TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and

Applications 2012, 1:16
http://www.journalofcloudcomputing.com/content/1/1/16

® Journal of Cloud Computing

a SpringerOpen Journal

Handling compromised components in an laaS

cloud installation

Aryan TaheriMonfared'” and Martin Gilje Jaatun?

Abstract

some modification to function optimally.

This article presents an approach to handle compromised components in the OpenStack Infrastructure-as-a-Service
cloud environment. We present two specific use cases; a compromised service process and the introduction of a
bogus component, and we describe several approaches for containment, eradication and recovery after an incident.
Our experiments show that traditional incident handling procedures are applicable for cloud computing, but need

Introduction

Although Cloud Computing has been heralded as a new
computing model, it is fundamentally an old idea of pro-
viding computing resources as a utility [1]. This com-
puting model will reduce the upfront cost for developing
and deploying new services in the Internet. Moreover, it
can provide efficient services for special use-cases which
require on-demand access to scalable resources.

Cloud Computing has a variety of service models and
deployment models which have been in use in various
combinations for some time [2]. The chosen service and
deployment model of a cloud environment will deter-
mine what kind of vulnerabilities might threaten it. One of
the main obstacles in the movement toward Cloud Com-
puting is the perceived insufficiency of Cloud security.
Although it has been argued [3] that most of the security
issues in Cloud Computing are not fundamentally novel,
a new computing model invariably brings its own security
doubts and issues to the market.

In a distributed environment with several stakeholders,
there will always be numerous ways of attacking and com-
promising a component, and it is not possible to stop
all attacks or ensure that the system is secure against all
threats. Thus, instead of studying attack methods, a bet-
ter approach is to assess the risk and try to understand
the impact of a compromised component. To do this, the
exact functionalities of each component must be deter-
mined, after which efficient approaches to tolerate such

*Correspondence: aryan@uninett.no
TUNINETT, Trondheim, Norway
Full list of author information is available at the end of the article

@ Springer

an attack can be identified. The first step of this process is
to detect, and then analyze the incident, something which
is subject to a set of best practice procedures which are
dependent on knowledge about the normal behavior and
operation of the system. The next step is about contain-
ing the incident. There are currently several public cloud
providers; however, none of them disclose their security
mechanisms. This highlights the need to study applica-
ble mechanisms and introduce new ones to fulfill security
requirements of a given cloud environment; in this arti-
cle, we describe our work on an open-source deployment
of a cloud environment based on the OpenStack cloud
platform. When we talk about a compromised compo-
nent in this document, we mean those components in a
cloud environment that are disclosed (i.e., private contents
revealed), modified, destroyed or even lost [4]. Finding
compromised components and identifying their impacts
on a cloud environment is crucial.

A brief primer on OpenStack

We have found the OpenStack cloud platform to be the
best choice for a real case study in our research. In our
laboratory configuration, we used the simple flat deploy-
ment structure. This will avoid further complexity which
would be caused by a hierarchical or peer-to-peer archi-
tecture. We have four physical machines; one of them
will be the cloud controller, and other three are compute
worker nodes. The abstract diagram of our lab setup is
depicted in Figure 1. It should be noted that although we
focus on the OpenStack as a specific cloud software in our
study, more or less the same components and processes
can be found in other cloud platform implementations.

© 2012 TaheriMonfared and Jaatun; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16 Page 2 of 21

http://www journalofcloudcomputing.com/content/1/1/16

SWA1
eth eth1
Cloud controller
Network controller
Sohectar OpenStack-2 | | OpenStack-3 _p—?:o:,r;‘u?etuavgnl‘::'
Imaging server Com.pu{e ey Com_p ut‘e ey Monitoring agent
AMQP server Monitoring agent Monitoring agent I ST et
Compute worker g
Monitoring agent
DB server
SW2

Figure 1 Lab setup.

OpenStack consists of a set of open-source projects
which provide a variety of services for an Infrastructure
as a Service (IaaS) model. Its five main projects deliver
basic functionalities that are required for a cloud infras-
tructure, comprising: Nova (compute), Swift (storage),
Glance (VM image), Keystone (identity), and Horizon
(dashboard). The OpenStack community is fairly big, with
a lot of leading companies involved. A big community for
an open-source project has its own advantages and disad-
vantages, but further discussion on this topic is out of the
scope of this article.

The Compute project (Nova) provides fundamental
services for hosting virtual machines in a distributed
yet connected environment. It handles provisioning and
maintenance of virtual machines, as well as exposing
appropriate APIs for cloud management. The object stor-
age project (Swift) is responsible for delivering a scalable,
redundant, and permanent object storage. It does not
facilitate a regular file system in the cloud. Virtual machine
disk images are handled by the Image Service project
(Glance). Discovery, uploading, and delivery of images
are exposed using a REST? interface. The image service
does not store the actual images, but utilizes other storage
services for that purpose, such as OpenStack Object Stor-
age. The identity project (Keystone) unifies authentication
for the deployed cloud infrastructure. Cloud services are
accessible through a portal provided by the dashboard
project (Horizon) [5].

The OpenStack architecture is based on a Shared Noth-
ing (SN) and Message Oriented architecture. Thus, most
of the components can run on multiple nodes and their
internal communication functions in a synchronous fash-
ion via a messaging system. In this deployment (and
in the default installation of OpenStack), RabbitMQ is
used as the messaging system. RabbitMQ is based on the
Advanced Messaging Queue Protocol (AMQP) standard.

These architectures are used to avoid common challenges
in a distributed environment, such as deadlock, live lock,
etc.

We have decided to focus on the Compute project of
OpenStack, which has enabled us to dive deeply into
the details, and exercise different modules in the Com-
pute project. However, the same results are applicable to
the rest of the OpenStack projects. All projects follow
the same architectural concepts and design patterns, so
despite their functionalities, their behavior in a distributed
and highly scalable environment would be similar.

OpenStack Compute has 5 interacting modules, com-
prising: compute controller, network controller, volume
controller, scheduler, and API server. These modules are
depicted in Figure 2. They provide basic functionalities
for hosting, provisioning and maintaining virtual machine
instances. The compute controller interacts with the
underlying hypervisor and allocates required resources
for each virtual machine. The network controller provides
networking resources (e.g. IP addresses, VLAN specifi-
cation, etc.) for VM instances. The volume controller
handles block storages devices for each VM instance, and
the scheduler distributes tasks among worker nodes (i.e.
compute controllers). The API server exposes all these
functionalities to the outside world.

Article structure

We will continue to discuss general aspects of incident
handling in a specific cloud environment, and our case
studies for possible attack scenario to such a model.

The rest of the paper is structured as follows: First, we
will explain the adapted form of the NIST incident han-
dling guideline for the cloud model (Section “Incident
handling”). Then two incidents will be processed by the
adapted guideline (Section “Case studies”). Applying the
guideline leads us to a set of new challenges that have

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www.journalofcloudcomputing.com/content/1/1/16

Page 3 of 21

G Auth Manager
o Network Controller
B i
=]
@
?} Local methods AMQP
- Volume Controller
= >
T AMQP
g: -aLocal methods! ud Controller
= AMQP
=)\ @
@
m HTTP
0
N
5 \ ¥
Object Store
() J Compute Controller
e
Figure 2 OpenStack Compute basic architecture [6].

not been addressed previously or require a careful re-
analysis. Finally, by analyzing these challenges, a group of
security mechanisms are proposed which address exist-
ing deficiencies (Section “Approaches for containment
and recovery”). A brief comparison of mechanisms are
provided as well (Section “Comparison”).

Incident handling

We will focus on cloud platform components, specifi-
cally on their functionalities, access methods, interacting
components and the impacts in case of being compro-
mised. The symptoms of a compromised component are
useful in detecting security breaches and must be con-
sidered when performing further analysis. Studying the
detection and analysis phase of the incident handling pro-
cedure, and applying new characteristics of the Cloud
Computing model, we identified several requirements for
a cloud provider and a cloud consumer. Additionally, some
influential challenges which will hinder implementation of
these requirements or adaptation of existing mechanisms
will be explained.

Detection and analysis of the compromised component
Studying the detection and analysis phase of the NIST
incident handling guideline [7], and applying new char-
acteristics of the Cloud Computing model, we identified
several requirements for a cloud provider and a cloud
consumer.

