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A novel nanoscopic tool by combining AFM with
STED microscopy
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Abstract

We present a new instrument for nanoscopic investigations by coupling an atomic force microscope (AFM) with a
super resolution stimulated emission depletion (STED) microscope. This nanoscopic tool allows high resolution
fluorescence imaging, topographical imaging and nano-mechanical imaging, such as, stiffness. Results obtained
from technical and biological samples are shown illustrating different functions and the versatility of the presented
tool. We assert that, this highly precise tractable tool paves the way to a new set of comprehensive studies in
medicine, biology and materials science.
Background
The classical diffraction limit for the resolution of an op-
tical microscope can be overcome (Hell 2009) and that
was demonstrated in the last years. Super-resolution
techniques based on stimulated emission depletion
(STED) and others (Schermelleh et al. 2010) showed
their potential in material science applications and bio-
logical sciences (Willig et al. 2006). Nowadays, most of
these techniques are commercially available and are rou-
tinely used on live biological samples (Pellett et al. 2011).
The most inspiring aspect for all these ultrahigh reso-
lution approaches is the promise of theoretically unlim-
ited resolution (Hell 2003).
The basic idea of STED is to selectively switch off the

periphery of the fluorescent focus by superimposing the
diffraction limited excitation focus with a second beam,
red shifted in wavelength with respect to the excitation
wavelength. This second beam stimulates the excited
dye molecule to release its energy across an energy
transition which corresponds to the same energy, i.e.
same wavelength, like the stimulation beam itself.
Hence the fluorescence emission is inhibited in those
areas where the second beam falls and the dye molecule
appears dark to the detector. By adding an appropriate
phase mask, the focal distribution of the stimulating
beam can be tuned into a doughnut-like shape featuring
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zero intensity at its center. Now, exciting the molecules
with a regular excitation laser beam and de-exciting
them to its ground state with a donut shaped STED
laser beam leaves fluorescent molecules in an area of
sub-diffraction dimensions. Saturating the stimulated
emission depletion process by increasing the power of
the STED beam further reduces the size of the fluores-
cing area and thus attains ‘super resolution’. In contrast
to any currently used super resolution techniques,
STED microscopy possesses a unique set of advantages,
such as, rapid image acquisition that enables to study
fast dynamics; for example, vesicle movement in vivo,
dendritic spine activity or actin dynamics within living
brain cultures (Westphal et al. 2008); (Nägerl et al. 2008);
(Urban et al. 2011). A further advantage is the ability of
being adapted to other fluorescent based techniques as it
has been shown during the last decade for fluorescence
correlation spectroscopy (FCS, (Eggeling et al. 2008)),
fluorescence lifetime image (FLIM (Lenz et al. 2011)),
fluorescence recovery after photobleaching (FRAP (Sieber
et al. 2007)), etc. Multicolor imaging (Pellett et al. 2011),
time resolved and steady state fluorescent probing (Mueller
et al. 2011) have been illustrated inside biological mem-
branes. Hence, among the competing high resolution tech-
niques, STED draws own rubric line and prevails as the
suitable candidate for high resolution probing for our
requisite.
Near field microscopes, such as atomic force micro-

scope (AFM) (Binnig et al. 1986), work label-free and
evince an excellent resolution. The underlying principle
is to scan the surface with a sharp tip obtaining the
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height information of the investigated sample, thus enab-
ling the reconstruction of the sample topography (Stark
et al. 2001). Tip based investigations in aqueous condi-
tions has been of wide interest for the research in bio-
logical samples. Today, this is a standard AFM
application that can provide high resolution topography
on a large class of biomaterials, such as proteins, model
membranes and cells (Dante et al. 2011); (Madl et al.
2006). The diversity in growth of AFM implementing
fluorescence strategies like FCS, FRAP, FLIM, Förster
resonance energy transfer (FRET), etc. (García-Sáez and
Schwille 2010); (Micic et al. 2004); (Vickery and Dunn
2001) show the potential to target various queries that
came up in routine morphological analysis.
In general, a label-free technique like AFM works

