo and
Offutt 1991), which is a well established benchmark in
both search based and mutation testing studies, the re-
sults presented in Figure 3 can be obtained. From this
figure it becomes evident that the Impact fitness utilizing
the dynamic approach level can lead to a considerably
high number of killed mutants. In this case it manages
to kill all but two of the killable mutants. This fact sug-
gests that the proposed approach can be quite powerful
in producing mutation based test cases.

Related work

The alternating variable method was initially proposed
by Korel (1990) which was adopted by the present
framework for finding the appropriate tests. Daimler
(Wegener et al. 2001) developed an automated tool for
testing C programs based on various structural testing
criteria. It is this tool’s fitness function that is extended
by the present research.

Test case generation techniques for mutation testing
have received little attention in the literature. The most
fundamental attempt is the one due to DeMillo and
Offutt who developed the constraint based testing
Technique (DeMillo and Offutt 1991). This technique
introduced the concept of reachability, necessity and
sufficiency conditions which have been embodied in a
tool called Godzilla. Godzilla contains the first two of
these conditions, formulating and resolving them as

Test subjects Lines of code

Input settings No. of mutants

1-Triangle 35 3 ints: (range 16-bit) 166
2-Trityp 40 3 ints: (range 16-bit) 349
3-Triangle 90 3 ints: (range 16-bit) 421
4-Remainder 50 2 ints: (range 16-bit) 324
5-Callendar 75 5 ints: 2x[0, 12], 2x[0, 365], [-3,000, 3,000] 327
6-Cancel 50 3 ints: (3x[0, 50]) 866
7-FourBalls 30 4 floats, 1 ints: 4x[—100, 100], [-100, 100] 225
8-Quadratic 25 3 ints (range 16-bit) 81

Papadakis and Malevris SpringerPlus 2013, 2:121
http://www.springerplus.com/content/2/1/121

Table 4 Mutants killed by the utilized fitness functions

Page 9 of 12

Test subjects Random Reach Infect Impact DReach Dinfect DImpact
1-Triangle 102.2 94 103 103.4 96.4 103 103.2
2-Trityp 125.6 173.8 178.4 184.8 205.4 2104 223
3-Triangle 102 131 144.4 146.2 143.8 148.6 185
4-Remainder 205.8 201.4 206 206 201.4 206 206
5-Callendar 189 165 195.2 193.2 168.6 198.8 200

6-Cancel 712.6 686.2 732.2 732.6 709.26 732 733.2
7-FourBalls 187.2 183.2 185 186.8 181 185.8 188
8-Quadratic 59.07 58 61.22 61.8 58 60.6 63

mathematical systems of constraints. Formulating and
resolving reachability and necessity constraints forms a
difficult task. In order to efficiently handle this task, in
(Papadakis and Malevris 2012) and (Papadakis and
Malevris 2009) it is suggested to use a path selection
strategy that reduces the effects of infeasible paths.
Bottaci (2001) proposed a fitness function composed of
the reachability distance (measures the closeness of the
test data and the mutant statement) of the produced
tests and the necessity distance (measures the closeness
to kill the mutant statement). In (Ayari et al. 2007) a
search based approach for the generation of mutation
test data was proposed by implementing only the
reachability part of the Bottaci (2001) fitness function.
More recently, Fraser and Zeller (2010) proposed an-
other evolutionary based approach to automate the pro-
duction of mutation tests. This approach uses the
rechability part of the Bottaci’s fitness function (Bottaci
2001) and approximates the necessity and sufficiency
conditions by measuring the mutant’s impact (Fraser
and Zeller 2010). They argue that producing tests with
higher mutants’ impact, results in tests closer to kill
those mutants. The above two approaches are the clos-
est ones to the present proposed framework. The main
differences are that the proposed framework extends
the fitness function to effectively direct the search to-
wards necessity and sufficiency conditions (DeMillo and
Offutt 1991). Additionally, a novel technique to efficiently

gain and dynamically adopt the required fitness informa-
tion through mutant schemata is presented by the present
paper.

The idea of utilizing mutant schemata in order to help
automated tools to perform mutation was initially intro-
duced in (Papadakis et al. 2010) with the aim of reusing
existing structural automated tools for performing muta-
tion. The underlying technique to achieve this was to re-
duce the weakly killing mutant problem to the covering
branches one. In (Papadakis and Malevris 2010a) the
schemata approach was extended to utilize dynamic
symbolic execution for producing strong mutation based
tests. In the present paper, mutant schemata were used
in order to enable the fitness guidance towards killing
mutants for strong mutation.

