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Adopting novel ecosystems as suitable
rehabilitation alternatives for former mine sites
David Doley and Patrick Audet*
Abstract

The nature and extent of environmental disturbance associated with mining commonly entails completely new and
challenging combinations of climate, lithology and landform. Consequently, the outcomes of ecological processes
associated with the recovery or restoration of ecosystems cannot be predicted reliably from previously known
associations between their physical and biological components. For radically disturbed sites, we propose that it is
not practicable to aim for the restoration of historical ecosystems. However, hybrid (reversibly different) or novel
(irreversibly different) ecosystems comprising new combinations of physical and biological components, including
both native and non-native species, could provide levels of stability and functionality acceptable to all stakeholders
and within feasible management regimes. We propose that limiting physical conditions of the landscape can be
identified and managed, and that alternative species combinations for introduction to these new landscapes may
be considered with cautious optimism.
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The goal for rehabilitation of mined land is often to re-
store the pre-disturbance land use or ecosystem
(Queensland DEHP 2012), although different levels of
biodiversity and ecosystem function can be negotiated
between the mining proponent and regulator. In either
case, it is commonly assumed that the essential physical
resources assembled during the rehabilitation process—
namely landform, lithology and soil—will closely resem-
ble conditions of the pre-disturbance environment.
While this assumption can be valid for certain degraded
agricultural, forest or pastoral lands (Ferris et al. 2000;
Chazdon 2008; Bullock et al. 2011; Tongway and Ludwig
2011), it may not be equally applicable to many mine
sites, where there are radical changes to almost every
component of the landscape as well as persistent non-
natural landscape features (e.g. open-pits, waste heaps)
(Cooke and Johnson 2002; Bens and Hüttl 2005; Nor-
man et al. 2006; Herath et al. 2009; Tozer et al. 2012).
Since land rehabilitation becomes increasingly more dif-
ficult with increasing size and severity of the disturbance
impact, many authors have justifiably questioned
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whether targeting historical and/or pre-disturbance eco-
systems (i.e. “going back to the past”) is always the most
appropriate restoration goal in these post-industrial en-
vironments, particularly within the range of feasible bio-
logical and socioeconomic outcomes (Harris et al. 2006;
Choi 2007; Seastedt et al. 2008). Yet, finding suitable al-
ternatives which meet the needs of conservationists,
practitioners and regulators in light of these unavoidable
challenges remains elusive (Jackson and Hobbs 2009).
The degree to which disturbances cause ir/reversible

changes to ecosystems provides direct insight into the
likelihood of rehabilitation efforts either achieving near/
natural restoration versus developing hybrid systems (i.e.
slightly different in form and function, yet sharing many
attributes with the historical system) or even novel sys-
tems (i.e. new combinations of physical and biological
attributes as a result of novel conditions within the post-
disturbance environment) (refer to Endnote for details).
This natural/novel ecosystems paradigm (pioneered by
Hobbs et al. 2006) and associated terminology (now de-
fined by Mascaro et al. 2013) are valuable for depicting
the developmental pathways of a range of post-
disturbance ecosystems and the management inputs re-
quired to re-instate (if practicable) the historical and/or
pre-disturbance system (Figure 1).
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Figure 1 Intermediate stabilities of state-and-transition for ecosystems subjected to disturbance impacts of increasing size and
severity (adapted from Hobbs and Suding 2009; Jackson and Hobbs 2009). Deviation from the historical system increases (from small to
large to irreversible) as increassing hierarchies of landscape complexity are crossed, resulting in commensurate increases in management input
(from modest to intensive to prohibitive) required for re-instatement of the historical system. Ir/reversibility of biotic and abiotic thresholds
determines the likelihood of (A) restoration of the biotic system, (B) restoration of the abiotic system, or (C) no restoration.
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At the very least, this depiction recognizes potential
barriers to achieving veritable restoration in relation to
the requirements of rehabilitating landscape hierarchies
of increasing complexity (e.g. biodiversity interactions <
biodiversity assemblages < nutrient and/or hydrological
cycles < landform assemblages < geology and climate).
However, there has been some reluctance in approaching
the rehabilitation of highly assertive anthropogenic activ-
ities from a similar perspective, possibly out of fear of
lowering rehabilitation standards (see Perring et al. 2013
in this issue). This apprehension is especially acute re-
garding those lucrative industries, such as mining, that
have drastic environmental impacts that impose high
ecological liabilities and whose post-disturbance land-
scapes have so few parallels in the natural realm (Foster
et al. 1998).
Doley et al. (2012) recently examined this dilemma within