Cloud provider requirements

The cloud provider should develop the following items to
play its role in the incident handling process. Most of these
items are orthogonal. In other words, a cloud consumer
may request several items (i.e. security functionalities,

services) together. Also, different consumers may not
have similar demands. Thus, it may be beneficial for the
provider to develop most (if not all) of the following items
if it wishes to cover a larger set of consumers.

e Security APIs: The cloud provider should develop a
set of APIs that deliver event monitoring
functionalities and also provide forensic services for
authorities. Event monitoring APIs ease systematic
incident detection for cloud consumers and even
third parties. Forensic services at virtualization level
can be implemented by means of virtual machine
introspection libraries. An example of an
introspection library is XenAccess that allows a
privileged domain to access live states of other virtual
machines. A cross-layer security approach seems to
be the best approach in a distributed environment [8].

e Precursor or Indication Sources: The cloud
provider deploys, maintains and manages the cloud
infrastructure. The provider also develops required
security sensors, logging and monitoring mechanisms
to gather enough data for incident detection and
analysis at the infrastructure level. As an example,
security agents, intrusion monitoring sensors,
application log files, report repository, firewall
statistics and logs are all part of security relevant
indication sources. In case of a security incident, the
cloud provider should provide raw data from these
sources to affected customers and stakeholders. Thus
they will be capable of analyzing raw data and
characterizing incident properties.

e External reports: The cloud provider should provide
a framework to capture external incident reports.
These incidents can be reported by cloud consumers,

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www journalofcloudcomputing.com/content/1/1/16

end users or even third parties. This is not a new
approach in handling an incident, however finding
the responsible stakeholders for that specific incident
and ensuring correctness of the incident® requires
extensive research. E.g., Amazon has developed a
“Vulnerability Reporting Process” [9] which delivers
these functionalities.

e Stakeholder interaction: A timely response to an
incident requires heavy interaction with stakeholders.
In order to ease this interaction at the time of crisis,
the responsibilities of each stakeholder should be
described in detail.

e Security services: Cloud consumers may not be
interested in developing security mechanisms. The
cloud provider can deliver a security service to
overcome this issue. Security services which are
delivered by the provider can be more reliable in case
of an incident and less challenging in the deployment
and the incident detection/analysis phases.

¢ Infrastructure information: When the cloud
consumer or another third party wants to develop
incident detection and analysis mechanisms, they will
need to understand the underlying infrastructure and
its architecture. However, without cloud provider
cooperation that will not be feasible. So, the cloud
provider should disclose enough information to
responsible players to detect the incident in a timely
fashion and study it to propose the containment
strategy.

Cloud consumer requirements

A cloud consumer must fulfill requirements to ensure
effectiveness of the incident detection and analysis
process.

¢ Consumer’s security mechanisms: The cloud
consumer might prefer to develop its own security
mechanisms (e.g. incident detection and analysis
mechanisms). The customer’s security mechanisms
can be based on either the cloud provider’s APIs or
reports from a variety of sources, including:
provider’s incident reports, end-users’ vulnerability
reports, third parties’ reports.

e Provider’s agents in customer’s resources: By
implementing provider’s agents, the cloud consumer
will facilitate approaching a cross-layer security
solution. In this method, the cloud consumer will
know the exact amount and type of information that
has been disclosed. Moreover, neither the cloud
consumer nor the provider needs to know about each
others’ architecture or infrastructure design.

e Standard communication protocol: In order to
have systematic incident detection and analysis
mechanisms, it is required to agree on a standard
communication protocol that will be used by all

Page 4 of 21

stakeholders. This protocol should be independent of
a specific provider/customer.

e Report to other stakeholders: If the customer
cannot implement the provider’s agent in its own
instances, another approach to informing
stakeholders about an incident is by means of
traditional reporting mechanisms. These reports
should not be limited to an incident only, customers
may also use this mechanism to announce a
suspicious behavior for more analysis.

e Cloud consumer’s responsibilities: Roles and
responsibilities of a cloud consumer in case of an
incident should be defined ahead of time, facilitating
immediate reaction in a crisis.

Case studies
We now present two examples that illustrate handling
a compromised node and an introduced bogus node,
respectively.

Case One: a compromised compute worker

In the first case only one component, the nova-compute
service in the compute worker, is compromised, as shown
in Figure 3. Two incidents have happened simultaneously
in this scenario: malicious code and unauthorized access.
The malicious code is injected to the nova-compute ser-
vice and introduces some misbehavior in it, such as
malfunctions in the hosting service of virtual machine
instances.

A malfunction can be provoked, e.g., through nefarious
use of granted privileges to request more IP addresses,
causing IP address exhaustion. The incident description
for this scenario is given in Table 1.

The malicious code is injected after another inci-
dent, unauthorized access. The attacker gains access to
resources on the OpenStack-4 host, that he/she was not
intended to have. Using those escalated privileges, the
attacker changed the python code of the nova-compute
and restarted the service, causing it to behave maliciously.

Recommended actions by NIST and their correspond-
ing realization in an OpenStack deployment are explained
next. They will fulfill requirements, implied by the con-
tainment, eradication, and recovery phase. As explained
before, the described scenario consists of two incidents,
unauthorized access and malicious code. Thus, we will
in the following briefly discuss recommended responses
for both types of incident; an extended discussion can be
found in [10].

The following discussion is given in two parts. In
each part, actions proposed by the NIST guideline are
adapted to the cloud model. First, containment actions
from Table 2 will be adapted. Then, adapted forms of
eradication and recovery actions are explained. A major
effort has been put into adapting containment actions:

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www.journalofcloudcomputing.com/content/1/1/16

Page 5 of 21

Client

Auth Manager

I i
Local npethods
| rJ'
—
| =
| S
1]
=
w
& !
| 23 Scheduler API Stub tr
= H
o i H
:—Fi _E Scheduler API Stub f#--i--*
:H o]
g P
I — 3 Scheduler API Stub |-
| m Scheduler API Stub
(Y
| >
T
|
| -
I
I
|

d

~

g

Network Controller ll
Volume Controller ||

!

Compute Controller |l

L

Juu

Messaging Server

Figure 3 Case One - The nova-compute service in the OpenStack-4 host is compromised.

¢ “Identifying and Isolating Other Infected Hosts”
Study the profile of the infected host and compare it
to other worker nodes’ profiles, in order to identify
compromised hosts. Comparing profiles of
components is simple, using provided monitoring
facilities in our experimental environment.

e “Blocking Particular Hosts”
The strategy should be analyzed in depth before its
application. In a cloud environment when the
consumer’s instance is running in an infected worker

Table 1 Case One - A compromised compute worker

scenario specifications

Incident type

Current status

Compromised
component(s)
Physical Location

Affected Layers

General Information

Resources at risk

Incident description
Malicious code and Unauthorized access

Ongoing attack, the malicious code is not
patched nor contained yet

One compute worker host

OpenStack-4

Cloud platform layer, the OpenStack nova-
compute service

Malicious code is injected into the nova-
compute service of the OpenStack-4 host

Running instances on OpenStack-4, Stake-
holders and resources interacting with run-
ning instances on OpenStack-4 or the
infected nova-compute service

node, it is not reasonable to disconnect the node
without prior notice/negotiation to affected
consumers (This constraint can be relaxed by
providing the proper Service-level Agreement (SLA)).
In addition, blocking the compromised host can be
done with different levels of restrictions. Initially the
communication with the outside of the organization
should be blocked® assuming that the attacker is
located outside of the organization infrastructure.
Also, any further attack to the outside of the
organization using compromised hosts will be
mitigated.

In the second step, communication of the
compromised host with other components in the
infrastructure is also restricted and the host is
marked as compromised/infected/suspicious. Thus,
other nodes will avoid non-critical communication
with the compromised node. It will help the
infrastructure to communicate with the
compromised node for containment, eradication, and
recovery procedures; and at the same time the risk of
spreading the infection is reduced.

The last step can be blocking the host completely. In
this approach staff should access the host directly for
analyzing the attack as well as assessing possible
mitigation and handling strategies.

However, blocking infected hosts will not contain the
incident. Each host has several consumers’ instances
(VM instances) and volumes running on and attached
to it. Blocking hosts will only avoid spreading the

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www journalofcloudcomputing.com/content/1/1/16

Table 2 Containment strategies

NIST recommended Brief description

action

“Identifying and Isolating Extract incident symptoms to detect other
Other Infected Hosts" infected hosts.

“Blocking Particular Hosts” After identifying the compromised compo-
nent and its corresponding host (i.e. the
compromised worker/compute host), that

host should be blocked.

“Soliciting User Participa-
tion”

Interaction among cloud stakeholders (e.g.
cloud providers, cloud consumers, third
parties, end users, etc) is a mandatory
step toward fulfilling incident containment
requirements.

"Disabling Services” Disabling the infected service (nova-

compute in our scenario) may reduce
impacts of the compromised host. Disabling
a service can disrupt other services and
cause deviation from promised SLA by the
provider.

incident to other hosts but instances are still in
danger. An approach in a cloud environment is to
disconnect instances and volumes from the
underlying compromised layer. Signaling the cloud
software running on the compromised host to
release/terminate/shutdown/migrate instances and
detach volumes are our proposed approaches. This
approach is illustrated in Figure 4. We should use a
quarantine compute worker node as the container for
migrated instances. After ensuring the integrity and
healthiness of instances, they can be moved to a
regular worker node. This quarantine compute
worker will be explained more in the following
section. These approaches can be implemented at the

Page 6 of 21

cloud infrastructure layer for simplicity (Blocking by
means of nodes firewall, routers, etc.)

