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Abstract

Background: Fluorine-18 fluoroethoxybenzovesamicol (['®FIFEOBV) is a radioligand for the selective imaging of the
vesicular acetylcholine transporter with positron emission tomography (PET). The current study demonstrates that
pathological cortical cholinergic deafferentation can be quantified in vivo with ['®FIFEOBV PET, yielding analogous

results to postmortem histological techniques.

Animal PET

Methods: Fifteen male rats (3 months old) underwent a cerebral infusion of 192 IgG-saporin at the level of the
nucleus basalis magnocellularis. They were scanned using ["8FIFEOBV PET, then sacrificed, and their brain tissues
collected for immunostaining and quantification of cholinergic denervation using optical density (OD).

Results: For both PET binding and postmortem OD, the highest losses were found in the cortical areas, with the
highest reductions in the orbitofrontal, sensorimotor, and cingulate cortices. In addition, OD quantification in the
affected areas accurately predicts ['®FJFEOBV uptake in the same regions when regressed linearly.

Conclusions: These findings support ['®FIFEOBV as a reliable imaging agent for eventual use in human
neurodegenerative conditions in which cholinergic losses are an important aspect.

Keywords: Acetylcholine imaging; Vesicular acetylcholine transporter; Nucleus basalis of Meynert; Immunolesion;

Background

The nucleus basalis of Meynert (NBM), located in the
basal forebrain, is the origin of particularly dense cholin-
ergic fibers, projecting to the whole cortical mantle [1].
This basalocortical pathway is known to be involved in
alertness and cognitive functions [2]. Moreover, this in-
nervation is severely affected in Alzheimer’s Disease
(AD) [3], and its density correlates with symptom sever-
ity better than other pathophysiological features such as
density of amyloid plaques or neurofibrillary tangles [4],
which show a ceiling effect very early as the illness still
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evolve in severity [5]. In this respect, an efficient in vivo
method to quantify cholinergic innervations would be an
asset to track the changes of the disease, even in later
stages.

Brain imaging methods validated for quantitative
evaluation of the central cholinergic systems in vivo
are still scarce. Positron emission tomography (PET)
imaging agents have been produced for this purpose.
They either target the degradation enzyme acetyl-
cholinesterase (AChE), acetylcholine receptors, or the
vesicular acetylcholine transporter (VAChT). While the
former two types of markers have also been success-
fully used to detect alterations in the AD brain [6,7],
VACKHT as a target offers the additional advantage of being
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present exclusively on the presynaptic cholinergic neurons
[8], allowing for more specificity in imaging measures.
This has led to the development of many vesamicol de-
rivative radiomarkers [9] which can be used with PET im-
aging. Vesamicol binds to the VACHT at the so-called
vesamicol receptor site, which is non-competitive with
acetylcholine binding [10]. It is therefore not affected by
changes in endogenous acetylcholine levels or by medica-
tion affecting the concentration of the transmitter. This
represents a major advantage over other approaches for
the purpose of visualizing cholinergic terminals.

Fluorine-18 fluoroethoxybenzovesamicol ([*®F]FEOBV)
is a vesamicol derivative that has been successfully used
in both rodents and primates to estimate brain VAChT
distribution [11,12]. Its first human use has been de-
scribed recently for the purpose of depicting its kinetic
profile [13]. Its capacity to detect brain cholinergic de-
pletion has also been shown recently in rats [14], al-
though no postmortem confirmation was provided in
this study. We aim here to verify the concordance be-
tween the in vivo usage of [*®F]FEOBYV with PET and the
postmortem measurement of cholinergic innervation
using immunocytochemistry. We hypothesized that ['°F]
FEOBV PET measures would correlate well with postmor-
tem cholinergic markers, both in terms of localization and
magnitude.

Methods

Animals

All the procedures described here were performed in ac-
cordance with the Canadian Council on Animal Care
guidelines and were approved by the research ethic
boards of UQAM and McGill University. Fifteen adult
male Long-Evans rats (3 months old, 250 to 300 g) were
used for this study. All rats were housed under standard
conditions in a 12-h/12-h light/darkness cycle, with ad
libitum access to water and food. Each of them under-
went a stereotaxic microsurgery aiming at selectively
lesioning the NBM cholinergic neurons. PET imaging
with ["®F]JFEOBV was performed 2 weeks later, and
animals were sacrificed the same day for ex vivo
immunocytochemistry.