Discussion

The origin of the proposed framework is due to the inte-
grated use of mutant schemata and evolutionary testing
techniques utilizing a novel fitness function. This inte-
gration helps to extract dynamic program information
concerning the introduced mutants and fitness calcula-
tions efficiently. The conducted case study indicates the
ability of the proposed method to produce high quality
test cases from scratch (starting from random inputs).
Additionally, it indicates the improved performance over
random testing and a previously proposed approach. In
fact the proposed fitness functions are compared with

Killed mutants Vs fitness evaluations

20009 using "static" approach level

1800

1600
1400 +

1200 77

f + Random

1000
= Reach

800 -
n + Infect

600 - Impact

400

0 10000 20000 30000 40000 50000

Figure 2 Mutants killed by the utilized approaches for various fitness evaluation limits.

Killed mutants Vs fitness evaluations

2000 - using "dynamic" approach level

1800 -

1600 -

1400 -

1200 i (‘ + Random
Au00 ?’ = DReach
800 Dinfect
600 » « Dimpact
400 ; . -

0 10000 20000 30000 40000 50000

Papadakis and Malevris SpringerPlus 2013, 2:121
http://www.springerplus.com/content/2/1/121

Page 10 of 12

Tritype: Using "static" approach level

190 -

170 -
f

150 -

120 *

L] —_—
h
. -

110 it - + Random
90— = Reach
70 & « Infect

=
« Impact
50 T |
0 50000 100000 150000

Figure 3 Trityp program: Mutants killed vs fitness evaluations.

i Tritype: Using "dynamic" approach level
210 -
190 -
170 - F
150 - 5
130 - 8 —_—
. - - « Random
% i = Reach
G0 e—
« Infect
70 4:
< Impact
50 T "
0 50000 100000 150000

the one proposed in (Ayari et al. 2007). A similar to
(Ayari et al. 2007) approach has also been proposed by
Fraser and Zeller (2010) who extend it by including the
mutants impact in their fitness. Such an inclusion was
attempted in the conducted case study. The obtained re-
sults were similar to the ones obtained by the reach fit-
ness function. This is due to the use of hill climbing and
the absence of effective guidance towards some specific
program statements.

Equivalent mutants help the proposed approach to
build the dynamic approach level as they force the
search towards various and different program statements
and conditions. Despite this, from the conducted case
study it becomes evident that equivalent mutants pose
an additional burden to test case evolution as they force
the method not only to search for non killable mutants
(huge effort) but also by misleading the mutation score
calculated due to their presence. This fact explains why
the proposed approach spends so many fitness evalua-
tions in order to kill additional mutants. Perhaps the use
of some heuristic approaches such as the one suggested
in (Kintis et al. 2012) for isolating equivalent mutants,
could be employed in order to overcome this problem.
This paper also reveals that simple dynamic approaches
can be quite effective for the production of high quality
test cases. Based on the dynamic nature of the adopted
approach, the problems caused by pointers and non lin-
ear expressions are limited.

The framework described here uses a quite simple but
practical approach, based on the mutant schemata tech-
nique (Untch et al. 1993), in order to perform the test
data generation process. This approach is an incremental
approach that targets first on reaching, then weakly kill-
ing and then strongly killing the introduced mutants.
This incremental process helps on producing some tests
capable to weakly kill some strongly equivalent mutants.
These tests should be valuable and should increase the
performed testing quality.

Tool characteristics and limitations

The proposed framework in this paper has several spe-
cial characteristics and limitations which are currently
under research. Generally, it can handle Java programs
only at the intra method level. Thus, it does not handle
method sequences or Object Oriented features. Its appli-
cation treats one method at a time using predefined
method sequences. The inability of the mutant schemata
technique to handle certain Object Oriented mutants as
identified in (Ma et al. 2005) limits the propositions
made in this paper to the intra method level. Here it
must be noted that in the case of Logical operators, a
necessary special handling was enforced. This is due to
the short circuit evaluation mechanism performed by
the Java language. In order to keep the program execu-
tion paths unaffected with the presence of mutants, the
logical operator’s evaluations were performed when both
logical operands were executed.

Threats to validity

The present paper focuses on presenting an automated
mutation testing system. One possible threat to the val-
idity of the results reported here may be related to the
generalization of the obtained results. Thus, the frame-
work’s effectiveness may vary in other cases. However, as
the proposed method utilizes and extends the sugges-
tions made by DeMillo and Offutt (1991), Bottaci (2001)
and Fraser and Zeller (2010), their use is expected to in-
crease the effectiveness of the search based approaches.
Additionally, the results obtained may serve as a yard-
stick towards the employment of mutation testing in an
automated fashion and in order to indicate that it is pos-
sible to adopt mutation for the testing activity, resulting
in the production of high quality tests.

