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Abstract

Background: Super-resolution optical fluctuation imaging (SOFI) achieves 3D super-resolution by computing
temporal cumulants or spatio-temporal cross-cumulants of stochastically blinking fluorophores. In contrast to
localization microscopy, SOFI is compatible with weakly emitting fluorophores and a wide range of blinking
conditions. The main drawback of SOFI is the nonlinear response to brightness and blinking heterogeneities in the
sample, which limits the use of higher cumulant orders for improving the resolution.

Balanced super-resolution optical fluctuation imaging (bSOFI) analyses several cumulant orders for extracting molec-
ular parameter maps, such as molecular state lifetimes, concentration and brightness distributions of fluorophores
within biological samples. Moreover, the estimated blinking statistics are used to balance the image contrast, i.e.
linearize the brightness and blinking response and to obtain a resolution improving linearly with the cumulant order.

Results: Using a widefield total-internal-reflection (TIR) fluorescence microscope, we acquired image sequences of
fluorescently labelled microtubules in fixed Hel a cells. We demonstrate an up to five-fold resolution improvement as
compared to the diffraction-limited image, despite low single-frame signal-to-noise ratios. Due to the TIR illumination,
the intensity profile in the sample decreases exponentially along the optical axis, which is reported by the estimated
spatial distributions of the molecular brightness as well as the blinking on-ratio. Therefore, TIR-bSOFI also encodes
depth information through these parameter maps.

Conclusions: bSOFI is an extended version of SOFI that cancels the nonlinear response to brightness and blinking
heterogeneities. The obtained balanced image contrast significantly enhances the visual perception of
super-resolution based on higher-order cumulants and thereby facilitates the access to higher resolutions.
Furthermore, bSOFI provides microenvironment-related molecular parameter maps and paves the way for functional
super-resolution microscopy based on stochastic switching.

Keywords: Fluorescence microscopy, Super-resolution, Stochastic switching, Sofi, Cumulants, Balanced contrast,
molecular statistics, Functional imaging

Background

The spatial resolution in classical optical microscopes
is limited by diffraction to about half the wavelength
of light. During the last two decades, several super-
resolution concepts have been developed. Based on the
on-off-switching of fluorescent probes, these concepts
overcome the diffraction limit by up to an order of
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magnitude (Huang et al. 2009). A straightforward method
consists of digitally post-processing an image sequence of
stochastically blinking emitters acquired with a standard
wide-field fluorescence microscope. Densely packed sin-
gle fluorophores can be distinguished in time by using
high-precision localization algorithms, used for instance
in photo-activation localization microscopy (PALM)
(Betzig et al. 2006; Hess et al. 2006) and stochastic optical
reconstruction microscopy (STORM) (Heilemann et al.
2008; Rust et al. 2006), or by analysing the statistics of
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the temporal fluctuations as exploited in super-resolution
optical fluctuation imaging (SOFI) (Dertinger et al. 2009;
Dertinger et al. 2010). SOFI is based on a pixel-wise
auto- or cross-cumulant analysis, which yields a resolu-
tion enhancement growing with the cumulant order in
all three dimensions (Dertinger et al. 2009). Uncorre-
lated noise, stationary background, as well as out-of-focus
light are greatly reduced by the cumulants analysis. While
PALM and STORM are commonly based on a frame-by-
frame analysis of images of individual fluorophores, SOFI
processes the entire image sequence at once and therefore
presents significant advantages in terms of the number of
required photons per fluorophore and image, as well as
in acquisition time (Geissbuehler et al. 2011). Localization
microscopy requires a meta-stable dark state for imag-
ing individual fluorophores (van de Linde et al. 2010). In
contrast, SOFI relies solely on stochastic, reversible and
temporally resolvable fluorescence fluctuations almost
regardless of the on-off duty cycle (Geissbuehler et al.
2011). The main drawback of SOFI is the amplification
of heterogeneities in molecular brightness and blinking
statistics which limits the use of higher-order cumu-
lants and therefore resolution. In this article, we revisited
the original SOFI concept and propose a reformulation
called balanced super-resolution optical fluctuation imag-
ing (bSOFI), which in addition to improving structural
details opens a new functional dimension to stochastic
switching-based super-resolution imaging. bSOFI allows
the extraction of the super-resolved spatial distribution of
molecular statistics, such as the on-time ratio, the bright-
ness and the concentration of fluorophores by combining
several cumulant orders. Moreover, this information can
be used to balance the image contrast in order to compen-
sate for the nonlinear brightness and blinking response of
conventional SOFI images. Consequently, bSOFI enables
higher-order cumulants to be used and thereby achieves
higher resolutions.