“Soliciting User Participation”

The interaction can be implemented using different
methods. Distributing security bulletins maintained
by cloud or service providers is an example of
notifying other stakeholders about an incident.
Incident or vulnerability reporting mechanisms are
also useful when an outsider detects an incident or
identifies a vulnerability. These two methods can be
developed and deployed independently of the cloud
platform. Security bulletins are provided by the
security team who handles security related tasks.
Also, reporting mechanisms are delivered by means
of ticketing and reporting tools. Direct and real-time
communication among stakeholders is a complement
to the above mentioned methods.

“Disabling Services”

In order to disable a particular service, we should first
check the service dependencies diagram. An example
of such a diagram is depicted in Figure 5. Disabling a
service can take place in two ways.

It is possible to stop the service at the compromised
host (Figure 6). In our scenario we can stop the nova-
compute service to disable the compute service. It will
instantly disconnect the cloud platform from running VM
instances. In the OpenStack platform stopping the nova-
compute service will not terminate running instances on
that host. Thus, although the compute service is not
working anymore, already running instances will continue
to work even after nova-compute is terminated. Addi-
tionally, it is not possible to terminate an instance after
stopping its corresponding compute service, because the

(swr)

[P ——

[t

\
))) | & :
I I
1 !
i i
OpenStack-1 OpenStack-2 0pen$tack-3j OpenStack-4 |
i i
I A
(ctho) i i
\

Sw2

Figure 4 Blocking compromised compute communication. Red lightening represent disconnected communications.

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www.journalofcloudcomputing.com/content/1/1/16

Page 7 of 21

Compute Node

|

I -
Quarantine |

| Compute 'T:: i

! Hode VM instance

|

L |

[Cloud Platform, Hypervisors, Services]

.

n i)

Volume

Figure 5 OpenStack Nova service dependencies.

administration gateway (i.e. nova-compute) is not listen-
ing to published messages. In order to maintain control
over running instances we should migrate instances from
the compromised node to a quarantine node before we
terminate the compute service.

Another approach is discarding messages published
by the compromised component or those destined to it
(Figure 7). This is a centralized method and the cloud
controller or the messaging server should filter out mes-
sages with the source/destination of the infected hostd

Volume Controller | | API Server

Network Controller

| Object Store

‘ Imaging Service

Compute Controller|

Figure 6 Stopping the compute service at the compromised host.

Compute Node
ot L] i e
| I
| Quarantine_ |
| Compute | |
Node I VM instance
|
[|
I[Cloud Platform, Hypervisors, Services] STOP I
————————— — — -]
oS J
~(I)
Volume

Figure 7 Discarding messages to/from the compromised node.

We continue by explaining four other actions which
are recommended responses to an unauthorized access
incident:

e “Isolate the affected systems”
The same procedures as those which have been
explained for “Identifying and Isolating Other
Infected Hosts” (Section “Case One: a compromised
compute worker”) and “Blocking Particular Hosts”
(Section “Case One: a compromised compute
worker”) can be applied here.

e “Disable the affected service”
The same procedure as the one which has been
explained for “Disabling Services” (Section “Case
One: a compromised compute worker”) can be
applied here.

¢ “Eliminate the attacker’s route into the
environment”
Access methods which have been used by the attacker
to access cloud components should be blocked.
Implementing filtering mechanisms in the messaging
server is a crucial requirement which is highlighted in
different strategies. The cloud provider should be
capable of blocking messages which are related to the
attack and blocks the attacker’s route into the cloud
environment. It should be noted that the mechanisms
which we have used to meet requirements imposed by
“Blocking Particular Hosts”, “Identifying and Isolating
Other Infected Hosts”, “Disabling Services” (Section
“Case One: a compromised compute worker”) are
appropriate actions for eliminating attackers’ routes.

e “Disable user accounts that may have been used
in the attack”
A compromised user account may reside in multiple
layers, such as the system, cloud platform, or VM

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www journalofcloudcomputing.com/content/1/1/16

instance layer®. Based on the membership layer, the
disabling and containment procedure will differ.
Additionally, in each layer a variety of user types
exist. As an example, in the cloud platform layer, the
cloud provider’s staff and cloud consumers have a
different set of user types.

As it was explained, three phases are adapted. Contain-
ment phase was discussed, and eradication phase is the
next one to be studied:

e “Disinfect, quarantine, delete, and replace
infected files”
These strategies are applicable in two layers
depending on the container of the injected malicious
code. The malicious code can be injected into either
the cloud platform services (i.e. nova-compute) or the
OS modules/services. If the injected malicious code is
in OS modules/services, utilizing existing techniques
is effective. By existing techniques, we refer to anti
virus software and traditional malware handling
mechanisms. In this case nothing new has happened,
although side effects of the incident may vary a lot.
However, if the malicious code is injected into a
cloud platform service (in our case nova-compute),
existing anti virus products are not useful, as they are
not aware of the new context. Cleaning a cloud
platform service can be very hard, so other
approaches are more plausible. In general, we can
propose several approaches for eradicating a
malicious code incident in a cloud platform:

— Updating the code to the latest stable version
and apply appropriate patches to fix the
vulnerability.

— DPurging the infected service on the
compromised node

— Replacing the infected service with another
one that uses a different set of application
layer resources (e.g. configuration files,
repositories, etc.)

It should be noted that in a highly distributed system
such as a cloud environment, doing complicated
tasks such as fixing a single infected node in real time
fashion does not support the cost effectiveness policy.
Thus, terminating the infected service or even the
compromised node and postponing the eradication
phase can be an appropriate strategy.

e “Mitigate the exploited vulnerabilities for other
hosts within the organization”
In order to complete the task, we should also update
the cloud platform software on other nodes and
patch identified vulnerabilities.

Page 8 of 21

The last phase is about recovery of the system which was
under attack:

e “Confirm that the affected systems are
functioning normally”
Profiling the system is useful in the recovery phase as
well as in the detection and analysis phase. After
containment and eradication of the compromised
component, the component profile should be the
same as a healthy component or be the same as its
own profile before being infected. Using the provided
tools in our deployment (i.e. Cacti) we can specify the
exact period and components which we want to
compare.

e “If necessary, implement additional monitoring
to look for future related activity”
After identifying attack patterns and the
compromised node profile, we should add proper
monitoring alarms to cover those patterns and
profiles. As an example, if the compromised compute
worker starts to request a large number of IP
addresses after its infection, this pattern should be
saved and monitored on other compute workers. So,
if we experience a compute worker with the same
profile and behavior, that worker node will flagged as
possibly infected. In our monitoring tools, the
administrator can define a threshold for different
parameters; if the current profile of the system
violates the threshold, graphs will be drawn with a
different color to notify the user. We can also add
other monitoring tools to generate the ticket in case
of a matching profile.

Case Two: a bogus component

A bogus service is a threat to OpenStack is an open source
software, an attacker can access the source code or its
binaries and start a cloud component that delivers a spe-
cific service. When the attacker is managing a service,
he/she can manipulate the service in a way that threatens
the integrity and confidentiality of the environment. This
section will discuss such an incident, where a bogus nova-
compute service is added to the cloud environment. The
incident description for this case is given in Table 3.

A bogus nova-compute service (or, in general, any cloud
platform component) can run on a physical machine or a
virtual instance. It is unlikely that an attacker will be capa-
ble of adding a physical node to the cloud infrastructure;
however, for the sake of completeness we study both the
case that the bogus service is running on a new physi-
cal machine and the one where it is running on a virtual
instance. Both cases are depicted in Figures 8 and 9.

When the bogus service is running on top of an instance,
the network connectivity may be more limited than com-
pared to the other case (i.e., the bogus service is running

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www.journalofcloudcomputing.com/content/1/1/16

Table 3 Case Two - A bogus component scenario
specifications

Incident description

Incident type Inappropriate Usage

Current status Ongoing attack, the bogus compute worker

is still up and serving a part of requests

Physical Location OpenStack-5

Affected Layers Cloud platform layer, the OpenStack nova-

compute service, consumers’ instances

General Information A bogus compute worker node is added to

the platform, it is a threat to the provider's
and consumers’ data confidentiality and
integrity. Also a threat for the system avail-
ability.

Resources at risk Running instances on OpenStack-5, Stake-

holders and resources interacting with run-
ning instance on OpenStack-5

on a physical node). Initially, any given instance is only
connected to the second interface (ethlI). This connectiv-
ity is provided by means of the bridge connection (br100)
that connects virtual interfaces (vuetX) to the rest of the
environment. Thus, a running instance has no connectiv-
ity to the switch SW2 by default. However, connectivity
to the outside world can be requested by any consumer

Compute Node

VM instance

i { Cloud Platform, Hypervisors, Services]

é

L, (L=]

@ || i N
=
Volume

S——
Messaging
Server

Figure 8 Case Two - A physical bogus compute worker node is

added to the infrastructure.