the Australian context for post-mining land rehabilitation
and derived a framework (Figure 2) to reconcile natural/
novel ecosystems theory (Hobbs et al. 2006, 2013) with
existing guidelines for land rehabilitation (e.g. Australia
DIRT 2006). Here, possible development pathways of post-
mining landscapes were identified in relation to the severity
of the disturbance impact and the design of rehabilitation
approaches. Ecological and socio-economic scenarios were
then described that extend the definition of novel ecosys-
tems to the endpoints of mine site rehabilitation. In brief, it
was proposed that, where both the abiotic and biotic sys-
tems are significantly and irreversibly affected, the carefully
planned installation of alternative (managed) ecosystems or
novel (unmanaged) ecosystems could represent achievable
and predictable options for highly degraded, under-
rehabilitated and/or derelict mine sites. A key advantage of
this approach was that commitments to rehabilitation could
be assessed and adjusted ad hoc based on the characteristics
and limiting capacities of the post-disturbance landscape,
while also providing opportunities for the incorporation of,
e.g., novel ecosystem services and enhanced land-use value
otherwise not found within the historical or pre-disturbance
ecosystem (Bullock et al. 2011). A pre-condition of this
adaptive management approach is that all stakeholders (op-
erator, regulator and community) are involved in setting and
accepting the parameters for decision-making.
Albeit useful as a conceptual framework, this scheme

cannot yet contribute optimally to the planning of mined
land rehabilitation by operators and regulators unless



Figure 2 Natural/novel ecosystems paradigm. Conceptual flow chart for the development of restored near/natural ecosystems, rehabilitated
hybrid ecosystems, and rehabilitated alternative (managed) and novel (unmanaged) ecosystems. The likely development pathways of post-mining
landscapes were identified by comparing the planned severity of the disturbance impact and associated rehabilitation design (according to Doley
et al. 2012) to which the notions of threshold ir/reversibility have now been added to distinguish between the respective domains of near/
natural, hybrid and novel ecosystems (according to Hallett et al. 2013). Notably, in this scheme, it is assumed that mining disturbances resulting in
the crossing of abiotic thresholds also necessarily result in the crossing of biotic thresholds. While this may not be the case universally, our
pathway primarily leads directly to novel outcomes. Refer to the Endnote for definitions of near/natural, hybrid and novel ecosystems relating to
threshold ir/reversibility within the post-disturbance environment.
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objective descriptors can be used to determine the de-
gree to which post-disturbance ecosystems may be con-
sidered natural or novel—and then to derive suitable
management responses for such conditions. Hence, this
analysis presents elements of landscape suitability (e.g.
Tongway and Ludwig 2011) and biological condition as-
sessments (e.g. Eyre et al. 2011) that may enable a choice
regarding the development of post-mining ecosystems
towards achievable rather than aspirational rehabilitation
goals (Figure 3). Whether these outcomes are deemed
to be natural or novel, we emphasize that the primary
outcomes should always aim to achieve the highest
standards of biological conservation and ecosystem
stewardship.

Setting mine site rehabilitation goals based on
post-disturbance landscape assessments
The commonly used practice of nominating a particular
vegetation association as an end-goal for land rehabilitation
assumes that all of the required pre-disturbance attributes
Table 1 can be reinstated. Indeed, this strategy provides a
range of standardized criteria (e.g. biodiversity, structure,
function) which could be used to monitor the trajectories of
post-disturbance ecosystems toward desired reference com-
munities. However, it is not clear that these conditions
would be satisfied on many mine sites due to the size and
severity of the mining disturbance, thereby putting into
doubt whether achieving veritable restoration is at all pos-
sible. This could account (in part) for some of the onerous
and often costly procedures required when applying conven-
tional restoration approaches (usually reserved for less as-
sertive disturbance impacts) to highly disturbed post-mining
environments (Gardner and Bell 2007; Koch 2007). For
these reasons, mined land rehabilitation planning would
benefit from the identification of attainable condition de-
scriptors of post-disturbance landscapes and a careful delin-
eation of the range of ecosystems that may be established
under these conditions. With this general approach, a
decision tree (i.e. best supported by large datasets) can
summarize the tests that identify conditions for restoration
(sensu Hobbs et al. 2013) and also the optimal management
responses in cases where hybrid and novel ecosystems could
represent more practicable rehabilitation outcomes
(Figure 2).