Methods

Theory and algorithm

SOFI is based on the computation of temporal cumu-
lants or spatio-temporal cross-cumulants. Cumulants are
a statistical measure related to moments. Because cumu-
lants are additive, the cumulant of a sum of independently
fluctuating fluorophores corresponds to the sum of the
cumulant of each individual fluorophore. This leads to a
point-spread function raised to the power of the cumu-
lant order # and therefore a resolution improvement of
J/n, respectively almost # with subsequent Fourier fil-
tering (Dertinger et al. 2010). So far, SOFI has been
used exclusively to improve structural details in an image
(Dertinger et al. 2009; Dertinger et al. 2010). Informa-
tion about the on-time ratio, the molecular brightness
and the concentration has to our knowledge never been
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exploited before and therefore represents a new potential
for super-resolved imaging.

In the most general sense, the cumulant of order »
of a pixel set P = {r1,72,...,7,} with time lags T =
{t1,72,..., Ty} can be calculated as (Leonov and Shiryaev
1959)
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where (...); stands for averaging over the time ¢. P runs
over all partitions of a set S = {1,2,.. ., n}, which means
all possible divisions of S into non-overlapping and non-
empty subsets or parts that cover all elements of S. |P|
denotes the number of parts of partition P and p enu-
merates these parts. I(F;,¢) is the intensity distribution
measured over time on a detector pixel 7;. We used the
cross-cumulant approach without repetitions to increase
the pixel grid density and eliminate any bias arising from
noise contributions in auto-cumulants (Geissbuehler et
al. 2011). A 4x4 neighborhood around every pixel was
considered to compute all possible n-pixel combinations
excluding pixel repetitions. For computational reasons,
we kept only a single combination featuring the shortest
sum of distances with respect to the corresponding output
pixel 7 = 1 3" 7. For even better signal-to-noise ratios,
it would be beneficial to average over multiple combina-
tions per output pixel. The heterogeneity in output pixel
weighting arising from the different pixel combinations
has been accounted for by the distance factor as described
in (Dertinger et al. 2010).

Considering a sample composed of M independently
fluctuating fluorophores and assuming a simple two-state
blinking model (with characteristic lifetimes ton, Tog) with
slowly varying molecular parameters compared to the size
of the point-spread function (PSF), the cumulant of order
n without time-lags can be interpreted as

M
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with €(7) the spatial distribution of the molecular bright-

ness and pon(7) = Ton (7)

P N the on-time ratio. U (7) is
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the system’s PSF and f;,(0on; 7) is the n-th order cumulant
of a Bernoulli distribution with probability pop:

fl (pon;;) = Pon
fZ(,Oon;;) = Pon(1 — pon)
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Assuming a uniform spatial distribution of molecules
inside a detection volume V centered at 7, we may further
approximate

M
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where &y (U" (%)} = 1/V [, U"(%)dx% is the expectation
value of U" (x) or the n-th moment of U (%) (see (Kask et al.
1997) for some examples) and N (7) denotes the number of
molecules within the detection volume V. Finally, we can
write

Kn(F) & Ev {U" &)} N(#)e" (7)fu(pon; 7). (5)

Based on at least three different cumulant orders and
approximation (5), it is possible to extract the molecular
parameter maps €(7), N(¥) and pon(7) by solving an
equation system, or by using a fitting procedure. For
example, the cumulant orders two to four can be used to
build the ratios
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and to solve for the molecular brightness

€(F) = |/3KE(F) — 2K,(7), (7)

the on-time ratio

L1 K®)
Pon (1) = 2 T(?)’ (8)
and the molecular density
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The spatial resolution of the estimation is limited by the
lowest order cumulant, i.e. the second order in this case.
However, the presented solution is not unique. Basically
any three distinct cumulant orders could have provided
a solution. Furthermore, the method is not limited to a
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two-state system; it can be extended to more states as long
as the differences in fluorescence emission are detectable.
Additional details on the analytical developments as well
as a theoretical investigation of the estimation accuracy
of the different parameters under different conditions are
given in the Additional file 1.