Page 9 of 21

(e.g., an attacker) through a legitimate procedure. Thus, in
Figure 9, we also connect the instance to SW2.

We simulated the virtual bogus compute worker
by deploying the nova-compute service on a running
instance. There were multiple obstacles for simulating this
scenario, including: the running instance, which turns out
to be also a bogus worker, must have hosting capabili-
ties; the bogus worker must respond to cloud controller
requests to be recognized as a working node.

Detecting a bogus worker node or instance is a complex
task if the infrastructure has not previously employed a
proper set of mechanisms. However, a few parameters can
be monitored as an indication of a bogus worker. Gener-
ally, a bogus worker is not working as well as a real one,
because its main goal is not providing a regular service.
A bogus worker aims to steal consumers’ data, intrude
on the cloud infrastructure, disrupt the cloud environ-
ment Quality of Service (QoS), and so forth. Without any
prior preparation, a suspicious worker can be identified
by monitoring the service availability and QoS parameters
on each worker. Moreover, a suspicious virtual worker can
also be recognized because of its high traffic towards the
cloud infrastructure messaging servers.

Containing a bogus worker consists of both proac-
tive and reactive techniques. When a bogus worker is
detected, the containment procedure is fairly simple (i.e.,
applying reactive techniques). However, deploying a set
of proactive techniques is more challenging. These tech-
niques can be implemented as a group of security mech-
anisms and policies, such as node authentication, manual
confirmation, trust levels and timeouts, and no new
worker policy. They will be discussed further in Section
“Policies”.

Approaches for containment and recovery

This section introduces our proposed approaches for con-
tainment of intruders, eradication of malicious processes
and recovery from attack. The proposed strategies can
be grouped based on two criteria: The responsible stake-
holder for developing and deploying the strategy, and the
target layer for that strategy. Based on the first criterion
we may have either the cloud provider or the cloud con-
sumer as the responsible stakeholder; based on the second
criterion, the target layer can be either the infrastruc-
ture/hardware layer or the service/application layer. We
have devised a set of approaches which will be explained
in detail in the following.

Restriction, disinfection, and replication of infected cloud
platform components

A general technique for containing an incident is restrict-
ing the infected component. The restriction can be
applied in different layers, with a variety of approaches,

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www journalofcloudcomputing.com/content/1/1/16

Page 10 of 21

SWA1
eth) (eth1
Cloud controller Compute worker Compute worker Compute worker

Figure 9 Case Two - A virtual bogus compute worker is added as a consumer’s instance.

such as: filtering in the AMQP server, filtering in other
components, disabling the infected service or disabling
the communicator service. Additional measures can also
be employed to support the restriction, like: removing
infected instances from the project VLAN, disabling live
migration, or quarantining infected instances. We explain
each of these approaches in the following sections.

Filtering in the messaging server (cloud controller)

We will propose several filtering mechanisms in the mes-
saging server in order to contain and eradicate an incident
in a cloud environment. The OpenStack platform has
been used to build our experimental cloud environment.
This approach is a responsibility of the cloud provider and
the target layer in the cloud platform application layer.

Advantages

e The filtering task at the messaging server level can be
done without implementation of new functionality.
We can use existing management interfaces of the
RabbitMQ (either command line or web interface) to
filter the compromised component.

e The filtering task can be done in a centralized fashion
by means of the management plug-in, although we
may have multiple instances of the messaging server.

¢ Implementing this approach is completely
transparent for other stakeholders, such as cloud
consumers.

e We can scale outf the messaging capability by
running multiple instances of the RabbitMQ on
different nodes. Scaling out the messaging server will
also scale out the filtering mechanism®.

e This approach is at the application layer, and it is
independent of network architecture and employed
hardware.

e The implementation at the messaging server level
helps in having a fine-grained filtering, based on the
message content.

Disadvantages

e A centralized approach implies the risk of a single
point of failure or becoming the system bottleneck.

¢ Implementing the filtering mechanism at the
messaging server and/or the cloud controller adds an
extra complexity to these components.

e When messages are filtered at the application layer in
the RabbitMQ server, the network bandwidth is
already wasted for the message that has an infected
source, destination, or even context. Thus, this
approach is less efficient than one that may filter the
message sooner (e.g. at its source host, or in the
source cluster).

e Most of the time application layer approaches are not
as fast as those in the hardware layer. In a large scale
and distributed environment the operation speed
plays a vital role in the system availability and QoS. It
is possible to use the zFilter technique [11] as a more
efficient implementation of the message delivery
technique. It can be implemented on either software
or hardware. The zFilter is based on the bloom-filter
[12] data structure. Each message contains its state;
thus this technique is stateless [11]. It also utilizes
source routing. zFilter implementations are available
for the BSD family operating systems and the
NetFPGA boards at the following address,
http://www.psirp.org.

e Filtering a message without notifying upper layers
may lead to triggered timeouts and resend requests
from waiting entities. It can also cause more
wasted bandwidth.

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16 Page 11 of 21

http://www.journalofcloudcomputing.com/content/1/1/16

Realization A variety of filtering mechanisms can be uti-
lized in the messaging server; each of these mechanisms
focuses on a specific component/concept in the Rab-
bitMQ messaging server. We can enforce the filtering in
the messaging server connection, exchange, and queue as
will be discussed next.

e Connection: A connection is created to connect a
client to an AMQP broker [13]. A connection is a
long-lasting communication capability and may
contain multiple channels [14]. By closing the
connection, all of its channels will be closed as well. A
snapshot of connections in our OpenStack
deployment is available in Figure 10.

e Exchange: An exchange is a message routing agent
which can be durable, temporary, or auto-deleted. .
Messages are routed to qualified queues by the
exchange. A Binding is a link between an exchange
and a queue. An exchange type can be one of direct,
topic, headers, or fanout [15]. An exchange can be
manipulated in different ways in order to provide a
filter mechanisms for our cloud environment:

— Unbinding a queue from the exchange: The
compromised component queue won't receive
messages from the unbound exchange. As an
example, we assume that the compute service
of the OpenStack-4 host is compromised.
Now, we want to block nova traffic to and
from the compromised compute service; so,
we unbind the NOVA topic exchange from the
queue COMPUTE.OPENSTACK-4. The
RabbitMQ management interface is used to
unbind the exchange, as shown in Figure 11.

— Publishing a warning message: Publishing
an alert message to that exchange, so all
clients using that exchange will be informed
about the compromised component. Thus, by
specifying the compromised component,
other clients can avoid communicating with
it. The main obstacle in this technique is the
requirement for implementing new
functionalities in clients.

— Deleting the exchange: Deleting an
exchange will stop routing of messages related
to it. It may have multiple side effects, such as
memory overflow and queue
exhaustion.

Queue: The queue is called a “weak FIFO” buftfer;
each message in it can be delivered only to a single
client unless re-queuing the

message [15].

— Unbinding a queue from an exchange avoids
further routing of messages from that
exchange to the unbound queue. We can
unbind the queue which is connected to the
compromised component and stop receiving
messages by the infected client.

— Deleting a queue not only removes the queue
itself, but also remove all messages in the
queue and cancel all consumers on that queue.

— Purging a queue removes all messages in the
queue that do not need acknowledgment.
Although it may be useful in some cases, it
may not be as effective as required during
an incident.

SWi1

(eth1 eth1) eth1

OpenStack-1 OpenStack-2 OpenStack-3 OpenStack-4

Cloud controller Compute worker Compute worker Computs worker

(eth0) (eth0) (eth0)

[eth1

(sw2

Figure 10 RabbitMQ Connections.

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16 Page 12 of 21
http://www journalofcloudcomputing.com/content/1/1/16

Connections
Network Overview
Peer address From client To client Channels User name State

129.241.252.116:41057 604B/s 125B/s 1 guest running
(32.4MB total 6.7MB total

129.241.252.116:41058 220B/s 125B/s 1 guest running

129.241.252.116:41059 330B/s 122B/s 1 guest running
(18.0MB total) | (6.7MB total)

129.241.252.117:33649 227B/s 128B/s 1 guest running
12.1MB total 6.9MB tota

129.241.252.117:33650 347B/s 129B/s 1 guest running
(18.5MB total) | (6.9MB total)

129.241.252.117:33651 623B/s 128B/s 1 guest running
33.3MB total) | (6.9MB tota

129.241.252.118:49885 585B/s 121B/s 1 guest running
(32.0MB total 6.6MB total

129.241.252.118:49886 325B/s 121B/s 1 guest running
17.8MB total) | (6.6MB tota

129.241.252.118:49887 214B/s 121B/s 1 guest running
(11.7MB total) | (6.6MB total)

129.241.252.119:48262 229B/s 129B/s 1 guest running
12.2MB total 6.9MB tota

129.241.252.119:48263 347B/s 129B/s 1 guest running
(18.5MB total) | (6.9MB total)

129.241.252.119:48264 626B/s 129B/s 1 guest running
33.3MB total) | (6.9MB tota

129.241.252.119:49251 249B/s 129B/s 1 guest running
(13.5MB total) | (7.0MB total

129.241.252.119:49252 367B/s 129B/s 1 guest running
20.0MB total) | (7.0MB tota

129.241.252.119:49253 646B/s 129B/s 1 guest running
35.1MB total) | (7.0MB tota

129.241.252.119:49254 229B/s 129B/s 1 guest running
12.4MB total 7.0MB tota

129.241.252.119:49255 348B/s 129B/s 1 guest running
(1S.1MB total 10.8MB total)

129.241.252.119:49256 626B/s 129B/s 1 guest running
34.0MB total) | (7.0MB tota

Figure 11 Unbinding a queue from an exchange using the Queues Management page of RabbitMQ.