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Restoration/rehabilitation decision tree for post-mining environments. Conditions, requirements and likely management
responses for near/natural restoration vs. the development of hybrid or novel systems used to inform Figure 1. Responses to decision points
distinguish between the likelihood of achieving near/natural restoration vs. hybrid or novel systems. Refer to the Endnote for definitions of near/
natural, hybrid and novel ecosystems relating to threshold ir/reversibility within the post-disturbance environment.
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Is the abiotic system altered?
Significance of climate, geology and landform
Climate is a major determinant of vegetation develop-
ment (Harris et al. 2006)—particularly in reconstructed
environments (Audet et al. 2012)—and recent warming
has displaced latitudinal ranges of some species by about
17 km per decade (Chen et al. 2011). However, these cli-
matic changes are likely to be overshadowed by radical
changes in the states of land zones (degree of consolida-
tion, origin and geomorphology), all of which hierarchic-
ally influence ecosystem patterns and processes for a
given vegetation type (Sattler and Williams 1999).
Within each bioregion, regional ecosystems (REs) are de-
fined by some government conservation agencies as na-
tive vegetation communities consistently associated with
particular combinations of land zone and soil (Sattler
and Williams 1999). Notably, some variation in species
composition of the vegetation community can be accom-
modated by a single RE, and mixing of REs may be rec-
ognized (Neldner et al. 2012). The scale at which REs
are mapped is influenced by the activities under consid-
eration, whereby high intensity activities such as mine
site rehabilitation may require a resolution of 1:20,000
or 1:25,000 (0.8–1.7 ha) (Neldner et al. 2012). At these
scales, relatively fine details of land form together with
the lithology and pedology of a reconstructed site can be
determined accurately (Tongway and Ludwig 2011).
Meanwhile, land surveys can discriminate more subtle
differences in landform so that assessment of a target
vegetation community could be tempered by local varia-
tions in land capability (Tongway and Ludwig 2011).
With this information, a critical first-step for mine site
rehabilitation is to consider the following questions (cf.
Figure 2):

� Is the pre-disturbance landform reinstated?
� Does the new landscape condition meet the

pre-disturbance criteria?
� Are soil integrity and fertility intact?

Based on these criteria, the historical REs could be used as
targets for rehabilitation only if the post-disturbance land-
scape units are judged by the environmental regulator to
bear a reasonable physical resemblance to these environ-
ments. Such conditions may occur when a relatively thin
layer of material is removed (bauxite mining; Koch 2007) or
the bulk of the material can be returned without drastic
physical or chemical alteration (sand mining; Smith and
Nichols 2011). Reports on the progress and success of mine
rehabilitation in Australia are relatively sparse and unevenly
distributed (Cristescu et al. 2012). However, successful mine
lease extinguishment has followed the attainment of com-
pletion criteria in a bauxite mine in Western Australia
(Gardner and Bell 2007), and progress towards this goal has
been recorded in Australia for other bauxite mines (Gould
2011, 2012; Tongway and Ludwig 2011) and sand mines
(Herath et al. 2009; Gravina et al. 2011; Smith and Nichols
2011).
When selecting between natural or novel rehabilitation

outcomes, this RE approach assumes that geomorpho-
logical processes will have resulted in a land surface with
a relatively predictable pattern of variation in soil char-
acteristics (cf. Table 1), resulting in a predictable vegetation
community (Burgess 2003). If quantitative comparison of
the abiotic characteristics of the disturbed landscape and
that of the known historical RE (predicted or extant) do
not correspond within defined limits (Burgess 2003;
Tongway and Ludwig 2011), it may be necessary to con-
sider an alternative or hybrid vegetation association for es-
tablishment on that land unit—preferably one that
incorporates multiple components from the historical
landscape while also accommodating potentially novel or
non-natural elements (e.g. waste rock heaps and open pits)
based on landform components found within the RE.
Ideally, pre-mine planning (Warhurst and Noromba 2010)
would predict the range of landforms and lithologies that
could be assembled in the final landscape to ensure that
the rehabilitation outcome aligns as closely as possible with
the essential function and attributes found nearby or more
broadly within the RE (Worrall et al. 2009). By definition,
further rehabilitation inputs invested over time could facili-
tate the restoration of pre-disturbance landform criteria
among hybrid ecosystems; however, this goal cannot be
claimed for novel ecosystems given the irreversible cross-
ing of abiotic thresholds (Hobbs et al. 2013). Nevertheless,
the approach would still be conducive to the development
of rehabilitated ecosystems bearing features and capabil-
ities similar to those found within the broader bioregional
mosaic.