The proposed framework uses weak/strong mutation
and mutants’ impact for guiding and evaluating its test
production effectiveness utilizing the AVM method. This
does not necessarily mean that the results here can be

Papadakis and Malevris SpringerPlus 2013, 2:121
http://www.springerplus.com/content/2/1/121

extrapolated to the rest of the search based approaches.
In any case, this was not the intention of the present
framework, as it aims at using AVM which is quite sim-
ple and practical.

The last threat of internal validity may be based on the
use of software systems. Thus, possible bugs, the fitness
measures and the schematic program production imple-
mentation of the test objectives may have influenced the
obtained results. To reduce these threats, selected test
cases were executed in both the original and the converted
program versions showing that they execute the same pro-
gram paths. An additional manual evaluation of the results
produced by the framework based on the Tritype program
was performed showing no discrepancies.

Conclusion and future work

The proposed framework, as described here forms an
automation of the mutation testing method. The frame-
work uses state of the art techniques to efficiently gener-
ate the candidate mutants and produce mutation based
test data. Based on a performed case study the system
achieves to produce test cases able to kill the majority of
the introduced mutants. This also establishes tests for
performing high quality testing, this being the main
issue of the present paper. Preliminary results suggest
that the proposed fitness functions can outperform a
previously proposed one and random testing as well.
Also the use of the dynamic approach level can increase
the effectiveness of the framework. In particular, based
on the conducted case study, the suggested propositions
achieve to kill on average approximately 7.6% more mu-
tants than a previously proposed approach (Ayari et al.
2007) and 7.9% more than what random testing does.

In future, extensions of the framework to include
other search based approaches such as evolutionary test-
ing are planned. Further investigation is needed in order
to determine the benefits of the dynamically adopted
approach level and its optimal use on search based test-
ing. Finally, the application of the proposed approach in
killing second or higher order mutants (Papadakis and
Malevris 2010b), (Kintis et al. 2010), (Jia and Harman
2010) is under investigation. Since such approaches have
been shown to be quite effective in isolating equivalent
mutants (Kintis et al. 2012) their consideration within
the proposed framework will greatly enhance the level of
automation used when performing mutation testing.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both the authors contribute to all the material contained in this paper.

Acknowledgments
This research was partly funded by the Research Centre of the Athens
University of Economics and Business.

Page 11 of 12

Author details

'Interdisciplinary Center for Security, Reliability and Trust, University of
Luxembourg, Luxermnbourg, Luxembourg. “Department of Informatics, Athens
University of Economics and Business, Athens, Greece.

Received: 4 January 2013 Accepted: 14 February 2013
Published: 21 March 2013

References

Andrews JH, Briand LC, Labiche Y, Namin AS (2006) Using mutation analysis for
assessing and comparing testing coverage criteria. I[EEE Trans Softw Eng 32
(8):608-624. doi:http://dx.doi.org/10.1109/TSE.2006.83

Arcuri A (2010) It Does Matter How You Normalise the Branch Distance in Search
Based Software Testing. In: Proceedings of the 2010 Third International
Conference on Software Testing, Verification and Validation. IEEE Computer
Society, Washington, DC, USA, pp 205-214. doi:10.1109/ICST.2010.17 Branch
Distance, Search Based Software Testing, Theory, Simulated Annealing,
Genetic Algorithms, Test Data Generation. ISBN 978-0-7695-3990-4

Awedikian Z, Ayari K, Antoniol G (2009) Mc/dc automatic test input data
generation. Paper presented at the Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, Montreal, Canada

Ayari K, Bouktif S, Antoniol G (2007) Automatic mutation test input data
generation via ant colony. In: Proceedings of the 9th annual conference on
Genetic and evolutionary computation. 1277172: ACM, London, England, pp
1074-1081. http://doi.acm.org/10.1145/1276958.1277172

Bottaci L (2001) A genetic algorithm fitness function for mutation testing. In:
SEMINAL: Software Engineering using Metaheuristic INovative Algorithms,
Workshop 8, ICSE 2001, pp 3-7

DeMillo RA, Offutt AJ (1991) Constraint-based automatic test data generation.
IEEE Trans Softw Eng 17(9):900-910. doi:http://dx.doi.org/10.1109/32.92910

DeMillo RA, Lipton RJ, Sayward FG (1978) Hints on test data selection: Help for
the practicing programmer. Computer 11(4):34-41. doihttp://dx.doi.org/
10.1109/C-M.1978.218136

