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The power of FDG-PET to detect treatment
effects is increased by glucose correction using a
Michaelis constant
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Abstract

Background: We recently showed improved between-subject variability in our [18F]fluorodeoxyglucose positron
emission tomography (FDG-PET) experiments using a Michaelis-Menten transport model to calculate the metabolic
tumor glucose uptake rate extrapolated to the hypothetical condition of glucose saturation: MRmax

gluc ¼ Ki �
KM þ glc½ �ð Þ, where Ki is the image-derived FDG uptake rate constant, KM is the half-saturation Michaelis constant,
and [glc] is the blood glucose concentration. Compared to measurements of Ki alone, or calculations of the
scan-time metabolic glucose uptake rate (MRgluc = Ki * [glc]) or the glucose-normalized uptake rate (MRgluc = Ki*[glc]/
(100 mg/dL), we suggested that MRmax

gluc could offer increased statistical power in treatment studies; here, we
confirm this in theory and practice.

Methods: We compared Ki, MRgluc (both with and without glucose normalization), and MRmax
gluc as FDG-PET

measures of treatment-induced changes in tumor glucose uptake independent of any systemic changes in blood
glucose caused either by natural variation or by side effects of drug action. Data from three xenograft models with
independent evidence of altered tumor cell glucose uptake were studied and generalized with statistical
simulations and mathematical derivations. To obtain representative simulation parameters, we studied the
distributions of Ki from FDG-PET scans and blood [glucose] values in 66 cohorts of mice (665 individual mice).
Treatment effects were simulated by varying MRmax

gluc and back-calculating the mean Ki under the Michaelis-Menten
model with KM= 130 mg/dL. This was repeated to represent cases of low, average, and high variability in Ki (at a
given glucose level) observed among the 66 PET cohorts.

Results: There was excellent agreement between derivations, simulations, and experiments. Even modestly
different (20%) blood glucose levels caused Ki and especially MRgluc to become unreliable through false positive
results while MRmax

gluc remained unbiased. The greatest benefit occurred when Ki measurements (at a given glucose
level) had low variability. Even when the power benefit was negligible, the use of MRmax

gluc carried no statistical
penalty. Congruent with theory and simulations, MRmax

gluc showed in our experiments an average 21% statistical
power improvement with respect to MRgluc and 10% with respect to Ki (approximately 20% savings in sample size).
The results were robust in the face of imprecise blood glucose measurements and KM values.

Conclusions: When evaluating the direct effects of treatment on tumor tissue with FDG-PET, employing a
Michaelis-Menten glucose correction factor gives the most statistically powerful results. The well-known alternative
‘correction’, multiplying Ki by blood glucose (or normalized blood glucose), appears to be counter-productive in this
setting and should be avoided.
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Table 1 Treatment studies, cell lines, and drug
substances

Study Cell line Tissue Type Drug substance Mice

A A375 Melanoma GDC-0879 (BRAF) 18

B A2058 Melanoma G-00033054 (MEK) 18

C HCT116 Colorectal GDC-0973 (MEK) 24

TOTAL 60
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Background
Quantitative [18F]fluorodeoxyglucose positron emission
tomography (FDG-PET) is increasingly relied upon to
measure pharmacodynamic responses in controlled
trials, bringing a greater need for accurate and reprodu-
cible scans to minimize the number of subjects needed
for a successful trial. Glucose levels have long been
recognized as a factor modulating FDG uptake [1-8]; but
even so, there has been some debate regarding how best
to compensate for changing glucose levels when com-
paring scans. Some investigators have eschewed glucose
corrections altogether after observing increased rather
than decreased statistical noise in ‘corrected’ PET mea-
surements, attributing this, perhaps, to error in the glu-
cose measurement itself [9,10]. However, avoiding
glucose correction poses a conundrum of interpretation
when a treatment may induce a systematic change in
blood glucose levels. Such treatments are known, and
FDG-PET may be used to assess their impact; they in-
clude some potentially important new drugs still under
clinical investigation, such as certain Akt and PI3K inhi-
bitors [11,12].
The seminal work of Sokoloff et al. [13] described the

