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Abstract

Background: AT1 receptor antagonists are clinically effective drugs for the treatment of hypertension,
cardiovascular, and related disorders. In an attempt to identify new AT1 receptor antagonists, a pharmacophore-
based virtual screening protocol was applied. The pharmacophore models were generated from 30 training set
compounds. The best model was chosen on the basis of squared correlation coefficient of training set and internal
test set. The validity of the developed model was also ensured using catScramble validation method and external
test set prediction.

Results: The final model highlighted the importance of hydrogen bond acceptor, hydrophobic aliphatic,
hydrophobic, and ring aromatic features. The model satisfied all the statistical criteria such as cost function analysis
and correlation coefficient. The result of estimated activity for internal and external test set compounds reveals that
the generated model has high prediction capability. The validated pharmacophore model was further used for
mining of 56000 compound database (MiniMaybridge). Total 141 hits were obtained and all the hits were checked
for druggability, this led to the identification of two active druggable AT1 receptor antagonists with diverse
structure.

Conclusion: A highly validated pharmacophore model generated in this study identified two novel druggable AT1
receptor antagonists. The developed model can also be further used for mining of other virtual database.
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1. Background
The renin-angiotensin system plays a fundamental role
in blood pressure and fluid and electrolyte homeostasis
[1]. Angiotensin II (AII), an octapeptide produced by
the renin-angiotensin system, is a powerful endogenous
vasopressor. Angiotensin converting enzyme inhibitors
work by blocking the production of angiotensin II from
angiotensin I. An alternative and possibly superior
approach would be to block the action of AII at the
level of its receptor. Two distinct subtypes of AII recep-
tors [type 1 (AT1) and type 2 (AT2)] have been identi-
fied, and both belong to the G protein-coupled

receptors super family (GPCRs) [2,3]. Most of the biolo-
gical actions of AII are mediated by the AII receptors of
the AT1 subtype. The AT1 receptor subtype mediates
virtually all the known physiological actions of AII in
cardiovascular, neuronal, endocrine, and hepatic cells as
well as in other ones. Since AT1 receptor is GPCR the
interaction of AII with the AT1 receptor induces a con-
formational change, which promotes the coupling with
the G protein(s) and leads to the signal transduction via
several effector systems (phospholipases C, D, A2, ade-
nyl cyclase, etc.). The AT1 receptors play a major role in
the pressor and trophic actions of the AII, and much
effort has been spent in developing nonpeptide antago-
nists for this receptor for the treatment of hypertension
and congestive heart failure [4].
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Like other GPCR families, AT1 receptors are transmem-
brane proteins and such macromolecules are not easily
crystallized for structural analysis by X-ray crystallography
[5]. In the absence of three-dimensional (3D) structure for
AT1 receptor, a rational design of antagonists using a
structure-based approach is not feasible [1]. For this rea-
son, 3D pharmacophore models from the ligand-based
approach are very useful for analyzing the ligand-receptor
interactions. Moreover, a pharmacophore can also be used
as a query in a 3D database search to identify new struc-
tural classes of potential lead compounds. In the recent
years, the development of a 3D-pharmacophore and its
use in the virtual screening of the chemical databases
appear to be a more relevant and time-saving approach.
Thus, the construction of an accurate pharmacophore is a
key objective in many drug discovery efforts.
The pharmacophore generation methods of the Cata-

lyst software have been successfully used in drug discov-
ery research and toxicology [6-8] as evident from
pharmacophore-based development of protein farnesyl
transferase, human immunodeficiency virus (HIV) pro-
tease, and HIV reverse transcriptase inhibitors [9,10].
In this study, our approach of pharmacophoric

exploration via set of diverse 3D structures has resulted
in development of a highly validated and predictive
pharmacophore model for AT1 receptor antagonists.
The developed phamacophore was subsequently used
for virtual screening of chemical databases for identifica-
tion of novel lead compounds with nanomolar activity
range.