Fraser G, Zeller A (2010) Mutation-driven generation of unit tests and oracles. In:
Proceedings of the 19th international symposium on Software testing and
analysis, Trento, Italy. 1831728: ACM, pp 147-158. doi:http://doi.acm.org/
10.1145/1831708.1831728

Hamlet RG (1977) Testing programs with the aid of a compiler. IEEE Trans Softw
Eng 3(4):279-290. doi:http://dx.doi.org/10.1109/TSE.1977.231145

Harman M, McMinn P (2007) A theoretical & empirical analysis of evolutionary
testing and hill climbing for structural test data generation. In: Proceedings
of the 2007 international symposium on Software testing and analysis,
London, United Kingdom. 1273475: ACM, pp 73-83. doi:http://doi.acm.org/
10.1145/1273463.1273475

Howden WE (1982) Weak mutation testing and completeness of test sets. IEEE
Trans Softw Eng 8(4):371-379. doi:http://dx.doi.org/10.1109/
TSE.1982.235571

Jia Y, Harman M (2010) An analysis and survey of the development of mutation
testing. IEEE Trans Softw Eng 99. doihttp://dx.doi.org/10.1109/TSE2010.62

Kintis M, Papadakis M, Malevris N (2010) Evaluating Mutation Testing Alternatives:
A Collateral Experiment. Proceedings of the 2010 Asia Pacific Software
Engineering Conference, APSEC '10. IEEE Computer Society, Washington, DC,
USA, pp 300-309. doi:10.1109/APSEC.2010.42 mutation testing, higher order
mutation, weak mutation, collateral coverage. ISBN 978-0-7695-4266-9

Kintis M, Papadakis M, Malevris N (2012) Isolating First Order Equivalent Mutants
via Second Order Mutation. Proceedings of the 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, ICST '12. IEEE
Computer Society, Washington, DC, USA, pp 701-710. doi:10.1109/
ICST.2012.160 Equivalent mutants, Higher Order mutation, Mutants' Impact.
ISBN 978-0-7695-4670-4

Korel B (1990) Automated software test data generation. IEEE Trans Softw Eng 16
(8):870-879. doi:http://dx.doi.org/10.1109/32.57624

Lakhotia K, Harman M, Gross, Austin H (2010) A tool for search based software
testing for the ¢ language and its evaluation on deployed automotive
systems. In: 2nd International Symposium on Search Based Software
Engineering. doi:http://dx.doi.org/10.1109/SSBSE.2010.21

Ma Y-S, Offutt J, Kwon YR (2005) Mujava: An automated class mutation system.
Softw Test Verif Reliab 15(2):97-133. doi:http://dx.doi.org/10.1002/stvrv15:2

McMinn P, Holcombe M (2006) Evolutionary testing using an extended chaining
approach. Evol Comput 14(1):41-64. doihttp://dx.doi.org/10.1162/
106365606776022742

http://dx.doi.org/10.1109/TSE.2006.83
http://dx.doi.org/10.1109/ICST.2010.17
http://doi.acm.org/10.1145/1276958.1277172
http://dx.doi.org/10.1109/32.92910
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/C-M.1978.218136
http://doi.acm.org/10.1145/1831708.1831728
http://doi.acm.org/10.1145/1831708.1831728
http://dx.doi.org/10.1109/TSE.1977.231145
http://doi.acm.org/10.1145/1273463.1273475
http://doi.acm.org/10.1145/1273463.1273475
http://dx.doi.org/10.1109/TSE.1982.235571
http://dx.doi.org/10.1109/TSE.1982.235571
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1109/APSEC.2010.42
http://dx.doi.org/10.1109/ICST.2012.160
http://dx.doi.org/10.1109/ICST.2012.160
http://dx.doi.org/10.1109/32.57624
http://dx.doi.org/10.1109/SSBSE.2010.21
http://dx.doi.org/10.1002/stvr.v15:2
http://dx.doi.org/10.1162/106365606776022742
http://dx.doi.org/10.1162/106365606776022742

Papadakis and Malevris SpringerPlus 2013, 2:121
http://www.springerplus.com/content/2/1/121

Murrill BW (2008) An empirical, path-oriented approach to software analysis and
testing. J Syst Softw 8(2):249-261. doi:10.1016/}.j55.2007.05.008

Offutt AJ, Pan J (1997) Automatically detecting equivalent mutants and infeasible
paths. Software Testing, Verification and Reliability 7:165-192. doi:10.1002/
(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U

Offutt AJ, Untch RH (2001) Mutation 2000: uniting the orthogonal. In: Eric WW
(ed) Mutation testing for the new century. Kluwer Academic Publishers,
Norwell, MA, USA, pp 34-44, http://dl.acm.org/citation.cfm?id=571305.571314
11,571314. ISBN 0-7923-7323-5