Michaelis-Menten kinetics of glucose and tracer trans-
port and showed how the radioactive tracer uptake rate
constant (Ki) could be used to estimate the tissue glu-
cose uptake in physiological units, i.e., the metabolic rate
of glucose (MRgluc =Ki*[glc]/LC μmol glucose per 100 g
tissue per min). Under steady-state conditions, the half-
saturation Michaelis constants (KM) and the maximal
velocities (Vmax) for tracer and glucose are factored into
the lumped constant (LC) which summarizes the differ-
ential properties of tracer and glucose. Scans obtained
under different blood glucose levels will almost inevit-
ably indicate different metabolic rates of glucose, and
one must decide how to detect changes in tumor glucose
metabolism that are not merely due to changes in blood
glucose.
We recently demonstrated [14] that in untreated ani-

mals, both tumor Ki values and MRgluc values were,
on the average, strongly correlated with blood glucose,
showing that an appropriate form of blood glucose
correction might facilitate the identification of treat-
ment effects under changing glucose conditions. We
sought to understand this glucose effect so that an ap-
propriate compensating correction could be made,
expecting that this would improve the power to detect
treatment effects.
The Michaelis-Menten relationship between glucose

concentration and transport [13-19] was used as the
basis of the proposed correction. With it, we showed
that, on the average, there was less variability in un-
treated animals when estimating the hypothetical
glucose-saturated limit to the tumor metabolic rate of
glucose MRmax
gluc

� �
rather than the tracer rate constant

(Ki) or the actual scan-time metabolic rate of glucose
(MRgluc). MRmax

gluc is the asymptotic limit to the plot of

uptake rate versus [glucose]. KM is a half-saturation
Michaelis constant such that MRmax

gluc ¼ Ki � KM þ glc½ �ð Þ.
To demonstrate a true drug-induced treatment

effect on glucose uptake in the tumor tissue independ-
ent of any changes in blood glucose (see Table 1 and
Additional files 1 and Additional file 2), we selected
dynamic FDG-PET scans from 60 mice treated with
inhibitors of the cell-signaling MEK and RAF tyrosine
kinases [20,21]. These have previously been reported
as modulating FDG-PET in preclinical and clinical set-
tings [22-24], and we have observed drug-induced
reductions in FDG uptake both in solid tumors and in
cell culture. A plausible mechanism for this reduction
was demonstrated through GLUT-1 immunofluores-
cence. We analyzed data before and after 7 days of
treatment, a compromise between early read-out and
being certain that the treatment had had time to take
effect.
Because limited experimental studies alone were inad-

equate to explore with any certainty the power relation-
ships in (relatively noisy) FDG-PET data, we have
supplemented these experiments with statistical simula-
tions and with analytical derivations that are presented
in Additional file 3.
Methods
The experimental setting
Our laboratory experiments employed dynamic FDG-
PET to measure the tumor uptake rate constant for
FDG, Ki, as a function of tumor treatment with tyrosine
kinase inhibitor drugs. The experiments contained two
or more groups of animals: one control group adminis-
tered vehicle alone, and at least one treatment group
administered an active drug in the same dosing vehicle.
We analyzed data before and after 7 days of treatment,
expecting that there would be no difference between the
groups before treatment and that some treatment effect
would be evident after 7 days. We compared Ki with two
alternative PET metrics that account for blood glucose
in some way, MRgluc and MRmax

gluc , to study the relative



Table 2 Animal models and number of mice

Model Cell line/strain Number
of cohorts

Number
of mice

Control Treatment Control Treated

1 BT474 in SCID
Nude Beige

2 2 22 22

2 HCT116 in Nu/Nu 5 8 54 86

3 PC3 in Nu/Nu 2 2 24 24

4 FaDu in CB17 SCID 1 1 10 10

5 H292 in CB17 SCID 1 1 10 10

6 H596 in huHGF
transgenic

1 3 11 33

7 537-Mel in Nu/Nu 2 4 17 31

8 A2058 in Nu/Nu 4 10 39 99

9 A375 in Nu/Nu 4 7 35 64

10 Colo205 in Nu/Nu 1 1 12 12

11 H2122 in Nu/Nu 1 3 10 30

Subtotal 24 42 244 421

Total 66 665
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merits of each metric at detecting a true tumor treat-
ment effect as seen in the two-sample two-sided t-test.
This is also the scenario the simulations (below) and
power calculations (Additional file 3) are designed to
represent.

False positives
We considered that a true treatment effect altering tumor
glucose uptake was one based on a physiological change
in the tumor tissue per se. Thus, for our purposes,
changes in tumor glucose uptake caused merely by altera-
tions in blood glucose were not true treatment effects but
fall into our definition of false positive results.

Laboratory experiments
Animal handling and imaging
Experimental details were as described previously
[14,25]. All animals were fasted overnight with access
to water ad libitum. Mice were induced and maintained
under light anesthesia using isoflurane in air (GDC-
0879 study) or sevoflurane in air (G00033054 and
GDC-0973 studies). Body temperature was maintained
at 37°C with warm air flows while the eyes were pro-
tected from dehydration with ophthalmic ointment. All
studies were conducted under the approval of Genente-
ch's AAALAC-accredited Institutional Animal Care and
Use Committee. All animals underwent 30-min dy-
namic FDG-PET scans with X-ray computed tomog-
raphy (CT)-based attenuation correction just prior to
starting their treatment regimen. FDG doses were
infused via the lateral tail vein over a 1-min period in a
volume of 100 μL.