2. Results and discussion
2.1. HypoGen model
Pharmacophore models were generated using 30 train-
ing set compounds representing two series of structu-
rally diverse compounds with AT1 receptor antagonist
activity. All the generated pharmacophore hypotheses
were evaluated for their statistical fitness on the basis
cost difference values, correlation coefficients (r), and
rms deviations. The pharmacophoric features and statis-
tical data for a set of ten chosen hypothesis are listed in
Additional file 1.
Out of ten, hypothesis1 was identified as best pharma-

cophore model, since this hypothesis showed a cost dif-
ference of 20.17 between null cost 148.75 and total cost
128.58 satisfying the range recommended in the cost
analysis of the catalyst procedure. Hypothesis1 had total
cost close to fixed cost (124.52), lower error cost
(103.409), lowest root-mean-square (RMS) divergence
(0.408), best correlation (r = 0.977), and good internal
test set prediction (rtest-set = 0.93). The configuration
cost of the hypothesis exceeded the limit of 17 bits but
can be accepted as the model achieves other validation
criterion [11,12].

The chosen hypothesis comprised of one hydrogen-
bond acceptor (HBA), hydrophobic aliphatic region, and
hydrophobic (HY) and one ring aromatic (RA) sites in a
specific 3D orientation. The results of tolerance and
weight fit to the features of the training set compounds
are given in Additional file 2. The pharmacophore
model mapped well to the training and test set com-
pounds. The values of actual and predicted activity for
the training and internal test set compounds are given
in Additional files 3 and 4. The model was found to be
quite good in predicting the activity of external test set
compounds [13] with correlation co-efficient value of
0.71 and the values of actual and predicted activity are
given in Additional file 5.

2.2. Fisher’s cross validation test
The Fisher’s randomization test was used to validate the
strong correlation between chemical structures and bio-
logical activity. The generated pharmacophore model
was assessed for quality by Fischer randomization test
method using Cat Scramble technique in Catalyst at
98% confidence. The results are shown in Figure 1 and
the resultant data clearly shows that none of the out-
come hypothesis had a lower cost score than the initial
hypothesis. The results obtained clearly supported the
validity of selected pharmacophore model.

2.3. Mapping of training set compounds
Hypothesis1 is presented in Figure 2, aligned with the
most active compound (6b: 0.072 nM) of the training
set molecules. For this compound, HBA feature mapped
to the S = O group of sulfonamide moiety. The HY ali-
phatic group mapped to the butyl chain at the triazoli-
none ring and the other HY feature mapped to the
chlorophenyl ring. Ring aromatic feature mapped to one
of the phenyl ring of biphenyl ring.
Figures 3 and 4 depict one of the conformations of

compounds 7a and 16 in the training set mapped onto
Hypothesis1. As seen from these figures, both the com-
pound fit all features of the developed pharmacophore
model very well similar to the most active compound.

Figure 1 Graph of the Cat-scrambled data generated from
training set.
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Moreover, compounds 7a and 16 were reasonably well
estimated with a fit value of 9.42 and 9.15, respectively
(actual activity (7a) 0.14 nM; estimated 0.13 nM and
actual activity (16) 0.26 nM; estimated 0.251 nM).
The most active compounds in the dataset assumed

conformations that allowed proper mapping of all the
feature of the generated hypotheses, whereas least active

compounds were unable to map HY aliphatic or ring
aromatic. Pharmacophore mapping of the least active
compound 33e is shown in Figure 5.

2.4. Mapping of test set compounds
Hypothesis1 was further studied for its mapping pattern
for the compounds of test set. The mapping analysis of
the compounds, namely 5b in the test set, revealed that
none of the essential pharmacophoric features were
missed and all features mapped with the least displace-
ment from the centroid of all features (Figure 6). The

Figure 2 Best conformation of compound 6b fit to the
generated pharmacophore model of AT1 receptor antagonists.

Figure 3 Best conformation of compound 7a fit to the
generated pharmacophore model of AT1 receptor antagonists.

Figure 4 Best conformation of compound 16 fit to the
generated pharmacophore model of AT1 receptor antagonists.

Figure 5 Best conformation of compound 33e fit to the
generated pharmacophore model of AT1 receptor antagonists.
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t-butyl group of 5b mapped well with the HY feature of
the pharmacophoric model, and the butyl group mapped
with HY feature. The oxygen of the SO2 mapped to the
HBA feature, while the ring aromatic feature mapped to
the phenyl ring of the biphenyl ring groups of com-
pound 5b. The moderate and lesser active compounds
missed to map one pharmacophoric features and
thereby justifying their corresponding categories. The
moderately active compounds 35e and 36e missed the
HY feature while the lesser active compound 38e (Fig-
ure 7) missed the ring aromatic feature. These results
revealed the importance of HY functionalities and ring
aromatic feature in imparting good AT1 receptor
antagonist activity.