NBM immunolesioning

Selective lesions of the NBM cholinergic neurons
were performed with a unilateral (left hemisphere)
intraparenchymal injection of the immunotoxin 192
IgG-saporin [15]. Rats were first anesthetized using
an induction chamber (isoflurane 3% to 5%, oxygen
0.8 to 1.5 L/min) and placed in a stereotaxic frame for ro-
dents, where anesthesia was maintained (isoflurane 2% to
3%, oxygen 0.4 to 0.8 L/min) via a facemask mounted on
the upper incisor bar. A dose of 0.2 to 0.25 pg of the
immunotoxin 192 IgG-saporin (lot 64-124, Advanced
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Targeting Systems, San Diego, CA, USA) was infused with
a microsyringe in the left hemisphere, at the NBM level.
The stereotaxic coordinates for the NBM were the follow-
ing: 1 mm posterior to the bregma, 2.8 mm lateral to the
midline, and 7.6 mm ventral to the cranial surface [16].
No further experimentations were performed on the ani-
mals for 2 weeks following surgery to allow full recovery.

PET acquisition and analyses

On each scanning day, ['**FJFEOBV was synthesized using
a modified method [17] originally described by Mulholland
[18]. A levo enantiomerically pure precursor (ABX GmbH,
Radeberg, Germany) was used, labeled with [**F] using
a SCINTOMICS (Lindach, Germany) hotbox module,
resulting in (-)-[*®F]FEOBYV, which is the only enantio-
mer showing high affinity for VACKT [11].

All rats were scanned using a CTI Concorde R4
microPET for small animals (CTI, Siemens, Munich,
Germany). Each PET session consisted of a 10-min trans-
mission, followed by a 60-min emission scan. PET scans
were conducted under light anesthesia (isoflurane 2%,
oxygen 0.5 L/min) delivered by a nose cone. Temperature,
heart rate, and blood pressure were monitored throughout
the procedure using a BIOPAC (Goleta, CA, USA) system.
After the animal was placed in the scanner, with the brain
positioned at the center of the field of view, the transmis-
sion scan was obtained using a rotating [*’Co] point
source. Emission scans were initiated immediately after
the transmission scan with a bolus injection of 11.1 to
19.7 MBq (SA = 42.51 to 241.48 TBq/mmol) of [**F]
FEOBV administered in the tail vein. List mode data
was histogrammed into 27 sequential time frames of in-
creasing duration (8 frames x 30 s, 6 frames x 1 min, 5
frames x 2 min, 8 frames x 5 min) over 60 min. Images
were reconstructed using a maximum a posteriori algo-
rithm, normalized, and corrected for scatter, dead time,
and decay.

Imaging analysis was conducted using minctools (www.
bic.mni.mcgill.ca/ServicesSoftware). Time-averaged tissue
radioactivity images were manually co-registered to a
standard rat histological template [19] using seven degrees
of freedom (rigid body transformation plus one scaling
constant). The image outcome measure distribution vol-
ume ratio (DVR) was estimated using a reference tissue-
based graphical method for reversible ligands [20]. The
cerebellar cortex served as a reference region due to its
negligible amounts of cholinergic markers, as revealed by
histological studies [21,22]. ['**FJFEOBV DVR was esti-
mated for every dynamic scan. To estimate cerebral blood
flow distribution, relative delivery (R;) parametric maps
were generated using a simplified reference tissue model
[23]. The resulting DVR and R; images were convolved
using a Gaussian kernel (FWHM = 1.2 mm).
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Immunocytochemistry and optical density

Following PET acquisition, rats were deeply anesthetized
and sacrificed through intraperitoneal injection of keta-
mine (65 mg/kg), xylazine (13 mg/kg), and acepromazine
(1.5 mg/kg) in sterile normal saline and were then
transcardially perfused with phosphate-buffered saline
(PBS) followed by approximately 300 mL of fixative (4%
paraformaldehyde in 0.1 M phosphate buffer). The
brains were postfixed for 24 h in this solution and
stored in sucrose solution (30% in 0.1 M PBS) and 72 h
at 4°C before being cut on a freezing microtome. Coronal
5-um-thick sections were serially cut from the prefrontal
cortex to the cerebellum.