Is the biotic system altered?
Influence of soils
Once essential landform elements are reconstructed, typical
rehabilitation schemes assume that the physical require-
ments for the development of a desired vegetation type
could be assembled almost immediately after the



Table 1 Hierarchies of site information for analyses of functional landscapes†

Factor Attribute Physical property

Is the abiotic system altered? Geology* 1. Consolidation

2. Origin

3. Mineralogy

4. Texture

Landscape

1.Form

a. Landform class

b. Landform pattern

c. Landform element

d. Quantitative attributes i. Relief

ii. Slope

iii. Texture

2. Function

a. Surface i. Erosion

i. Deposition

a. Profile i. pH

i. EC

i. nutrient status

ii. water status

Is the biotic system altered?

Vegetation

1. Structure

a. Height

b. Cover

c. Biomass

2. Composition

a. Species richness

b. Diversity

c. Structural class

3. Condition

Soil biota
1. Abundance

2. Diversity

Fauna
1. Abundance

2. Diversity

Note: *Geology and biochemistry of the parent material including, e.g., tailings and spoils.
†From Doley et al. (2012); adapted from Tongway and Ludwig (2011).
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disturbance has ceased (Australia DIRT 2006). For example,
the replacement of retained bioactive topsoil (containing in-
digenous seeds and beneficial microbes) on reconstructed
landscapes has been shown to facilitate the reestablishment
of native and/or keystone vegetation and the reinstatement
of pre-existing REs (Bell 2001; Queensland DEHP 2012).
Such rehabilitation has been successful following mineral
sand mining on the south-eastern coast of Queensland
Australia (Smith and Nichols 2011) and bauxite mining in
Western Australia (Gardner and Bell 2007; Koch 2007;
Grant 2009; Tongway and Ludwig 2011) in which the bio-
geochemical composition of the post-disturbance landform
and substrates was not significantly different from the pre-
disturbance conditions. Outside of these examples, the re-
shaping of the landscape and disturbance of topsoil is likely
to have different ecological consequences depending on the
underlying landform and lithology due to both obvious and
subtle losses of matrix structure and reductions in nutrient
status and microbial viability (Cooke and Johnson 2002;
Bradshaw 2004; Bens and Hüttl 2005; Banning et al. 2012).
Therefore, commensurate changes may be required in the
identification of target vegetation associations where there is
a fundamental change in both the physical and chemical at-
tributes of a land unit. These circumstances give rise to
questions relating to the post-mining environment (cf.
Figure 2):

� Are beneficial soil components intact?
� Do rehabilitated soils support a distinct vegetation

type(s) conforming to pre-disturbance land zone
criteria?

� Do soils support rare, endemic or environmentally
sensitive flora?

� Does climate/seasonality represent a significant
obstacle for revegetation?

Critical abiotic properties with significant impacts on
the biotic system being rehabilitated are the propensity
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of the site for erosion, the amount of plant available
water in the rooting zone, soil pH, fertility and salinity
(Schmidt et al. 1999; Schneider et al. 2010). As described
previously, if the soil characteristics of the reconstructed
site cannot be specified closely, the specification of the
vegetation association cannot be very precise. The diffi-
culty of such prediction can be demonstrated by consid-
ering a very detailed soil and vegetation analysis carried
out over 300,000 ha in central Queensland, Australia
(Burgess 2003), the setting for intensive mining of coal
(and coal-seam gas), gold, silver, limestone, magnesite
and gemstones. Sixty-nine soil profile types were identi-
fied on landscapes ranging from steep slopes to flat clay
pans and flood plains derived from igneous, meta-
morphic and sedimentary rock types. In the central
Queensland environment where evaporation exceeded
rainfall, one of the major limitations to plant survival
was salinity, and many of the soils were dispersive on ac-
count of high sodium contents so they were prone to
erosion. The first requirement for post-mining sites is
that they be safe, stable and non-polluting (Queensland
DEHP 2012). In many mining situations, the resulting
landform properties (cf. Table 1) may have predictable
surface and soil characteristics that may be associated
with vegetation associations that are different from the
historical and are potentially novel. If the rehabilitated
environment is required to support a particular histor-
ical vegetation type, then appropriate actions (such as
modifying fertility and moisture parameters) must be
taken to bridge the gap between the characteristics of
the post- and pre-disturbance environments. These ac-
tions may require decades and extensive management
inputs for completion, so identification of realistic and
achievable end-points is necessary to account for
changes in rehabilitation planning.