Papadakis M, Le Traon Y (2012) Using Mutants to Locate "Unknown” Faults.
Proceedings of the 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, ICST '12. IEEE Computer Society,
Washington, DC, USA, pp 691-700. doi:10.1109/ICST.2012.159 debugging,
mutation analysis, fault localization. ISBN 978-0-7695-4670-4

Papadakis M, Malevris N (2009) An effective path selection strategy for mutation
testing. In: Proceedings of the 16th Asia-Pacific Software Engineering
Conference. IEEE Computer Society, pp 422-429, http://dx.doi.org/10.1109/
APSEC2009.68

Papadakis M, Malevris N (2010a) Automatic Mutation Test Case Generation via
Dynamic Symbolic Execution. Proceedings of the 2010 IEEE 21st International
Symposium on Software Reliability Engineering, ISSRE '10. IEEE Computer
Society, Washington, DC, USA, pp 121-130, http://dx.doi.org/10.1109/
ISSRE2010.38 10, 1914368, automated test case generation, dynamic
symbolic execution, mutation testing, mutant schemata 10.1109/
ISSRE.2010.38. ISBN 978-0-7695-4255-3

Papadakis M, Malevris N (2010b) An empirical evaluation of the first and second
order mutation testing strategies. In: Software Testing, Verification, and
Validation Workshops (ICSTW), 2010 Third International Conference on, 6-10
April 2010, pp 90-99, http://dx.doi.org/10.1109/ICSTW.2010.50

Papadakis M, Malevris N (2011) Automatically performing weak mutation with
the aid of symbolic execution, concolic testing and search-based testing.
Softw Qual J 19(4):691-723. doi:10.1007/511219-011-9142-y

Papadakis M, Malevris N (2012) Mutation based test case generation via a path
selection strategy. Inf Softw Technol 54(9):915-932. doi:10.1016/j.
infsof.2012.02.004

Papadakis M, Malevris N, Kallia M (2010) Towards automating the generation of
mutation tests. In: Proceedings of the 5th Workshop on Automation of
Software Test, Cape Town, South Africa. 1808283: ACM, pp 111-118. doi:
http://doiacm.org/10.1145/1808266.1808283

Sthamer HH (1996) The automatic generation of software test data using genetic
algorithms. University of Glamorgan, Wales, UK

Untch RH, Offutt AJ, Harrold MJ (1993) Mutation analysis using mutant schemata.
In: Proceedings of the 1993 ACM SIGSOFT international symposium on
Software testing and analysis, Cambridge, Massachusetts, United States.
154265: ACM, pp 139-148. doi:http://doi.acm.org/10.1145/154183.154265

Wegener J, Baresel A, Sthamer H (2001) Evolutionary test environment for
automatic structural testing. Inf Softw Technol 43(14):841-854. doi:10.1016/
$0950-5849(01)00190-2

doi:10.1186/2193-1801-2-121
Cite this article as: Papadakis and Malevris: Searching and generating
test inputs for mutation testing. SpringerPlus 2013 2:121.

Page 12 of 12

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://dx.doi.org/10.1016/j.jss.2007.05.008
http://dx.doi.org/10.1002/(SICI)1099-1689(199709)7:3%3C165::AID-STVR143%3E3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1099-1689(199709)7:3%3C165::AID-STVR143%3E3.0.CO;2-U
http://dl.acm.org/citation.cfm?id=571305.571314
http://dx.doi.org/10.1109/ICST.2012.159
http://dx.doi.org/10.1109/APSEC.2009.68
http://dx.doi.org/10.1109/APSEC.2009.68
http://dx.doi.org/10.1109/ISSRE.2010.38
http://dx.doi.org/10.1109/ISSRE.2010.38
http://dx.doi.org/10.1109/ICSTW.2010.50
http://dx.doi.org/10.1007/s11219-011-9142-y
http://dx.doi.org/10.1016/j.infsof.2012.02.004
http://dx.doi.org/10.1016/j.infsof.2012.02.004
http://doi.acm.org/10.1145/1808266.1808283
http://doi.acm.org/10.1145/154183.154265
http://dx.doi.org/10.1016/s0950-5849(01)00190-2
http://dx.doi.org/10.1016/s0950-5849(01)00190-2

	Abstract
	Introduction
	Framework description
	Generating mutants
	Executing mutants with tests
	Search based testing
	Fitness function
	Dynamic approach level
	The mutation AVM method

	Evaluation
	Experimental design
	Results and analysis

	Related work
	Discussion
	Tool characteristics and limitations
	Threats to validity

	Conclusion and future work
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