Figure 12 depicts a simplified overview of messaging components. These components are not essentially aware
server internal entities and the application points of of messaging technique details and specifications.
our approaches.

Advantages
Filtering in each component 8
Applicable filtering mechanisms in the messaging server e The implementation of the filtering mechanism in
have been studied in the previous section. This section each component avoids added complexity to the

discusses mechanisms that are appropriate for other messaging server and cloud controller.

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www.journalofcloudcomputing.com/content/1/1/16

Page 13 of 21

To Routing Key Arguments
compute compute
e Unbind
compute.openstack-1 compute.openstack-1
T f’ e P i Unbind
compute.openstack-2 compute.openstack-2
) _P o P g Unbind
compute.openstack-3 compute.openstack-3
sl e Unbind
',..i-'-' ... -
nova ~—7; compute.openstack-4 compute.openstack-4 5
Y e et Unbind i
: 8 1
B e e T i g ’
network network
Unbind
network.openstack-1 network.openstack-1
Tt == = Unbind
scheduler scheduler
Unbind
scheduler.openstack-1 scheduler.openstack-1
e Unbind
Figure 12 Overview of RabbitMQ messaging server and applicable containment approaches.

e This approach is a distributed solution without a
single point of failure, in contrast to the previous one
with a centralized filtering mechanism.

¢ Assuming the locality principle in the cloud, wasted
bandwidth is limited to a cluster/rack which hosts the
infected components. Network connections have
much higher speed in a rack or cluster.

e This approach does not require a
correlation/coordination entity for filtering messages.
Each component behaves independently and
autonomously upon receiving an alarm message
which announces a compromised node.
Traditionally, most security mechanisms have been
employed at the organization/system boundaries.
However, as there is no boundary in the cloud,
performing security enforcement at each component
is a more reliable approach.

Disadvantages

e When the filtering must be performed in each
component, all interacting components must be
modified to support the filtering mechanism.
However, this issue can be relaxed by using a unified
version of the messaging client (e.g., pika python
client) and modifying the client in case of new
requirements.

e The message which should be discarded traverses all
the way down to the destination, and wastes the link
bandwidth on its route.

¢ Dropping a message without notifying upper layers,
may lead to triggered timeouts and resend requests

from waiting entities. It can also cause more wasted

bandwidth.

Realization This approach can be implemented at two
different levels: blocking at either the messaging client
level (e.g. AMQP messaging client) or the OpenStack
component/service level.

First, the responsible client can be modified to
drop messages with specific properties (e.g. infected
source/destination). As an example, the responsible client
for AMQP messaging in OpenStack is amqplib/pika; we
must implement the mechanism in this AMQP client
(or its wrapper in OpenStack) to filter malicious AMQP
messages. Using this method, more interaction between
OpenStack and clients may be required to avoid resend
requests. Because of using the same AMQP client in all
components, the implementation is easier and the modi-
fication process requires less effort. The second method is
to develop filtering in each of the OpenStack components,
such as nova-compute, nova-network, nova-scheduler,
etc. This method adds more complexity to those compo-
nents and it may not be part of their responsibilities.

We propose a combination of these methods. Imple-
menting the filtering mechanism in the carrot/amqplib
wrapper of OpenStack has advantages of both meth-
ods, and avoids unnecessary complexity. The OpenStack
wrapper for managing AMQP messaging is implemented
in src/nova/rpc.py. In order to identify the malicious
message, we use the message address which is part of
its context. Then, the actual dropping happens in the
AdapterConsumer method. Assuming that the source

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www journalofcloudcomputing.com/content/1/1/16

address is set in the context variable, filtering is straight-
forward. By checking the message address and avoiding
the method call, most of the task is done. The only remain-
ing part is to inform the sender about the problem, this
can be implemented by means of the existing message
reply functionality.

Disabling services

Disabling services is a strategy for containing the inci-
dent. The disabled service can be either the infected
service itself or the communicator service. The latter han-
dles task distribution and delegation. This method can be
used only by the cloud provider, and is at the application
layer.

Disabling an infected service An incident can be con-
tained by disabling the infected service. It has several
advantages, including:

o After the nova-compute service is stopped, running
instances will continue to work. Thus, as a result
consumers’ instances will not be terminated nor
disrupted.

e All communications to and from the compromised
node will be stopped. So, the wasted bandwidth will
be significantly reduced.

e Shutting down a service gracefully avoids an extra set
of failures. When the service is stopped by the Nova
interfaces, all other components will be notified and
the compromised node will be removed from the list
of available compute workers.

Like any other solution, it has multiple drawbacks as
well, including:

e Keeping instances in a running state can threaten
other cloud consumers. The attacker may gain access
to running instances on the compromised
node.

e The live migration feature will not work anymore.
Thus, the threatened consumers cannot migrate
running instances to a safe or quarantine compute
worker node.

e Neither the cloud provider nor consumers can
manage running instances through the OpenStack
platform.

This approach requires no further implementation,
although we may like to add a mechanism to turn services
on and off remotely.

Disabling a communicator service An incident can be
contained by disabling or modifying its corresponding
communicator service. An example of a communicator

Page 14 of 21

service in an OpenStack deployment is the nova-
scheduler service. The nova-scheduler decides which
worker should handle a newly arrived request, such as
running an instance. By adding new features to the sched-
uler service, the platform can avoid forwarding requests
to the compromised node. Advantages of this approach
are:

e No more requests will be forwarded to the
compromised node.

e Consumers’ instances remain in the running status
on the compromised node. So, consumers will have
enough time to migrate their instances to a
quarantine worker node or dispose of their
critical data.

e This approach can be used to identify the attackers,
hidden system vulnerabilities, and the set of
employed exploits. In other words, it can be used for
forensic purposes.

Disadvantages of disabling communication include:

e New features must be implemented.

These new features are more focused on the decision
algorithm of the scheduler service.

e This approach will not secure the rest of our cloud
environment, but it avoids forwarding new requests
to the compromised node. However, this drawback
can be seen as an opportunity. We can apply this
approach and also move the compromised node to a
HoneyCloud. In the HoneyCloud we don’t restrict
the compromised node, but instead analyze the attack
and the attacker’s behavior. But even by moving the
compromised node to a HoneyCloud, hosted
instances on that node are still in danger. It is possible
that consumers’ instances are all interconnected.
Thus, those running instances on the compromised
node in the HoneyCloud could threaten the rest of
the consumers’ instances. The rest of the instances
may even be hosted on a secure worker node.

The next proposed approach is a solution for this
issue.

Replicating services

An approach to overcome the implications of an incident
is replicating services. A service in this context is a service
which is delivered and maintained by the cloud provider. It
can be a cloud platform service (e.g nova-compute) or any
other services that concern other stakeholders. The repli-
cation can be done passively or actively, and that is due to
new characteristics of the cloud model. The replication of
a cloud service can be done either at the physical or virtual
machine layer.

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www.journalofcloudcomputing.com/content/1/1/16

Replicating a service on physical machines is already
done in platforms such as OpenStack. The provider can
replicate cloud services either passively or actively when
facing an issue in the environment.

Replication of a service on virtual machines has multiple
benefits, including:

e Virtual machines can be migrated while running (i.e.
live migration), this is a practical mechanism for
stateful services that use memory.

e Replication at the instance layer is helpful for forensic
purposes. It is also possible to move the compromised
service in conjunction with the underlying instance
to a HoneyCloud. This is done instead of moving the
physical node, ceasing all services on it, and changing
the network configuration in order to restrict the
compromised node communication.

e By using virtual machines in a cloud environment we
can also benefit from the cloud model elasticity and
on demand access to computing resources.

This approach is also the main idea behind the Virtu-
alization Intrusion Tolerance Based on Cloud Computing
(CC-VIT) [16]. By applying the CC-VIT to our environ-
ment, the preferred hybrid fault model will be Redundant
Execution on Multiple Hosts (REMH), and the group
communication is handle using the AMQP messaging. We
can use physical-to-virtual converters to have the advan-
tages of both approaches. These tools convert a physical
machine to a virtual machine image/instance that can be
run on top of a hypervisor. Moreover, each of these repli-
cas can be either active or passive. This will have a great
impact on the system availability.