In order to correct for the amplified brightness
and blinking heterogeneities without compromising the
resolution, the cumulants have to be deconvolved first.
For this purpose, we used a Lucy-Richardson algorithm
(Lucy 1974; Richardson 1972) implemented in MATLAB
(deconvlucy, The MathWorks, Inc.), which is an itera-
tive deconvolution without regularization that computes
the most likely object representation given an image with a
known PSF and assuming Poisson distributed noise. Apart
from the estimate of the cumulant PSF and the speci-
fication of a maximum of 100 iterations, all arguments
have been left at their default values. Assuming a perfect
deconvolution without regularization, the result could be
interpreted as

M
#n(7) & € (P)fsu(Pons ) Y 8GF — Fa). (10)
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Taking then the #-th root linearizes the brightness
response without cancelling the resolution improvement
of the cumulant. To reduce the amplified noise and
masking residual deconvolution artefacts, small values
(typically 1-5% of the maximum value) are truncated and
the image is reconvolved with U (#n7). This leads to a final
resolution improvement of almost n-fold compared to the
diffraction-limited image, which is physically reasonable
since the frequency support of the cumulant-equivalent
optical transfer function (OTF) is n-times the support of
the system’s OTF (cf. (Dertinger et al. 2010)). In contrast
to Fourier reweighting (Dertinger et al. 2010), which is
equivalent to a Wiener filter deconvolution and recon-
volution with U(nr), we explicitly split these two steps
and use an improved but computationally more expen-
sive deconvolution algorithm that is appropriate for the
subsequent linearization.

Since the cumulants are proportional to f;,(0on; 7)), which
contains # roots for pon, € [0,1], there might still be
hidden image features in these brightness-linearized
cumulants (result after deconvolution, n-th root and
reconvolution with U(n7)). However, using the on-ratio
map pon(7), it is straightforward to identify the struc-
tural gaps around the roots of f;, and fill them in with
the brightness-linearized cumulant of order n-1. To this
end, the locations where f,, approaches zero are trans-
lated into a weighting mask with smoothed edges around
these locations. The thresholds have been defined by com-

puting the crossing points of Lfn|1/" and [fn,1|1/("_1).
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This mask is then applied on the n-th order brightness-
linearized cumulant and its negation is applied on order
n-1 (see Additional file 1 for further details). The result
is a balanced cumulant image. It should be noted that
the cancellation of f,(7) by division is possible but not
recommended, because it amplifies noisy structures in the
vicinity of the roots of f,,. The combination of multiple
cumulant orders in a balanced cumulant image results in
a better overall image quality. However, it is also possible
that the on-ratio varies only slightly throughout the field of
view, such that a combination of multiple cumulant orders
is not necessary. Figure 1 illustrates the different steps of
the algorithm based on a simulation of randomly blink-
ing fluorophores, arranged in a grid of increasing density
from right to left, increasing brightness from left to right
and increasing on-time ratio from top to bottom.

Experiments

In order to verify the concept experimentally, we used
a custom-designed objective-type total internal reflec-
tion (TIR) fluorescence microscope with a high-NA oil-
immersion objective (Olympus, APON 60XOTIRFM, NA
1.49, used at 100x magnification), blue (490nm, 8mW, epi-
illumination) and red (632nm, 30mW, TIR illumination)
laser excitation and an EMCCD detector (Andor Luca S).
We imaged fixed HeLa cells with Alexa647-labelled alpha
tubulin and used a chemical buffer containing cysteamine
and an oxygen-scavenging system (Heilemann et al. 2008)
(see Additional file 1 for further details) to generate
reversible blinking and an increased bleaching stability.
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The blue laser excitation was used to accelerate the reacti-
vation of dark fluorophores and to reduce the acquisition
time. For data processing, 5000 images acquired at 69
frames per second (fps) were divided into 10 subsequences
significantly shorter than the bleaching lifetime to avoid
correlated dynamics among the fluorophores (Dertinger
et al. 2010). The final bSOFI images are obtained by
averaging over the processed subsequences.