Is the biotic system altered?
Influence of vegetation
Another matter for consideration is the manner in which
vegetation types coexist on multiple soil types. In central
Queensland, Burgess (2003) described 42 vegetation as-
sociations according to the procedures described by
Neldner et al. (2012) covering sufficiently large areas to
be analyzed. For all of the 69 soil profile types, there was
no unique association with a given vegetation type, but
between two and six vegetation associations could be
found on any soil profile type. Where one soil type was
examined at more than one location, the dominant vege-
tation association sometimes differed between locations.
This variation could indicate that there is a stochastic
component to the occurrence of vegetation on soil types
or that subtle changes in vegetation associations are the
result of the separation of localized niches for different
species (Austin et al. 2009) that are not related to the
variables assessed by Burgess (2003). It also underlines
the practicality of mixed RE categories at broad mapping
scales for setting rehabilitation goals (Neldner et al.
2012) compared to the common strategy of targeting a
particular soil-vegetation assembly and perhaps relatively
narrow rehabilitation outcomes. If specific vegetation as-
sociations are identified for replacement in particular
landform elements, it must be assumed that the neces-
sary physical conditions can be provided. Where these
assumptions cannot be met, different vegetation associa-
tions might be expected to occur regardless of the na-
ture of the topsoil that is spread over the substrate.
In view of the sometimes pronounced differences in

vegetation associations that occur with relatively small
differences in soil profile type (Audet et al. 2013), re-
habilitation contract conditions that require the estab-
lishment of only local ecotypes of pre-existing species on
a reconstructed landscape may not be fulfilled. Species
selection could be based on scenario modelling of land-
scape function analysis (Guisan and Zimmermann 2000;
Tongway and Ludwig 2011) and the identification of
functional groups that are most likely to survive in the
new conditions (Grant et al. 2002; Bradshaw 2004; Wag-
ner 2004), particularly to allow for climatic and seasonal-
ity obstacles to revegetation. It may be necessary to
compromise local biodiversity in order to achieve stable
vegetation cover by early introduction of the major
structural and functional components of vegetation as-
sociations that might be expected to survive in the post-
disturbance abiotic environment (Koch 2007). A conse-
quence of this would be that a broad list of species from
the bioregion should be tested for incorporation in re-
habilitation procedures, including fast growers vs. slow
growers, or native vs. non-native species (Shackelford
et al. 2013a). This would require a change in perceptions
since the criteria for assessment of the success of species
establishment might be based first on ecological function
analysis (Tongway and Ludwig 2011), second on biodiver-
sity criteria (Eyre et al. 2011), and third on a commitment
to timely management intervention based on ecosystem
developmental trajectories as well as final target outcomes
(Grant 2006, 2009; Shackelford et al. 2013b).

Are desired ecosystem characteristics achieved?
Requirements for ecological services
The final component of our decision tree refers to the
condition requirements for maintaining or reinstating
and managing natural ecological disturbance regimes. In
an Australian context, this means optimizing the effects
of fire and mitigating the effects of weeds, pests and sea-
sonal conditions on both vegetation and fauna (Hobbs
2004; Chazdon 2008; Bullock et al. 2011). In short, this
task inquires of the rehabilitated ecosystems (cf.
Figure 2):
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� Do rehabilitated ecosystems provide stable and
manageable habitat?

� Are historical ecosystem functions achieved?