non-specifically and shows thereby a drawback for a
variety of biological studies. In particular, in the study
of complex systems, such as cells, the investigation is
often focused on a specific cellular distribution within
the whole cell network complex. An optical fluores-
cence microscope platform can give this specificity and
is, therefore, often seen together with the AFM (Kassies
et al. 2005). The information gained from the AFM cor-
related with a color-encoded molecular fluorescence
map is distinctly an important tool for deeper interpret-
ation of the results.
We take a step forward into nanoscopic domains by

combining these two key technologies AFM and STED mi-
croscopy. The AFM covers a vast field of queries and hence
this step of coupling with STED is an inevitable one in
order to answer sub diffraction level morphology questions
supported with fluorescence specificity. It is important to
realize that we overcome limitations of individual setups
with a combined setup, for example: the performance of
AFM is limited by non-specificity and resolution of STED
is experimentally limited by available laser power for deple-
tion and photo-stability of the dye used (Harke et al. 2008);
(Hotta et al. 2010). Pre-indication of sample distribution
can help to configure the AFM correctly and similarly,
photo exposure can be avoided in areas, if identified by
morphology. Thus, both techniques support each other in
a way other techniques would not. This reliability and the
precision of measurements reach nano dimensions by
avoiding artifacts (Battaglia et al. 2011); (Sharma S 2999),
providing an accurate chemical identification of the fea-
tures by fluorescence.
Force spectroscopy (Domke and Radmacher 1998);

(Butt et al. 2005); (Müller and Dufrêne 2011) is another
AFM mode that can determine mechanical/structural
properties of the sample. This method was fruitful in in-
vestigating the mechanical properties of cells and cell
compartments by collecting a map of force-distance (FD)
curves (see Additional file 1) (Schäpe et al. 2009). By
indenting the cellular surface, it is possible to obtain the
local stiffness of the cell with a lateral resolution in the
order of tens of nanometers restricted by environment,
tip and the force applicable (Le Grimellec et al. 1998). In
such cases, the knowledge of the tip position within the
cell complex is very significant and STED plays an im-
portant role here, by doing so. Fluorescence image from
a conventional microscope can only make a limited con-
tribution to these force measurement studies since the
lateral resolution of the light microscope is about one
order of magnitude lower than the one obtained by the
AFM. This problem gets graver in densely packed sam-
ples like cellular complexes or a heavily aggregating spe-
cies. With all these points stated above, it is apparent
that AFM-STED promises a nanoscopic manipulation
scenario with specificity and precision.

Methods
The setup used for the experiments is based on a con-
ventional multi-photon microscope platform with an oil
immersion lens as objective for all optical imaging (NA
1.4, 63X paired on Nikon A1 MP R, Nikon Instru-
ments, Japan). Excitation of the sample was performed
by a pulsed laser diode with a wavelength of 640 nm
(Picoquant, Germany) and for the STED depletion
beam the light was generated by an femtosecond mode-
locked Titanium:Sapphire laser (Chameleon Vision II,
Coherent, USA) and spatially and temporally shaped as
previously described in the literature (Harke 2008) to gen-
erate a donut like intensity distribution in the focal area
enhancing resolution uniformly along the lateral dimen-
sions. The implementation of the near field method on
this setup was realized by mounting an AFM scan head
(NanoWizardW II, JPK Instruments AG, Germany) on an
isolated sample stage (JPK Instruments AG, Germany)
which replaced the original microscope stage. The data
was acquired by a separate controller. which talks to the
AFM computer through a rapid data bus for real time 3D
illustration of the tip scanning measurements. A schematic
of the setup arrangement is shown in Figure 1a.
Coarse tip alignment over the sample surface can be

done by looking at the laser reflection measurements
(Figure 1b) close to the sample substrate. For finer
alignment of the tip over a desired location, an optical
calibration has to be carried out before-hand in order
to avoid possible optical aberrations from optical ele-
ments like scan lens and tube lens in the microscope
beam scanning path. This calibration follows a standard
routine in the AFM software (DirectOverlay™, JPK
Instruments AG, Germany) and has to be done once for
any given scan field. Later on, the AFM software will be
able to process and merge the optical image to AFM
scans at any position, orientation and scan direction of
the tip in that scan field (see Additional file 1). A 3D
scheme of the above mentioned setup is shown in