Results and discussion

Figure 2 compares the performance of bSOFI with con-
ventional SOFI and widefield fluorescence microscopy.
The peak signal-to-noise ratio (pSNR; noise measured
on the background) in a single frame was 20-23dB for
the brightest molecules, which is rather low for per-
forming localization microscopy, but more than suffi-
cient for SOFI (Geissbuehler et al. 2011). Additionally,
we observed significant read-out noise at this acquisi-
tion speed (fixed-pattern noise in the average image,
Figure 2a,i), which was effectively removed in the cross-
cumulants analysis (Figure 2b-e and j,k). The estimated
molecular on-time ratio (c,k), brightness (d) and den-
sity (e) are shown overlaid with the 5th order balanced
cumulant as a transparency mask. Due to the overem-
phasis of slight heterogeneities in molecular brightness
and blinking, the dynamic range of the conventional 5th
order SOFI image (b and j), where values above 1% of
the maximum are truncated, is too high to be represented
meaningfully. Figures 2f-h are the projected profiles of
the widefield, SOFI, Fourier reweighted SOFI (Dertinger
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Figure 1 bSOFI algorithm. Flowchart to illustrate the different steps of the bSOFI algorithm. (@) Raw data. (b) Cross-cumulant computation up to
order n according to equation (1) without time lags. (€) Cumulant ratios K1 and K, according to equation (6). (d) Deconvolved cumulant of order n.
(e) Solution for the spatial distribution of the molecular brightness €, on-time ratio pon and density N using equations (7-9). (f) Balanced cumulant of
order n, obtained by computing the n-th root of the deconvolved cumulant, reconvolving with U(n7) and filling in the structural gaps around the
roots of f, with a lower-order cumulant. (g) Color-coded molecular parameter maps overlaid with a balanced cumulant as a transparency mask.
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d 0.2 e 0.2

Figure 2 bSOFI demonstration. Experimental demonstration of bSOFI on fixed Hela cells with Alexa647-labelled microtubules. (@) Summed TIRF
microscopy image [Widefield]. (b) Conventional 5th order cross-cumulant SOFI [SOFI5]. (c-e) Color-coded molecular on-time ratio, brightness and
density overlaid with the 5th order balanced cumulant [BC5]. (f-h) Profiles along the cuts 1-1', 2-2" and 3-3". In yellow we added the corresponding
profiles when Fourier reweighting (cf. (Dertinger et al. 2010)) with a damping factor of 5% is applied on the 5th order cross-cumulant SOFI image.
(i-k) Magnified views from the white insets highlighted in (a-c). Scale bars: 2um (a-e); 500nm (i-k).
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et al. 2010) and bSOFI images along the cuts 1-1; 2-2
and 3-3; respectively. The second profile, with two micro-
tubule structures separated by 80nm, illustrates a situation
close to the Rayleigh criteria in the bSOFI case. This is
consistent with the measured full width at half maxi-
mum (FWHM) of 78nm (Figure 2h). Although the Fourier
reweighted SOFI features a FWHM of 75nm (Figure 2h),
it does not resolve the two microtubules at 2-2) Due to
the nonlinear brightness response only a single one is

visible (Figure 2g). When considering the effective width
of the microtubule of 22nm as well as a 15nm linker
length, this translates into a bSOFI-equivalent PSF with
64nm FWHM, respectively a 4.6-fold resolution improve-
ment compared to widefield microscopy. The resolution
improvement of the conventional 5th order SOFI image
is close to the expected factor /5. With the red TIR
illumination, the excitation intensity decreases exponen-
tially along the optical axis. Assuming a homogeneous
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illumination in the x-y plane, both the molecular bright-
ness and the on-time ratio can be interpreted as a depth
encoding because they are related to the illumination
intensity (van de Linde et al. 2011). Obviously, a depth
encoding based on molecular parameters can only be used
as a qualitative impression of depth information rather
than real 3D imaging, because it does not resolve addi-
tional structures in depth. Moreover, when looking at
smaller scales (Figure 2k), the depth impression of color-
coded molecular parameters gets less evident, which can
be explained by the influence of local differences in the
chemical microenvironment or by the stochastic nature of
individual fluorophores.