One out of every eight sections was processed for
ChAT immunocytochemistry, using a mouse monoclo-
nal antibody raised against whole, purified rat brain
ChAT-17. This antibody displays a very high affinity (3 x
1,011 L/M) for ChAT and was used according to a stan-
dardized protocol [24]. The free-floating sections were
rinsed (3 x 5 min), incubated for 2 h in a blocking solu-
tion of PBS containing 2% normal horse serum (NHS;
Vector Labs, Peterborough, UK) and 0.2% Triton X-100
(Fisher Scientific, Denver, CO, USA), and incubated
overnight at room temperature in the same solution
containing 2 pg/mL of monoclonal anti-ChAT antibody
for the ChAT-immunostained sections. After being
rinsed in PBS (3 x 5 min), sections were incubated for
2 h in biotinylated horse anti-mouse, secondary antibody
(cat. #BA-2000, Vector) diluted 1/200 in PBS containing
2% NHS, rinsed in PBS (3 x 5 min), and processed with
avitidin-biotin complex procedure (ABC Kit, Vectastain
Elite, Vector) for 1 h. The immunoperoxidase labeling was
revealed for 3.5 min with a diaminobenzidine kit (Vector).
After being rinsed in PBS (3 x 5 min), sections were rinsed
in ddH20O for 5 min, transferred to PBS, mounted onto
glass slides, air-dried, counterstained with cresyl violet,
dehydrated in ethanol, cleared in xylene, and coverslipped
with Permount (Fisher Scientific).

The cortical cholinergic denervation was estimated by
optical density (OD), obtained from digitized images of
the ChAT-immunostained sections. This work was car-
ried out using Image-J (NIH Research Services Branch,
Bethesda, MD, USA). OD values ranged on an arbitrary
scale from 0 (lowest density) to 3 (highest density). The
two brain regions of interest (ROI) used to measure OD
were the whole cortical mantle between the prefrontal
(+4.20 mm from the bregma) and parietal (-1.44 mm
from the bregma) areas, and a subregion of this territory
defined as the anterior primary sensorimotor cortex
(top half of the dorsolateral convexity, between +4.20
and +0.24 mm from the bregma), where [*8F]JFEOBV
DVR was found to be particularly reduced following
the immunotoxic lesions. OD values were normalized
using values in the corpus callosum, where almost no
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ChAT-positive reaction products could be identified.
Mean OD in each ROI was computed separately for the
left and right hemispheres.

Statistical analyses

In order to quantify lesion-induced ["*F]JFEOBV binding
losses and cerebral blood flow changes, a voxel-level
analysis was done to compare the DVR and the R; of
the 15 lesioned rats to those of 14 previously studied
normal rats [14]. After cluster-level multiple comparison
correction [25], clusters of adjusted t values above 2.05
(p < 0.05) were considered significant. In each ROI, the
mean OD of the lesioned and non-lesioned hemispheres
was compared using a repeated measure ¢ test. A linear
regression was performed between the mean OD and
PET ['*FJFEOBV DVR at the voxel level, with a thresh-
old of r > 0.53 (p < 0.05).

Results and discussion

Results

As seen in Figure 1, ["*F]JFEOBV DVR of lesioned rats
was lower by 22% in comparison with those of normal
controls, for a cluster corresponding to the ventral area
of the left frontal cortex (34.56 mm?>, peak £(27) = 5.45,
p = 0.0001). A second, smaller significant cluster can be
found in the equivalent area of the right hemisphere
(21.17 mm?, peak #(27) = 3.2, p = 0.0004), which corre-
sponds to a 19% difference from normal controls. R,
parametric maps of lesioned rats did not differ signifi-
cantly from those of non-lesioned animals.