2.5. Database search
The validated pharmacophore model was used to search
MiniMaybridge and NCI chemical databases [14,15] for
identification of new AT1 antagonists. By employing the
fast search algorithm, 141 hits were retrieved. Subse-
quently, the hits were subjected to additional filtering to
exclude compounds with low potency and unfavorable
absorption and permeation properties. This led to the
repossession of five structurally diverse druggable com-
pounds with nanomolar activities (Table 1).

3. Materials and methods
Discovery studio, version 2.0, Accelrys Software Inc., San
Diego, CA, was used to develop pharmacophore hypoth-
esis for structurally diverse series of triazolinone deriva-
tives reported in the literature [16,17] with activity
range from 0.072 to 250 nM. Chemical structures of
various N2-aryltriazolinone biphenylsulfonamides with
their experimental IC50 values for the AT1 receptor sub-
type are listed in Additional file 6.

3.1. Selection of the training set and test set
The most important aspect of the hypothesis generation in
HypoGen is the selection of the training set of molecules.
The selection has to follow some basic requirements; such
as a minimum of 16 structurally diverse compounds
should be selected to avoid any chance correlation, most
active compound should be included and the activity data
should have a range of 3.5-5 orders of magnitude [18].
On the basis of above criteria, the dataset was divided

into training set and test set. The training set comprised
of 30 compounds, whereas internal test set was com-
posed of 27 compounds. The most active compounds
were included in the training set so that they would pro-
vide critical information for pharmacophore require-
ments. Several moderately active and inactive
compounds were also included to spread the activity
ranges as wide as possible. The important aspect of
such selection scheme is that each active compound
should teach something new to the HypoGen module to
help it uncover as much critical information as possible
for predicting biological activity.

3.2. Generation of pharmacophores
Details of the pharmacophore development procedures
have been described in the literature [9,18]. In brief, con-
formational models of all training set molecules with AT1

receptor antagonist activity were generated using the best
quality conformational search option in Catalyst employ-
ing a constraint of a 20 kcal/mol energy threshold above
the global energy minimum using CHARMm force field.
A maximum of 250 conformations were generated to
ensure maximum coverage in the conformational space
[19]. Instead of using just the lowest energy conformation

Figure 6 Best conformation of compound 5b fit to the
generated pharmacophore model of AT1 receptor antagonists.

Figure 7 Best conformation of compound 38e fit to the
generated pharmacophore model of AT1 receptor antagonists.

Pal and Paliwal Organic and Medicinal Chemistry Letters 2012, 2:7
http://www.orgmedchemlett.com/content/2/1/7

Page 4 of 7



of each compound, all conformational models for mole-
cules in each training set were used in for pharmacophore
hypothesis generation. The Catalyst software can generate
pharmacophore hypotheses consisting of a maximum of

five features. An initial analysis revealed that four chemical
feature types such as HBA, HY, hydrophobic aliphatic
(HY-ALI), and ring aromatic (RA) could effectively map
all critical chemical features of all molecules in the training

Table 1 List of hits obtained from the MiniMaybridge and NCI database with their corresponding fit value and
estimated activity

Number Hits retrieved Fit value Estimated activity (nM)

1 (MiniMaybridge HITS)

SP 01066

9.239 0.205

2

KM 09509

8.524 1.062

3(NCI HITS)

NSC 122371

9.517 0.108

4

NSC 157629

9.515 0.108

5 9.356 0.156
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set. The minimum and maximum counts for HBA, HY,
HY-ALI, and RA were set to 0 and 3, respectively. These
four feature types were used to generate ten pharmaco-
phore hypothesis from the training set. The uncertainty
value was defaulted to 3 which is a ratio range of uncer-
tainty in the activity value and MinPoints and MinSubset-
Points were 4 (default value). The MinPoints parameter
controls the minimum number of location constraints
required for any hypothesis. The MinSubsetPoint para-
meter defines the number of chemical features that a
hypothesis must match in all the compounds set [20].