Disinfecting infected components

Disinfecting an infected component is a crucial task in
handling an incident and securing the system. It can be
accomplished with multiple methods having a variety of
specifications. None of the following approaches will be
used for cleaning the infected binary files, instead less
complex techniques are employed that can be applied in a
highly distributed environment. Cleaning a binary file can
be offered by a third party security service provider, but
that will not be discussed further here.

1. Updating the code
The service code can be updated to the latest,
patched version. This process should be done in a
smooth way so that all components will be either
updated or remain compatible with each other after a
partial component update. Several tools has been
developed for this purpose; one of the best examples
is the Puppet project [17].

Page 15 of 21

2. Purging the infected service
Assuming that the attacker has stopped at the cloud
platform layer, we can ensure containment of the
incident by removing the service completely.

3. Replacing the service
Another method which is not as strong as the others
is achieved by replacing the infected service with
another one that uses a different set of application
layer resources, such as configuration files, binaries,
etc. Thus, we can be sure that the infected resources
have no effect on the new service.

Isolation, disinfection, and migration of instances

In the following part, techniques which are handling
virtual machine instances are discussed. Three major
approaches can be chosen for handling an attacked
instance: isolating, disinfecting, and migrating a given one.
Each of them will be explained next.

Removing instances from the project VLAN

This approach does not contain the compromised node,
instead it focuses on containing instances hosted by the
compromised worker node. This is important because
those instances may have been compromised as well. The
first step toward securing the consumer’s service is to dis-
connect potentially infected instances. The main usecase
of this approach is when the attacker disrupts other solu-
tions (e.g., disabling nova-compute management func-
tionalities through escalated privileges at the OS layer),
or when instances and the consumer’s service security is
very important (e.g., eGovernment services). It has several
advantages specifically for cloud consumers, including:

e [t can disconnect potentially infected instances from
the rest of the consumer’s instance.

e [t does not require implementation of new features.

e The attacker cannot disrupt this method.

The disadvantages are as follows:

e This method only works in a specific OpenStack
networking mode (i.e., the VLANManager
networking mode).

e The consumer completely loses control over isolated
instances, this may lead to data loss or disclosure,
service unavailability, etc.

Disabling live migration

Live migration can cause widespread infection, or can
be a mechanism for further intrusion to a cloud envi-
ronment. It may take place intentionally or unintention-
ally (e.g., an affected consumer may migrate instances to
resolve the attack side effects, or the attacker with con-
sumer privileges migrates instances to use a hypervisor
vulnerability and gain control over more nodes). Dis-
abling this feature helps the cloud provider to contain the

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www journalofcloudcomputing.com/content/1/1/16

incident more easily, and keep the rest of the environment
safer.

Quarantining instances

When we migrate instances from a compromised node,
we cannot accept the risk of spreading infection along
instance migration. Thus, we should move them to a quar-
antine worker node first. The quarantine worker node has
specific functionalities and tasks, including:

e This worker node limits instances’ connectivity with
the rest of cloud environment. As an example, only
cloud management requests/responses are delivered
by the quarantine host.

e It has a set of mechanisms to check instances’
integrity and healthiness. These mechanisms can be
provided by the underlying hypervisor, cloud
platform, or third parties’ services.

In order to deploy a quarantine node, a set of mecha-
nisms should be studied and employed. Tools that imple-
ment such mechanisms will be presented below.

1. Virtual Machine Introspection
This mechanism simplifies inspecting the memory
space of a virtual machine from another virtual
machine. The task is fairly complex because of the
semantic gap between the memory space of those
two virtual machines. XenAccess [18] is an example
of an introspection library. Using XenAccess the
privileged domain can monitor another Xen domain.

2. Domain Monitoring
One of the basic methods to identify a compromised
instance is by means of profiling and monitoring the
instance behavior. Domain monitoring techniques
provide an abstract set of data, compared to the
detailed, low level output of a VM introspection tool.
For a virtual machine running over a Linux box we
can use the libvirt [19] library to access the
suspicious instance and study its behavior.

3. Intrusion Detection
Having an intrusion detection system in the
hypervisor or cloud platform layer not only provide
better visibility for security mechanisms but is also
more resistant against a targeted attack from an
unauthorized access to an instance. Livewire [20] is a
prototype implementation of an intrusion detection
system in a hypervisor. Another way to benefit from
an intrusion detection system is Amazon’s approach,
which offers you a standalone Amazon Machine
Image (AMI) that contains Snort and Sourcefire
Vulnerability Research Team rules. The consumer
can then forward its instances’ traffic to the virtual
machine with intrusion detection capabilities. The

Page 16 of 21

same approach can be utilized in our deployment.
The main issue is the approach’s performance and
utilization.

4. Utilizing trusted computing concepts
Trusted computing is a technology for ensuring the
confidentiality and integrity of a computation. It is
also useful for remote attestation. Thus, we can use
the technology not only for securing our deployment
but also to build a better quarantine and infection
analysis mechanism. Approaches that have used this
concept include vIPM: Virtualizing the Trusted
Platform Module [21], TCCP: Trusted Cloud
Computing Platform [22], and TVDc: IBM Trusted
Virtual Datacenter [23].

It should be noted that although cloud providers or
third-party service providers can offer an IDS agent ser-
vice inside each instance, they cannot force the con-
sumer into accepting it. It is a reasonable argument due
to the consumer’s organization internal security policies
and resource overhead because of the security agent.
Thus, applying security services to the underlying layer
(i.e. hypervisor, cloud platform) is a preferred solution.
Detailed specifications of such a compute worker node is
a great opportunity for future work.

Recovering an instance
Recovering an infected or malfunctioning instance can
be performed using different techniques. An instance can
either be disinfected internally or rebooted from a clean
image. However, a tight collaboration between provider
and consumer is required for any of these techniques.
Obviously, disinfection of an instance cannot be per-
formed solely by the provider, because it should not access
the instance internally, but can only provide a disinfection
service (e.g. instance anti-virus) to be used by the con-
sumer at its own will. On the other hand, rebooting an
instance from a clean image can be done by the provider
or the consumer. Nevertheless, there are several issues
in performing the reboot action. First, one must make
sure that the instance termination will be done gracefully,
so no data will be lost. Second, the VM image must be
analyzed for any flaws or security vulnerabilities. Third,
before attaching the storage to the rebooted instance, the
volume must be disinfected.

Migrating instances

The affected consumer can migrate a specific instance
or a set of instances to another compute worker or even
another cloud environment. The migration among dif-
ferent providers is currently an open challenge, because
of the weak interoperability of cloud systems and
lack of standard interfaces for cloud services. In our

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www.journalofcloudcomputing.com/content/1/1/16

deployment, both Amazon EC2 APIs and Rackspace APIs
are supported. Thus, in theory a consumer can move
between any cloud environment provided by the Amazon
EC2, RackSpace, and any open deployment of OpenStack
without any problem.

Policies

In addition to all techniques that have been studied, a
group of security policies should be developed and exer-
cised. These policies can be implemented and enforced
inside those techniques, as additional measures.

Component authentication

The component authentication policy enforces that each
worker must have a certificate signed by a trusted author-
ity. This authority can be either an external one or the
cloud controller/authentication manager itself. Having a
signed certificate, the worker can communicate with other
components securely. The secure communication can
bring us any of the following: confidentiality, integrity,
authentication, and non-repudiation.

In this case, the worker’s communication confidential-
ity and authenticity is important for us. For this purpose
we can use two different schemes: message encryption or
a signature scheme. Each of these schemes can be used
for the whole communication or the handshake phase
only. When any of those schemes are applied only to the
handshake phase, any disconnection or timeout in the
communication is a threat to the trust relation. As an
authenticated worker is disconnected and reconnected,
we cannot only rely on the worker’s ID or host-name
to presume it as the trusted one. Thus, the handshake
phase should be repeated to ensure the authenticity of the
worker. Although applying each scheme to all messages
among cloud components is tolerant against disruption
and disconnection, its overhead for the system and the
demand for it should be studied case by case. By applying
each of those schemes to all messages, we can tolerate dis-
connection and disruption. However, using cryptographic
techniques for all messages introduce an overhead for the
system which may not be efficient or acceptable.

Implementing this method in our environment is sim-
ple. The RabbitMQ has features that facilitate com-
munication encryption and client authentication. The
RabbitMQ SSL support offers encrypted communication
[24]. Moreover, an authentication mechanism using the
client SSL certificate is offered by the rabbitmqg-auth-
mechanism-ssl plugin [25].

No new worker policy

In addition to the previously discussed technical
approaches, a set of management policies can also relax
the issue. As an example, no new worker should be added

Page 17 of 21

© Consumer
® Producer

Figure 13 A simple Finite State Machine (FSM) model for trust
states of a component.

Exchange

—» Binding

J Connection

——— Channel

unless there is a demand for it. The demand for a new
worker can be determined when the resource utilization
for each zone is above a given threshold.