OD analyses revealed higher values in the right hemi-
sphere (non-lesioned) with an average of 17% (#(14) =
4.98, p = 0.0002). Interhemispheric differences ranged
from 0% to 40%, with higher differences being located
predominantly in the frontal cortical areas, such as the
cingulate, sensorimotor, and orbital cortices. Smaller
losses were observed in the insular cortex, while no
interhemispheric difference can be detected in the par-
ietal regions (see Figures 2 and 3).

Regression analysis between the ['**FJFEOBV DVR at
the voxel level (see Figure 4) and the OD values for the
whole cortex of the left hemisphere reveals a correlation
cluster in the dorsal area of the left frontal cortex (26.35
mm?, peak r(12) = 81%, p = 0.0004). Conversely, OD
values of the whole right hemisphere correlate signifi-
cantly with a symmetrical (although smaller) cluster of
[**F]JFEOBV DVR in the right frontal cortex (17.28mm?>,
peak r(12) = 73%, p = 0.003). When using only OD
values restricted to the same cortical area as the [**F]
FEOBV DVR cluster in the dorsal left frontal cortex (see
Figure 5), a significant correlation of 75% (p = 0.002)
was still present.
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Figure 1 ['®FIFEOBV binding. Lesioned rats have lower DVR in clusters located in the ventral-frontal cortex of the left (34.56 mm?) and right
(21.17 mm?) hemispheres. Compared to controls, the DVR of the lesioned rats are lower by 22% in the left cluster and 19% in the right one.

Discussion

This study aimed to demonstrate the accuracy of [**F]
FEOBV PET as an in vivo measure of cholinergic terminal
density. We have shown here that cortical deafferentation
resulting from upstream NBM immunolesioning can be
estimated by [*®F]JFEOBV PET with DVR measurements,
yielding comparable results to those obtained by

postmortem quantification. Indeed, the magnitude of the
lesions observed with immunocytochemistry and OD in
the cingulate, motor, and orbital cortices closely followed
what was observed with the ["*F]JFEOBV parametric map.
The only exception was the small OD decreases in the
endopiriform and insular areas, which were not detected
in vivo. This may either indicate a lower sensitivity of [**F]

Figure 2 Anterior cingulate immunocytochemistry. Example of cortical ChAT immunocytochemistry after unilateral NBM lesion. A very clear
difference can be seen between the two hemispheres in the anterior cingulate area (AP = +3.7 mm from the bregma).
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Figure 3 Anteroposterior immunocytochemistry trend. Examples of ChAT immunocytochemistry at different anteroposterior locations. The
lesioned hemisphere (left column) has a distinct loss of ChAT availability when compared with the control hemisphere (right column). Note the
anteroposterior trend: highest interhemispheric differences can be observed in anterior regions such as (A) the cingulate and motor cortices
(AP = +2.5 mm from the bregma), (B) with smaller differences in frontal sensorimotor regions (AP = +0.2 mm from the bregma), and (C) no
quantifiable effect in the parietal cortex (AP = —=2.6 mm from the bregma).
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Figure 4 ['®FIFEOBV correlation maps. Left cortex optical density of ChAT-immunostained slices correlates with ['®FIFEOBV DVR in a cluster
located in the left frontal cortex. Right cortex optical density correlates with a cluster in the right frontal cortex.
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Figure 5 Localized ['®FIFEOBV correlation. There is a 75%
correlation between the average ['®FIFEOBV DVR in the left cortical
cluster and the optical density of the corresponding region

in immunohistochemistry.

FEOBV to detect modest changes or a spillover effect
from the adjacent caudate-putamen, which is the region
with the highest [*®F]JFEOBV retention in the brain. Par-
ietal and more posterior associative cortices appear to
have been spared from immunolesioning as neither
methods showed interhemispheric difference. This is likely
an effect of the injection site, combined with a relatively
small dose of 192 IgG-saporin, preventing the spread of
damage to the posterior cholinergic efferents.