Although the used Lucy-Richardson deconvolution per-
formed well on our measurements, it is not specifi-
cally adapted for cumulant images, because it assumes a
Poisson-distributed noise model and an underlying sig-
nal that is strictly positive. For the n-th order cumulant,
the signal on a single image can vary between positive
and negative values according to the underlying on-ratios.
Furthermore, initially Poisson-distributed noise leads to
a modified noise distribution in the cumulant image.
In our experiments, the local on-ratio variations were
small, which proves to be unproblematic for a decon-
volution with a positivity constraint, when the negative
and the positive parts are considered separately. How-
ever, a deconvolution algorithm specifically adapted for
cumulant images using an appropriate noise model may
improve the results of balanced cumulants in the future.

If the cumulants are computed for different sets of
time lags and the acquisition rate oversamples the
blinking rate, it is also possible to extract absolute
estimates on the characteristic lifetimes of the differ-
ent states. The temporal extent of the curve obtained
by computing the second-order cross-cumulant as a

Page 6 of 7

function of time lag 7 (corresponding to a centred second-
order cross-correlation) before it approaches zero yields
an estimate on the blinking period, provided that the
timeframe of the measurement includes many blinking
periods. In our case however, with only 10 to 20 blink-
ing periods within a measurement window of 500 frames
(@691ps) and a low on-ratio, the temporal extent of the
correlation curve rather corresponds to the characteristic
on-time. Figure 3a,b show the resulting on- and off-time
maps overlaid with a 5th order balanced cumulant as a
transparency mask. The reported on-times correspond to
the time position where the curve decreased to e’! of the
value at zero time lag. The off-time map is obtained by
calculating 7o = Ton (,oo_n1 — 1). The off-time map hardly
shows a dependency on the illumination intensity, which
is in line with the deep penetration into the sample of the
blue activation light. In the present case, the lifetime of the
off-state is influenced mainly by the chemical composition
of the microenvironment surrounding the probe (van de
Linde et al. 2011).

For estimating the average on-time, we computed the
second-order cross-cumulant as a function of time lag and
averaged it over the x-y-plane and 10 subsequences of
500 frames (Figure 3c). The fitted exponential curve has a
characteristic time constant of 7o, = 31ms.

Conclusions

bSOFI is an extended version of SOFI and shares its
advantages of simplicity, speed, rejection of noise and
background, and compatibility with various blinking con-
ditions. Since the bSOFI-PSF shrinks in all three dimen-
sions with increasing cumulant orders, bSOFI can easily
be extended to the axial dimension by acquiring multiple
depth planes and performing the analysis in three
dimensions. In contrast to SOFI, the bSOFI response

bars: 2um.

Figure 3 On- and off-times. Spatial distribution of the estimated on- (a) and off-times (b) overlaid with a 5th order balanced cumulant as a
transparency mask. The images correspond to an average over 10 subsequences of 500 frames each. (€) Second-order cross-cumulant with different
time lags, averaged over the x-y-plane and 10 subsequences of 500 frames each. An exponential fit to the measured curve is shown in black. Scale

fitexp(-v/z, ) with T =31ms
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to brightness and blinking heterogeneities in the sam-
ple is nearly linear, which allows higher resolutions
to be obtained by computing higher cumulant orders.
The additional information on the spatial distribu-
tion of molecular statistics may be used to monitor
static differences and/or dynamic changes of the probe-
surrounding microenvironments within cells and thus
may enable functional super-resolution imaging with min-
imum equipment requirements.

Additional file

Additional file 1: Additional details on the development of the theory,
the algorithm, sample preparation protocols and a theoretical
investigation of parameter estimation accuracies.
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