Trust levels and timeouts

Introducing a set of trust levels, a new worker can be
labeled as a not trusted worker. Workers which are not
trusted yet, can be used for hosting non-critical instances,
or can offer a cheaper service to consumers. In order to
ensure the system trustworthiness in a long run, a not-
trusted worker will be disabled after a timeout. A simple
Finite State Machine (FSM) model of those transitions is
depicted in Figure 13.

Assuming we have only two trust levels, Figure 14
depicts transitions between them. As an example, 70
can be achieved by human intervention; and the second
level of trust T1 is gained by cryptographic techniques or
trusted computing mechanisms.

This policy can be implemented in the cloud plat-
form scheduler (e.g. nova-scheduler is the responsible
component in the OpenStack platform). Implementing

N: New

NT: Not Trusted
T: Trusted

D: Disabled

V: Verified

TI: Trust Revoked
tX: Timeout X

Figure 14 A simple FSM model for transitions between different
trust levels of a component.

Table 4 Comparison (RS: Responsible stakeholder, CP: Cloud Provider, CC: Cloud Consumer, P: Proactive, R: Reactive)

Approach

Filtering in the messaging
server

Filtering in each compo-
nent

Disabling services

Replicating services

Disinfecting infected com-
ponents

Removing instances from
the project VLAN

Disabling live migration

Quarantining instances

Disinfecting an instance

Migrating instances

Component
authentication

No new worker policy

Trust levels and timeouts

RS
cP

cP

cP

cp

cP

CpPCC

cP
CpCC

CpCC

CpCC

cP

@
CpCC

P/R
R

Service impact

Platform components may never receive an
expected message.

Platform components may never receive an
expected message.

Healthy components can become inaccessi-
ble. Losing control over instances managed
by disabled components.

Services should be replicated based on
requirement and performance analysis of the
environment.

Healthy components can become inaccessi-
ble. Losing control over instances managed
by disabled components.

The instance won't be accessible for the con-
sumer and its services.

Consumer experiences lower QoS.

Quarantined instances won't be accessible
for the consumer.

Consumer may experience lower QoS.

Small overhead for all communications.

Lower QoS for non-critical use-cases Lower
resource volume for critical use-cases

Implementation/Enforcement difficulties

Unless deployed in distributed mode, can
become a bottleneck.

All components should be modified to sup-
port it.

Configuration management tools and cloud
platform interfaces should be deployed and
configured.

Highly dependent on the OpenStack VLAN-
Manager networking mode.

Implementing this solution requires a lot of
effort as discussed briefly in [10].

A framework for analyzing VM images
and disinfecting running instances must be
developed

The cloud environment should consist of dis-
tributed and independent zones.

Developing a system for managing compo-
nents certificates and identity.

Developing a policy manager component

High complexity

Dependencies

Messaging server

Platform components

Platform interfaces

Platform components

Configuration management tools, Platform
interfaces

Platform components

Platform interfaces

Platform interfaces

Platform interfaces
Messaging server and identity services
Messaging server and policy manager

Platform interfaces, and scheduler compo-
nent

91/1/1/:u93u0/Wwod Hunndwodpnojsojeusnof- mmm//:dny

91:L ‘Z1L0T suonbayddy pup swaisAs ‘saoupApy :buindwio) pnoj Jo [puINor unieer pue palejuoiyuaye]

Lz J0 8| abed

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www.journalofcloudcomputing.com/content/1/1/16

this policy will allow the cloud provider to offer more
resources for non-critical use-cases. However, the offered
QoS might not be as good as before. The effectiveness of
this approach is highly dependent on a few parameters,
such as the ratio of adding new workers, trust mecha-
nisms and their performance, and consumers’ use-cases
and requested QoS.

A major challenge in this approach is about trust
mechanisms. The simplest mechanisms will be man-
ual determination and confirmation of authenticity and
trust level. A recently added worker won't be used
for serving consumers’ requests until its authentic-
ity is confirmed by the relevant authority (e.g. cloud
provider). However, this does not scale: The human
intervention can simply become a bottleneck in the
system.

Comparison

A list of security mechanisms have been discussed.
Although most of them are orthogonal to each other,
they can be compared in terms of their common criteria
(Table 4). A few criteria are extracted and explained in the
following part.

e Responsible stakeholder: Each mechanism must be
delivered by a single stakeholder or a group of
stakeholders. Identifying those responsibilities and
assigning them to the right bodies is a crucial step
toward building a secure environment.

® Proactive/Reactive: Both proactive and reactive
mechanisms have been discussed above. Knowing
mechanisms’ behavior is useful in their enforcement
and comparison.

e Service impact (Affected entities): Inevitably,
enforcing each mechanism will introduce a set of side
effects to delivered services and working entities.
Identifying these side effects makes the enforcement
process much more predictable.

¢ Implementation/Enforcement difficulties: Finding
out implementation challenges of security
mechanisms is important. These challenges are
meaningful measures in comparing mechanisms with
each other.

e Dependencies: Dependencies of approaches make
them bounded to a specific platform and libraries.
Having less or looser dependencies makes the
solution more portable. Portable approaches can be
developed as generic services that can be applied to a
variety of platforms. Thus, we can see the importance
of having common and standard interfaces among
different platforms, such as Open Cloud Computing
Interface (OCCI) and Cloud Data Management
Interface (CDMI).

Page 19 of 21

Conclusion

Cloud computing is a new computing model, whose def-
initions and realizations have new characteristics com-
pared to other computing models. New characteristics
hinder the application of existing mechanisms. In some
cases, existing approaches are not applicable, and in other
cases adaptation is required. Initially, we studied differ-
ent aspects of a real cloud environment, working on a
deployed environment instead of focusing on an imag-
inary computing model. Experimenting on a deployed
environment is helpful in reducing the gap between aca-
demic research and industrial deployment/requirements.
Many questions that are discussed in an academic envi-
ronment are already solved in industry, or are not the right
questions at all. A good blog post on this issue can be
found in [26].

Although our lab setup was not big enough to be
industry realistic, it was useful for understanding the
ecosystem of the cloud model, and observing possible
weaknesses in it. Obviously, deploying a larger infrastruc-
ture reveals more information about the exact behavior
of the environment, and the result will be more accurate.
However, that may not be feasible as a university project
unless big players in the cloud are willing to contribute, as
can be seen in efforts such as OpenCirrus [27] (supported
by HP, Intel, and Yahoo!), the Google Exacycle [28] pro-
gram, and Amazon grants for educators, researchers and
students [29].

In our study we have decided to use the OpenStack
cloud software. There were multiple reasons behind this
decision, such as:

e Working on an open source project helps the
community, and pushes the open source paradigm
forward.

e Analysis of the platform and experimenting with
different approaches is easier and more efficient
when we can access the source code.

e Big companies are involved in the OpenStack project,
and many of them are using the platform in their own
infrastructure. Thus, OpenStack can become a
leading open source cloud platform in the near future.

This study was started only 4 months after the first
release of OpenStack, and much of the required documen-
tation was either not available or not good enough. We
studied the OpenStack components and identified their
functionalities and other specifications. Moreover, work-
ing with a platform which is under heavy development,
has its own challenges.

In order to secure the environment against a compro-
mised component, we have to handle the correspond-
ing incident. The NIST incident handling guideline has
been studied and applied to our experimental cloud

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16

http://www journalofcloudcomputing.com/content/1/1/16

environment. During the application process we did not
limit ourselves to the lab setup, because it was not
large/distributed enough. So, in the proposed approaches
we considered a large scale, highly distributed target envi-
ronment; and made those approaches compatible with
such an environment. Moreover, the NIST guideline rec-
ommends a set of actions for each handling phase. These
actions can be realized using a variety of mechanisms.
We have studied several mechanisms and discussed their
compatibilities with the cloud model. Additionally, we
have proposed new approaches that are helpful in fulfill-
ing incident handling requirements. Furthermore, in this
process multiple questions and challenges were raised that
can be interesting topics for future work in cloud incident
handling and in general security of a cloud environment.
We itemize a few of them in the following:

e Statistical measurement and analysis of each
approach and study of the exact performance
overhead.

e Large scale deployment of OpenStack with its latest
release.

e Implementation of proposed approaches as a set of
security services, and study their effectiveness for a
cloud consumer and the cloud environment in
general.

e Study the compatibility of approaches and guidelines
to other cloud environments, specifically with those
operated by industry or commercial cloud providers
(e.g. Amazon, Rackspace, Google App Engine, Azure).

Endnotes

2 REpresentational State Transfer

b Avoiding false positive alarms

¢ By the term organization, we mean all entities who are
responsible for managing the cloud infrastructure, which
can be referred to as the cloud provider

4 In a publisher/subscriber paradigm the destination may
be eliminated or masked by other parameters. So, we may
filter messages that contain any evidence of being related
to the infected host

¢ It should be noted, although we may use directory and
federation services to unify users among services and
layers, this may not be a feasible approach in a cloud envi-
ronment. However, federation is applicable at each layer
(e.g. system, cloud platform, VM instances)

f Scaling out or horizontal scaling is referred to the appli-
cation deployment on multiple servers [30]

8But it may require a correlation entity to handle the
filtering tasks among all messaging servers

Competing interests
The authors declare that they have no competing interests.