Although the basal forebrain nuclei contribute to the
cholinergic innervation of cortical microvessels in the
rat [26], the cholinergic lesions performed here do not
appear to have had an appreciable impact on relative
tracer delivery. This is consistent with the observation
that a targeted unilateral 192 IgG-saporin infusion does
not induce interhemispheric differences in blood flow
[27]. Indeed, studies showing a relationship with cholin-
ergic basal forebrain lesions and vessel innervation or
cortical blood flow have typically used broader, less spe-
cific lesioning approaches such as intracerebroventricu-
lar 192 IgG-saporin infusion [28] or ibotenic acid [26].
Future studies using [®0] water or butanol could serve
to quantify the exact impact of such cholinergic lesions
on blood flow.

The relative range of ChAT OD value (0.82 to 1.58)
observed here was wider than that of [**FJFEOBV DVR
(1.17 to 1.48). Interestingly, human AD studies also con-
sistently report observed VAChT losses to be propor-
tional, yet of lesser magnitude than ChAT decreases; this
discrepancy remains poorly understood [29-31]. In terms
of effect size, losses in the lesioned (left) cortical hemi-
sphere are similarly measured with both methods. A
17% interhemispheric difference (4 = 1.12) was mea-
sured with immunochemistry and OD compared to a
22% difference (d = 2.61) in ["*FJFEOBV DVR values. It
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should be stressed however, that OD is a measure
known to suffer from a high level of background noise
when compared to other more sophisticated methods of
immunochemistry quantification, such as stereology. In
addition, the contralateral hemisphere had to be used as
a baseline measure, which, as shown with [**F]JFEOBV
imaging, is subject to denervation after unilateral NBM
lesioning [14]. As such, it would be expected that a more
sensitive method, such as a stereological approach, with
tissue acquired from non-lesioned rats as a control
measure, would have yielded a larger effect size than that
of in vivo VAChT imaging.

Regression maps between local OD values and ['*F]
FEOBV binding reveal a strong association in dorsal
areas. The same areas are also strongly associated where
DVR variance is highest, which explains why no specific
group differences were found between control and le-
sioned rats. In contrast, lesions in the ventral regions
have much less variability, which results in clear group
effects, but no correlation with OD measurements.

It is also important to note that as a vesamicol deriva-
tive, ["*FJFEOBV binds to VAChT, while ChAT was used
as a postmortem biomarker. Beyond the validation of
[*®F]FEOBV PET as a marker for quantifying cholinergic
survival, the concordance of the two measures further
supports the notion that ChAT and VAChT are region-
ally co-expressed and highly correlated, both under nor-
mal and pathological conditions [32].

Conclusions

In summary, it has been shown to date that [“*FJFEOBV
has desirable kinetic properties for imaging, selective re-
tention in cholinergic-rich brain areas [11,12]. A first
in vivo human study has also shown a similar distribu-
tion in the brain using reference region approaches, with
the highest binding in the striatal nuclei and the lowest
in the occipital cortex [13]. [*®F]JFEOBV has also been
successfully used to differentiate and quantify choliner-
gic losses associated with normal aging from those
resulting from a pathological process, both in rodent
models [14] and in human postmortem tissues from
subjects with AD [33]. Here, we add the demonstration
that in vivo measures of cholinergic innervation density
with [*®*F]JFEOBV strongly correlate with an accepted
postmortem measurement of a closely linked parameter.
This constitutes strong evidence that [*®F]FEOBV is in-
deed an accurate biomarker of cholinergic axon termi-
nals, with great potential for future clinical uses. In the
field of AD research, a specific biomarker of cholinergic
synapses could serve as an objective measure of intermedi-
ary to late stages disease progression, when clinical symp-
toms are just beginning to manifest. While radiomarkers of
cholinergic receptors have already shown promising results
toward this end [6], VACKT tracers such as [**F]JFEOBV
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could likely further this goal, thanks to their exclusively
presynaptic binding. Other possible applications in-
clude several more neurodegenerative disorders such as
Parkinson’s disease [34], progressive supranuclear palsy
[35], as well as multiple system atrophy [36], in which
cholinergic systems are known to be affected.
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