3.3. Evaluation of the HypoGen model
3.3.1. Cost function analysis
All the hypotheses generated were subjected to cost
function analysis which is considered as stringent quality
check tool. Two important theoretical cost calculations
that determine the success of any pharmacophore
hypothesis are “fixed cost” and “null cost”. Fixed cost
represents the simplest model that fits all data perfectly,
and the second null cost represents the highest cost of a
pharmacophore with no features and which estimates
activity to be the average of the activity data of the
training set molecules. The null cost value is equal to
the maximum occurring error cost. The greater the dif-
ference between null cost and total cost and closer the
total cost of the generated hypothesis to the fixed cost,
the more statistically significant is the generated hypoth-
esis. Another important cost is the overall cost of Hypo-
Gen model which consist of three cost components, the
weight cost, the error cost, and the configuration cost.
The quality of each hypothesis can be judged on the
basis of total cost which is sum of error cost, weight
cost, and configuration cost. The configuration cost,
which is also known as the entropy cost, depends on
the complexity of the pharmacophore hypothesis space.
The error cost is dependent on the RMS differences
between the estimated and the actual activities of the
training set molecules. In standard HypoGen model, the
configuration should not be greater than 17.0. The RMS
deviations represent the quality of the correlation
between the estimated and the actual activity data. The
error cost is the most important part of the total cost
and increases as the RMS difference between the esti-
mated and the actual affinity for the training set
increases. The RMS value is related to the quality of
prediction of the hypothesis. Error cost provides the
highest contribution to total cost and it is directly
related to the capacity of the particular pharmacophore
as 3D QSAR model, i.e., in correlating the molecular
structures to the corresponding biological responses.
The weight cost is a value that increases in a gaussian
form as the difference between the actual and ideal
weights of the features deviates. According to the

documentation, the ideal value of the weight is 2
because higher weight values tend to force unrealistic
conformations of the compounds to fit such features
[20].
3.3.2. Test set prediction
The ability of the models to predict the biological activ-
ity of compounds outside the model development proce-
dure is a common method of validation [21]. Internal
test set of 27 and external test set of 46 compounds
were employed to assess statistical significance of the
developed model. All test set molecules were built and
minimized as well as used in conformational analysis
like the training set molecules. Predictions were made
to evaluate the level of similarity between actual and
predicted activity.
3.3.3. Statistical validation
Statistical cross-validation study was performed to assess
the significance of the best hypotheses using the cat-
Scramble program available in Catalyst. The statistical
significance is given by the equation.

Significance = [1 − (1 + x)/y]× 10

where x is the total number of hypotheses having a
total cost lower than best significant hypothesis and y
the number (HypoGen runs initial + random runs). To
obtain a 95% confidence level, 19 random spreadsheets
are generated (y = 20) and every generated spreadsheet
is submitted to HypoGen using the same experimental
conditions (functions and parameters) as the initial run.

4. Database mining
The generated validated pharmacophore was used as
query to search the virtual chemical compound database
(NCI and MiniMaybridge) to identify new lead com-
pounds with AT1 receptor antagonist activity.

5. Conclusion
The quantitative pharmacophore models were developed
using the training set of molecules with the help of
HypoGen module implemented in the Catalyst. The best
pharmacophore model provided a statistically significant
correlation and well-estimated AT1 activities for the test
set compounds. Pharmacophore models generated for
AT1 antagonists in this study highlight the structural
requirements for antagonistic activity. This study also
helped in the identification of five structurally diverse
AT1 receptor antagonists.

Additional material

Additional file 1: Pharmacophoric hypotheses generated with
training set of molecules using the HypoGen algorithm. The file
contains the details of the generated pharmacophore models using two
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series of structurally diverse compounds with AT1 receptor antagonist
activity alongwith their statistical fitness on the basis of cost difference
values, correlation coefficients (r), and rms deviations.

Additional file 2: Pharmacophoric features and corresponding
weights, tolerances, and 3D coordinates of best model. The file
contains the details of the features retrieved (hydrogen-bond acceptor,
hydrophobic aliphatic, hydrophobic, and ring aromatic) and the
tolerance and weight fit to the features of the training set compounds.

Additional file 3: Actual versus estimated activity and the selected
chemical features of the final pharmacophoric model for training
set of compounds. The file contains the comparison of the estimated
and actual activity along with feature mapping status for training set of
compounds.

Additional file 4: Actual versus estimated activity and the selected
chemical features of the final pharmacophoric model for internal
test set of compounds. The file contains the comparison of the
estimated and actual activity along with feature mapping status for
internal test set of compounds.

Additional file 5: Actual versus estimated activity and the selected
chemical features of the final pharmacophoric model for external
test set of compounds. The file contains the comparison of the
estimated and actual activity along with feature mapping status for
external test set of compounds.

Additional file 6: Chemical structures of various N2-aryltriazolinone
biphenylsulfonamides with their experimental IC50 values for the
AT1 receptor subtype. The file contains the structural and activity
details of the series of the compound used in present study.
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