Page 20 of 21

Author’s contributions

ATM performed the configuration and testing of the OpenStack lab
environment, and drafted the paper. MGJ supervised the practical work, and
contributed to the writing to improve the quality of the text. All authors read
and approved the final document.

Acknowledgements
This article is based on results from MSc Thesis work performed at Norwegian
University of Science and Technology (NTNU).

Author details
TUNINETT, Trondheim, Norway. 2SINTEF ICT, Trondheim, Norway.

Received: 3 February 2012 Accepted: 2 July 2012
Published: 16 August 2012

References

1. McCarthy J (1999) MIT Centennial Speech of 1961 cited in Architects of
the Information Society: Thirty-five Years of the Laboratory for Computer
Science at MIT. S.L. Garfinkel Ed. MIT Press, Cambridge MA

2. Mell P,Grance T (2011) The NIST Definition of Cloud Computing,
Technical Report SP 800-145. National Institute of Standards and
Technology, Information Technology Laboratory

3. ChenY, Paxson V, Katz RH What's New About Cloud Computing Security?
Technical Report UCB/EECS-2010-5, EECS Department, University of
California, Berkeley 2010. http://www.eecs.berkeley.edu/Pubs/TechRpts/
2010/EECS-2010-5.html

4. TaheriMonfared A, Jaatun MG (2011) As Strong as the Weakest Link:
Handling compromised compoenents in OpenStack. In: Proceedings of
the third IEEE International Conference on Cloud Computing Technology
and Science (CloudCom)

5. OpenStack Community (2011) OpenStack Projects page. http://
openstack.org/projects/

6. Walsh S (2011) Multiple Cluster Zones. http://wiki.openstack.org/
MultiClusterZones

7. Scarfone K, Grance T, Masone K (2008) Computer Security Incident
Handling Guide. Special Publications SP 800-61 Rev. 1, NIST. http://csrc.
nist.gov/publications/nistpubs/800-61-rev1/SP800-61rev1.pdf

8. TaheriMonfared A, Jaatun MG (2011) Monitoring Intrusions and Security
Breaches in Highly Distributed Cloud Environments. In: Proceedings of
CloudCom 2011

9. AWS Security Team (2011) Vulnerability Reporting. http://aws.amazon.
com/security/vulnerability-reporting/

10. TaheriMonfared A (2011) Securing the laaS Service Model of Cloud
Computing Against Compromised Components. MSc thesis, Norwegian
University of Science and Technology (NTNU)

11. Jokela P, Zahemszky A, Esteve Rothenberg C, Arianfar S, Nikander P (2009)
LIPSIN: line speed publish/subscribe inter-networking. In: Proceedings of
the ACM SIGCOMM 2009 conference on Data communication, SIGCOMM
'09. ACM, New York, pp 195-206. http://doi.acm.org/10.1145/1592568.
1592592

12. Broder A, Mitzenmacher M (2002) Network Applications of Bloom Filters:
A Survey. In: Internet Mathematics. pp 636-646

13. RabbitMQ Core API Guide (2011) http://www.rabbitmg.com/api-guide.
html

14. Trieloff C, McHale C, Sim G, Piskiel H, O'Hara J, Brome J, van der Riet K,
Atwell M, Lucina M, Hintjens P, Greig R, Joyce S, Shrivastava S (2006)
Advanced Message Queuing Protocol Protocol Specification. amg-spec,
AMQP.org. [Version 0.8]

15. Samovskiy D (2008) Introduction to AMQP Messaging with RabbitMQ

16. Tan'Y, Luo D, Wang J (2010) CC-VIT: Virtualization Intrusion Tolerance
Based on Cloud Computing. In: Information Engineering and Computer
Science (ICIECS), 2010 2nd International Conference on. pp 1-6

17. Puppet Labs (2011) http://www.puppetlabs.com/

18. XenAccess (2009) http://www.xenaccess.org/

19. libvirt Wiki (2011) http://wiki.libvirt.org/page/Main Page#libvirt Wiki

20. Garfinkel T, Rosenblum M (2003) A Virtual Machine Introspection Based
Architecture for Intrusion Detection. In: Proc. Network and Distributed
Systems Security Symposium

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5. html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5. html
http://openstack.org/projects/
http://openstack.org/projects/
http://wiki.openstack.org/MultiClusterZones
http://wiki.openstack.org/MultiClusterZones
http://csrc.nist.gov/publications/nistpubs/800-61-rev1/SP800-61rev1.pd f
http://csrc.nist.gov/publications/nistpubs/800-61-rev1/SP800-61rev1.pd f
http://aws.amazon.com/security/vulnerability-reporting/
http://aws.amazon.com/security/vulnerability-reporting/
http://doi.acm.org/10.1145/1592568.1592592
http://doi.acm.org/10.1145/1592568.1592592
http://www.rabbitmq.com/api-guide.html
http://www.rabbitmq.com/api-guide.html
http://www.puppetlabs.com/
http://www.xenaccess.org/
http://wiki.libvirt.org/page/Main_Page#libvirt_Wiki

TaheriMonfared and Jaatun Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:16 Page 21 of 21
http://www.journalofcloudcomputing.com/content/1/1/16

22.

23.

24.
25.

26.

27.
28.

29.
30.

Berger S, Caceres R, Goldman KA, Perez R, Sailer R, van Doorn L (2006)
VIPM: Virtualizing the Trusted Platform Module. Research Report
RC23879, IBM Research Division

Santos N, Gummadi KP, Rodrigues R (2009) Towards Trusted Cloud
Computing. In: HOTCLOUD, USENIX

Berger S, Caceres R, Pendarakis D, Sailer R, Valdez E, Perez R, Schildhauer
W, Srinivasan D (2007) TVDc: Managing Security in the Trusted Virtual
Datacenter. Research Report RC24441, IBM Research Division
RabbitMQ SSL (2011) http://www.rabbitmg.com/ssl.html

MacMullen S (2011) Who are you? Authentication and authorisation in
RabbitMQ. http://www.rabbitmg.com/blog/2011/02/07/who-are-you-
authentication-and-authorisation-in-rabbitmg-231/

Welsh M (2011) How can academics do research on cloud computing?
http://matt-welsh.blogspot.com/2011/05/how-can-academics-do-
research-on-cloud.html

Open Cirrus (2011) https://opencirrus.org/

Belov D (2011) 1 billion core-hours of computational capacity for
researchers. http://googleresearch.blogspot.com/2011/04/1-billion-
core-hours-of-computational.html

AWS in Education (2011) http://aws.amazon.com/education/

Michael M, Moreira J, Shiloach D, Wisniewski R (2007) Scale-up x
Scale-out: A Case Study using Nutch/Lucene. In: Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International. pp 1-8

doi:10.1186/2192-113X-1-16

Cite this article as: TaheriMonfared and Jaatun: Handling compromised
components in an laaS cloud installation. Journal of Cloud Computing:
Advances, Systems and Applications 2012 1:16.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://www.rabbitmq.com/ssl.html
http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authenticatio n-and-authorisation-in-rabbitmq-231/
http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authenticatio n-and-authorisation-in-rabbitmq-231/
http://matt-welsh.blogspot.com/2011/05/how-can-academics-do-resea rch-on-cloud.html
http://matt-welsh.blogspot.com/2011/05/how-can-academics-do-resea rch-on-cloud.html
https://opencirrus.org/
http://googleresearch.blogspot.com/2011/04/1-billion-core-hours-o f-computational.html
http://googleresearch.blogspot.com/2011/04/1-billion-core-hours-o f-computational.html
http://aws.amazon.com/education/

	Abstract
	Introduction
	A brief primer on OpenStack
	Article structure

	Incident handling
	Detection and analysis of the compromised component
	Cloud provider requirements
	Cloud consumer requirements

	Case studies
	Case One: a compromised compute worker
	Case Two: a bogus component

	Approaches for containment and recovery
	Restriction, disinfection, and replication of infected cloud platform components
	Filtering in the messaging server (cloud controller)
	Advantages
	Disadvantages
	Realization

	Filtering in each component
	Advantages
	Disadvantages
	Realization

	Disabling services
	Disabling an infected service
	Disabling a communicator service

	Replicating services
	Disinfecting infected components

	Isolation, disinfection, and migration of instances
	Removing instances from the project VLAN
	Disabling live migration
	Quarantining instances
	Recovering an instance
	Migrating instances

	Policies
	Component authentication
	No new worker policy
	Trust levels and timeouts

	Comparison

	Conclusion
	Endnotes
	Competing interests
	Author's contributions
	Acknowledgements
	Author details
	References