Ecosystem stability is defined as variation in structure
and condition (Eyre et al. 2011) within the historical
range of variability (Suding and Hobbs 2009), and a
manageable habitat is defined as that which can be
maintained in a stable condition by intervention that is
both practical and economical (Grant 2006). Unfortu-
nately, there are no general or rapidly applied indicators
of stability for novel ecosystems due not only to the po-
tentially complicated and site-specific requirements for
ecosystem assembly (Koch 2007; Bullock et al. 2011;
Tongway and Ludwig 2011), but also to the fluid socio-
economic boundaries typically associated with post-
mining land rehabilitation (Gardner and Bell 2007;
Worrall et al. 2009; Warhurst and Noromba 2010; Smith
and Nichols 2011). Compared with the costs of land
preparation for most other rural industries, mined land
rehabilitation is expensive, even for sites such as bauxite
mines, where disturbance is relatively limited (Gardner
and Bell 2007). In addition, resource limitations (e.g. lack
of topsoil, toxicity or salinity of substrate) often limit the
extent to which the historical ecosystem conditions can
be approached (Grant et al. 2002; Madsen and Mulligan
2006).
Expectations for highly disturbed (and lucrative) mining

activities are that rehabilitated ecosystems should recover
relatively soon after the disturbance and in proportion to in-
vestment of resources, often regardless of the size and sever-
ity of the disturbance (Australia DIRT 2006). Paradoxically,
because soil and subsurface properties may be changed rad-
ically, rehabilitation success can only be assessed effectively
over longer timelines and preferably using multiple eco-
logical indicators and endpoints (e.g. Block et al. 2001;
Nichols and Nichols 2003; Craig et al. 2012; Williams et al.
2012; Critescu et al. 2013; Majer et al 2013). The determin-
ation of the stability of novel or alternative ecosystems is
one activity for which adaptive management may be most
appropriate. Part of this management process would be the
development and refinement of quantitative indicators of
site and ecosystem condition. Convergence of rehabilitated
environments toward target ecosystems is most likely to
occur where physicochemical alteration of the substrate has
been limited, the climate has suitable temperatures and dis-
tribution of rainfall, and the soil-surface conditions are fa-
vorable or may improve over time (Norman et al. 2006;
Koch 2007; Smith and Nichols 2011; Audet et al. 2012). Re-
habilitation efforts can then be focused on facilitating condi-
tions in support of stable habitat and manageable ecological
regimes, e.g. integration of seasonal fire (Grant et al. 2007)
and/or low intensity grazing (Tongway and Ludwig 2011;
Firn et al. 2013 in this issue). However, where the post-
disturbance environment has an altered nutritional status
and/or contains seeds of less desirable species (e.g. exotic or
selected pasture grasses), repeated attempts at introducing
natural ecological regimes may fail and even cause further
divergent outcomes (Tongway and Ludwig 2011). It then
follows that restoration of natural ecological regimes and
habitat would remain incomplete or in a state of arrested
development if left unmanaged (Grant 2006, 2009). Mean-
while, truly hybrid or novel site conditions may not have
ecosystem characteristics that have been previously de-
scribed, other than those which can be predicted from the
broader RE.
For these reasons, we suggest that rehabilitation goals

for highly disturbed areas such as mine sites should be
set by agreement among the industry, regulator and rele-
vant stakeholders at the highest feasible level (e.g. the
pre-disturbance RE) − as envisaged in the New Zealand
Resource Management Act (Pokhrel and Dubey 2012) −
but should allow for adjustment of the goal in the light
of circumstance (Worrall et al. 2009). Each agreed
change of goal should be preceded by a thorough and
objective analysis of the physical environmental and so-
cioeconomic conditions (Pokhrel and Dubey 2012), so
that the highest attainable environmental outcomes are
delivered.
Many studies have been carried out on the suitabil-

ity of mine sites for the early establishment of vegeta-
tion (e.g. Bell and Bellairs 1992; Huxtable et al. 2005;
Madsen and Mulligan 2006; Courtney and Mullen
2009) and the subsequent outcomes of rehabilitation
(Mulligan 1996; Menzies and Mulligan 2000; Koch
2007; Gravina et al. 2011; Vickers et al. 2012). There-
fore, determining the range of predictable outcomes
for hybrid or novel ecosystems can be achieved based
on properties found naturally in broader REs. How-
ever, apart from reports on fire and tree thinning
(Koch 2007; Craig et al. 2010) and microhabitat man-
agement (Christie et al. 2013) in rehabilitated bauxite
mines in Western Australia, there are few accounts of
the longer term ecological and associated site man-
agement processes that may be involved. In order to
avoid compromising higher standards of rehabilitation,
a careful and cautious approach based on the best
available data should be applied when determining
the range of vegetation types most suitable for a
given soil and vegetation classification, followed
closely by appropriate management inputs required to
maintain stable habitats and ecological function.