Figure 1 Schematic of the experimental setup. (a) The AFM scan
head can be easily applied to the microscope. (b) Coarse overlay of
the tip position with the scan field area by reflection measurements
(logarithmic colorscale). Scale bar 5 μm. (c) 3D rendered illustration
of the experimental conditions within the sample area.
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Figure 1c. Both these techniques can run independently
of each other and also simultaneously. However, at the
time of fine AFM scans, the oil immersion objective
lens of the optical microscope was retracted from the
sample surface due to the sensitive nature of AFM to
environmental noise. A calibration sample was prepared
by adhering nominal 40 nm fluorescing crimson spheres
on a glass coverslip (see Additional file 1). This sample
was imaged in ambient conditions working in intermit-
tent-contact mode, using single beam silicon cantilevers
with a nominal spring constant of 40 N/m and a typical
tip radius of 10 nm (TESPA, Nanoworld, Switzerland).
Samples with cos7 cells in which microtubuli were
immunolabeled by an antibody decorated with
ATTO647N (Atto-Tec GmbH, Siegen, Germany) have
been prepared by an antibody staining protocol for
fixed cells and have been investigated in liquid buffer
environment (phosphate buffered saline, PBS). FD-
curves have been acquired mounting soft triangular sili-
cone nitride cantilevers with a nominal spring constant
of 0.01 N/m and a typical tip radius of 20 nm (MLCT,
Bruker, USA)
Results and discussion
To observe a direct impact of the combinational tech-
nique, we imaged fluorescent spheres. Later this type of
sample became a routine method for maintenance and
performance check due to its simplicity of preparation
and stable behavior to environmental perturbations.
The setup was tested and the representative measure-
ments are shown in Figure 2. It clearly shows the
advantages of the STED routine coupled to an AFM in
comparison to the images acquired by the confocal
counterpart. In the confocal images, only the rough
shape of areas with a higher bead concentration is vis-
ible while, in comparison, STED images significantly
gain information content in the image (c). AFM imaging
of the same area of interest (b) shows the topographical
landscape which matches the STED image information:
every single 40 nm fluorescent sphere as well as
agglomerated structures can be identified in STED and
AFM while the confocal mode fails to do so. For better
illustration, each of the images shows an enlargement of
an area marked by the dashed square. Within this area,
a finer scan was performed by the AFM and the overlay
of AFM image with the corresponding confocal image
and STED image is shown in d and e, respectively. To
emphasize this fact, a 3D rendered view of the AFM
image is presented in combination with the confocal
data (f ) and the STED data (g). Note that the optical
image presented here is raw data without the need of
any computational optimization.
The results presented so far are not only proof of

principle but also of scientific interest: they point out the
benefits these techniques gain when working in together.
We take these investigations further by studying a bio-
logical cell sample in aqueous conditions which require
special attention for the AFM scanning conditions. The
measurements are presented in Figure 3a which shows a
confocal image of the microtubules of cos7 cells decorated
with the label ATTO 647 N (Atto-Tec GmbH, Germany)
in PBS (1x) solution. The STED image of the same area
(b) shows the finer features which are directly observable,
examining the raw data of the STED image. The acquisi-
tion time of this super resolution fluorescence map is
orders of magnitude shorter than in AFM mode. With the
help of this map we can target a region of interest for fur-
ther investigation by AFM which significantly reduces the
overall sample investigation time and possible tip contam-
ination due to imprecise targeting.
Microtubules are an important component of the cyto-

skeleton and provide a mechanical support to the cell.
Maps of FD curves were acquired. This AFM mode
allowed for the determination of the local variation of cell
stiffness. In this mode of operation, the tip approaches the
sample surface until a certain force has been detected be-
fore retracting again. During this process, the deflection of