Blood glucose measurements
At every scan, blood glucose measurements were taken
twice: once approximately 5 min before and once shortly
after the PET/CT scan approximately 35 min later. The
glucose value used in subsequent calculations is the
mean of the pre- and post-scan measurements. Data
were collected with the commercially available Contour
glucometer (Bayer Healthcare, Tarrytown, NY, USA)
using blood freshly obtained by pricking the saphenous
vein. Test-retest reproducibility measurements using this
instrument in our hands showed a coefficient of vari-
ation of 3.7% [14].

Prior use of the experimental data
The 665 mice in 66 studies (Table 2) used here to inform
the simulation parameters are mostly the same as those
585 mice described in our analysis of variability [14],
refined slightly by adding in data from newly available
cohorts of A375, HCT116, and MEL-537 mice and re-
moving a small number of animals for which post-
treatment scans were unavailable (H596, A2058).
Tumor treatment models with established drug effects on
tumor glucose uptake
Table 1 describes the subset of studies from Table 2 in
which there was additional non-imaging evidence of a
true treatment effect on tumor glucose uptake independ-
ent of blood glucose levels. Athymic nude mice were
implanted in the right flank with a Matrigel/Hanks
Balanced Salts medium containing 10 million melanoma
(A375, A2058) or 5 million colorectal (HCT116) cancer
cells. Tumors reached a group median volume of at least
250 mm3 prior to beginning the study. The blood glu-
cose and FDG-PET data (Ki, MRgluc, MRmax

gluc ) are pre-

sented for these studies in Additional file 1. Cell culture
experiments were used to show direct drug effects on
FDG uptake, and immunofluorescence was used to show
an apparent loss of GLUT-1 at the cell membrane both
in cells and tumor tissue (see Additional file 2 for
descriptions of and results for those experiments).
Statistical power in experimental data: p-values as a
function of sample size
Two-sample two-sided t-test p-values were calculated in
these three true treatment studies: A, B, and C described
in Table 1. This was repeated using, MRmax

gluc , MRgluc, and

Ki. We examined the p-values at baseline, where the null
hypothesis should be accepted, and on treatment at day
7, where the null hypothesis should indeed be rejected
based on our knowledge of drug action on tumor cell
and tissue glucose handling (Additional file 2).
A preliminary analysis confirmed that our A375

(n= 9), A2058 (n= 9), and HCT116 (n= 12 per group)
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tumor studies were powered with sufficient numbers of
animals to detect large treatment effect sizes using any
FDG-PET metric: Ki, MRgluc, or MRmax

gluc . To examine

how studies with less power might perform, we under-
took the simulations described below and supplemented
those with a meta-analysis of smaller groups obtained by
sampling within our experimental data. We considered
the full cohort of animals prepared for a given study to
be the ‘universe’ of animals from which the smaller
groups were drawn randomly using sampling without re-
placement. We calculated results (presented in Figure 1)
for every possible combination of individuals as long as
the number of combinations totaled less than 4,000;
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Figure 1 Experimental statistical power at day 7 post-dose. Three pan
Student's t-test results from treatment comparisons of control and treatmen
metrics. (A) HCT116 colorectal cancer in Nu/Nu mice. (B) A2058 melanoma
Results were calculated for the full group size of n animals and for all poss
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dashed line indicates a significance level of 0.05. Every boxplot includes a b
shows the interquartile range (25% to 75%), and the whiskers show minim
when more combinations were possible, we randomly
sampled 4,000 cases to generate our results.

False positive rates in experimental data: relation to
sample size
Mice were randomized into nominal control and treat-
ment groups, each containing n= 6 to 12 mice (Table 2),
allowing 42 comparisons of two-sample two-sided t-tests
to be performed on FDG-PET data collected before any
treatment was administered. At this timepoint, a sta-
tistically significant result was considered to represent
a false positive result. A particular study was flagged
as having a high rate of false positives whenever the
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t-tests rejected the null hypothesis (p< 0.05) more
often than the theoretical false positive rate (α) of 5%,
measured across all the combinations of individuals
tested. Meta-analysis of progressively smaller subsets
as described above was used to assess how the false
positive error rate would behave in smaller, less
powerful, studies. This was repeated using MRmax