Conclusions
Rehabilitation of highly disturbed landscapes such as
mine sites may not provide realistic opportunities for
the ecological processes normally associated with eco-
system recovery to occur. Consequently, it may be more
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helpful to put aside theoretical considerations of ecosys-
tem development to focus on the pragmatic requirement
of securing conditions that are safe, stable and non-
polluting, and that provide suitable environments for
vegetation establishment and ultimately habitat develop-
ment. The target ecosystems may be quite different from
those that occupied the site prior to disturbance, and
they may be difficult to discern at the planning stage of
a mining operation. This lack of a clear rehabilitation
goal necessitates careful analysis of the available evi-
dence at each stage of planning and operations, and a
willingness and capacity to adjust goals according to the
best practice that can be achieved with the expectation
that it will be overtaken in the future by something
better.
The fact that some mine leases have been relinquished

indicates that successful rehabilitation is possible. The
fact that the number of abandoned, pending, dormant or
inactive leases exceeds the number that have been
relinquished shows that the path to mine site rehabilita-
tion is not smooth or direct. We consider that the first
requirement for rehabilitation is a careful analysis of the
physical environment, followed by the identification and
consideration of possible amelioration treatments, and
the progressive development of a manageable final land-
scape—this, no matter whether it is defined as being nat-
ural, hybrid or novel. Regardless of the final landscape,
we conclude that it will not become self-managing but
will always require some intervention, ideally minimizing
resource requirements while optimizing resource out-
puts or ecosystem services. Successful rehabilitation
management depends on a continual increase in under-
standing of the system under management and an ability
and willingness on the part of all stakeholders to achieve
the optimum ecosystem outcomes.

Endnotes
The definition of ecosystem conditions associated with

disturbance and recovery has been clarified greatly by Hobbs
et al. (2013) and has evolved over a decade of consideration
regarding assembly rules (Temperton et al. 2004) and the
desirability of identifying stable ecosystems that are different
from those pre-dating the disturbance (Hobbs and Norton
1996; Hobbs and Suding 2009; Hobbs et al. 2009) and that
may be described as novel (Hobbs et al. 2006, 2009) or alter-
native to historical ecosystems (Cale and Willoughby 2009).
The terms used here derive from Mascaro et al. (2013) refer-
ring to ecosystems that are not: “(1) a [historical ecosystem]
that would have occupied that space in the past (i.e. part of
a historical range of variability); (2) a system managed inten-
sively for specific production or built over; or (3) a [hybrid
ecosystem] managed with the purpose of reproducing the
historical ecosystem (i.e. classic restoration).” Central to this
concept is the nature of thresholds between ecological states
(Hobbs et al. 2009; Suding and Hobbs 2009), and whether
transition across a threshold is reversible or not. Crucially,
Hobbs et al. (2013) have proposed that novel ecosystems are
an outcome of irreversible transfer across abiotic or biotic
thresholds. Within a novel ecosystem, it is possible to have
either biotic or abiotic conditions that are very similar to
those of a historical ecosystem; however, restoration cannot
be claimed to have occurred unless both abiotic and biotic
conditions are sufficiently similar to those of a historical eco-
system. In order to guide activities on intensively managed
lands, the goals of restoration or rehabilitation need to be
clarified and, where possible, quantified; especially the feasi-
bility of attaining a particular restoration or rehabilitation
goal (Choi 2007; Bullock et al. 2011). As emphasized here,
the same conditions apply perhaps even more forcefully to
severely disturbed lands such as mine sites.

Glossary of ecological terms
Restoration Intentional activity that initiates or accelerates

the recovery of an ecosystem with respect to
its health, integrity and sustainability.

Historical Variation in ecosystem state that is within
the historical range of variability.

Hybrid Ecosystem state within which an ecosystem
is modified from the historical state by
moderate and reversible changes to charac-
teristics involving loss or addition of species
(biotic) and/or land use change (abiotic).

Novel Ecosystem state within which systems have
potentially been changed irreversibly by
large modification to abiotic conditions (cli-
mate, geology, landform or land use) and/
or biotic composition (loss of existing spe-
cies or addition of invasive species).

Reversible
threshold

A limiting ecosystem state at which a tran-
sition to a different state is possible with
practicable management inputs.

Irreversible A limiting ecosystem state at which a tran-

threshold sition to a different state is not possible

without the application of large and pos-
sibly impracticable management inputs.

Stability Variation in structure and condition within

the historical range of variability.

Manageable
ecosystem

One that can be maintained in a stable con-
dition by intervention that is both practical
and economical.
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