Figure 2 40nm fluorescent spheres super-resolved by STED and spatially overlaid with the corresponding AFM image. Confocal image
(a), AFM image (b) and STED image (c) are presented as raw data. For the optical images, the highlighted area is a zoom into the same dataset, in
case of AFM a new high pixilated scan was done. Overlay of the AFM image with the confocal scan (d) and with the STED data (e). A 3D
rendered view is shown for the confocal mode and the STED mode in (f) and (g), respectively. Optical images are presented as raw data.
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the cantilever is recorded to obtain FD curves. One of the
advantages of force mapping is the reduction of lateral
stress between tip and sample, and the prevention of pos-
sible stretching of the sample. Topographical information
of the sample can be extracted from the data by a fitting
routine (see Additional file 1) and is mapped in 3c. A force
spectroscopy map within the area marked in the fluores-
cence images 3a, 3b was acquired.
If we examine the images, we see a meshwork with a

junction of a tubule bundle and two single filaments. The
overlay of the height information with the confocal and
STED data is presented in a 3D stack in the Figure 3c, 3d
and 3e. From these three images, the confocal data is not
able to confirm the AFM data while the STED image exhi-
bits every single filament within the meshwork. The single
force curves can now be investigated further in order to
extract the Young’s modulus which gives information
about elasticity of the sample. Since part of the cell cyto-
skeleton is investigated here, the Young’s moduli map
should feature the corresponding stiffer parts of the cell.
This additional study of the force curves bearing details of
the cell elasticity is overlaid with all before-mentioned im-
aging modes in Figure 3c-3f. The maps for the Young’s
moduli (f), the STED (e) and confocal data (d) are dis-
played in perspective according to the 3D rendered height
information (c). Evidently, the Young’s moduli map
matches with the data extracted from the height analysis
and the STED image. The number of the microtubles in
the bundle extracted from the STED image can be esti-
mated as three to five since they are clearly distinguished
from the rest of the cell area. The two single filaments
branching off that bundle, optically visible only with STED,
are also traceable in the Young’s moduli map of limited
contrast by the membrane stiffness variations over the
cytoskelton. This unleashes a new set of interpretations
which can be supported with STED images like the indi-
vidual thickness of a fiber, etc.

Conclusion
In summary, we reported for the first time the combin-
ation of AFM imaging with the super resolution STED
microscopy. A nominal multi photon fluorescence



Figure 3 Cos7 cells labeled with Atto 647 N, (a) Confocal image, (b) STED image (both raw data), (c) 3D rendered view of AFM measured
height extracted from AFM force curves (45×45 pixilated scan), (d) Confocal image and (e) STED image (both linear deconvolved) (f)
Elasticity map calculated from AFM force curves. Scale bars in in (a) and (b): 2 μm, axes bars in (c)-(f): 3 μm.
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microscope is equipped with a STED performance num-
bered well below 65 nm in resolution and boosted by an
AFM that facilitates nano probing. This attempt realized
on a commercial unit makes the device very attractive
for large set of applications by their prompt availability.
The optical overlay with the AFM image was first
demonstrated on a technical sample under dry condi-
tions and later on a biological sample in fluid environ-
ment. Since the structural results achieved by STED
imaging match with the AFM recordings, many possible
artifacts in each of the techniques can be excluded;
moreover structures of interest can be selected and
brought into the scientific focus. The work within aque-
ous conditions in a complex biological cell network
illustrates and proves the compatibility to lead to results
in diverse biological samples. In the future, the combin-
ation of the high resolution STED technique with the
different AFM modes can be applied to various kinds of
samples and applications where specificity and targeting
can enhance the versatility of the AFM. For example, in
local adhesion measurements based on a functionalized
tip the precise knowledge of the tip position on a living
cell is of vital importance in order to correlate an
adhesion process to a specific target. In this scenario,
the higher precision given by STED microscopy also
reduces the total number of force spectroscopy cycles
for the adhesion determination which thereby reduces
the risk of possible tip contamination. In addition, the
overall sample investigation time will be significantly
shortened which is essential, in particular, in living
tissue.
In the decade of nano manipulation inside cells, AFM

STED probing is one of the most prominent candidates.
Additional file
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