gluc ,

MRgluc, and Ki.
Pharmaceuticals
GDC-0879 is a B-RAF [20] selective kinase inhibitor
[26,27] that has been demonstrated to be effective
against cancers carrying the V600 mutation [28]. MEK is
one of the three enzymes of the mitogen-activated pro-
tein kinase (MAPK) cascade involved with RAS/RAF sig-
naling [21]. G00033054 and GDC-0973 are potent and
selective MEK inhibitors that have been efficacious in
treating KRAS and RAF mutant cells [29].
All drug substances were dosed daily in 100 μL of ex-

cipient. GDC-0879, GDC-0973, and G00033054 were
dosed for 7 days at 100 mg/kg, 10 mg/kg, and 25 mg/kg,
respectively. All animals were dosed through oral gavage
(per os). Control groups were subjected to the same regi-
men but received no active drug in their dosing solution.
Derivations, statistics, and simulations
We studied the properties of the two-sample two-sided
t-test comparing sample means of Ki and MRmax

gluc be-

tween control and treatment groups, respectively, in
analytical derivations (presented as Additional file 3) and
in simulations which are described below. Data were
simulated assuming either no treatment effect or assum-
ing a treatment effect of 10% to 50% change in the
glucose-saturated limit to the tumor glucose uptake rate,
MRmax

gluc , specified in each simulation. As a function of

the involved parameters, our study evaluated the test
statistics under both the null and alternative hypotheses
by estimation of false positives (including significant test
results caused merely by changes in blood glucose) and
the power to detect true differences in the tumor glu-
cose uptake rate limit. Simulations were run in the stat-
istical programming language R [30].
We assumed that the relationship between the FDG

rate constant Ki and glucose [glc] followed the
Michaelis-Menten (MM) form [14-19] and that obser-
vations of the rate constant were corrupted by noise.
That is, the observed rate constant was given by
Ki ¼ MRmax

gluc = KM þ glc½ �ð Þ þ E , where E is the zero-mean

Gaussian with variance σ2E , here denoted as E � N 0;σ2E
� �

.

Let �KC
i ;

�KT
i represent the sample average FDG uptake

rates across n observations in the control and treatment

groups, respectively, and let �MRmax;C
gluc and �MRmax;T

gluc be
the sample averages of the quantity Ki * (KM + [glc]) in
the two groups. Under these assumptions, we compared

the statistical properties of the t-test comparing �KC
i and

�KT
i with the t-test comparing �MRmax;C

gluc and �MRmax;T
gluc .

The analytical derivation of the power functions re-
lating to Ki and MRmax

gluc follows standard develop-

ments based on the Gaussian distribution [31] and is
presented for the interested reader in Additional file 3.
To illustrate the validity of the derivation and to de-
lineate when MRmax

gluc provides significantly improved

statistical properties vis-à-vis Ki, we simulated obser-
vations from the joint process (Ki, [glc]) as follows.

Given the parameters MRmax
gluc ;KM; μg ; σ

2
g ; σ

2
E

n o
, a single

draw of (Ki, [glc]) was obtained by first sampling

glc½ � � N μg; σ
2
g

� �
and E � N 0;σ2E

� �
, and then by evaluat-

ing Ki ¼ MRmax
gluc = KM þ glc½ �ð Þ þ E . For each simulation

iteration, the preceding was repeated n times each in
the control and treatment groups, respectively, and two-
sided t-tests were used to test for equality of means at
α= 0.05 level of significance. A total of 4,000 simulation
iterations were used in each setting.
To get representative simulations, we chose parameter

values based on output from fitting the MM model to
FDG-PET data from each of the 66 (as-yet-untreated)
experimental cohorts of mice described in Table 2. For
these studies, with the half-rate Michaelis constant set at
KM=130 mg/dL [14], the scatter plot in Figure 2 shows
estimates of MRmax

gluc versus σE. For MRmax
gluc , the sample

mean and standard deviation were 47.9 and 12.7, re-
spectively (range = 31.0 to 92.0), and for σE, they were
0.048 and 0.018, respectively (range = 0.022 to 0.113).
Based on these values, the first simulation setting (‘S1’,
noted on the face of Figure 2) represents an ‘average’
case with MRmax

gluc and σE set at their sample mean values

of 48 and 0.048. The second (‘S2’) and third (‘S3’) set-
tings (likewise noted on the face of Figure 2) represent
cases with strong and weak signal-to-noise ratios, where
MRmax

gluc and σE are set to (55, 0.028) and (38, 0.057), re-

spectively. In each simulation, glucose was sampled
according to [glc] ~N(90, 252), the approximate marginal
distribution of glucose across the sample data, and KM

remained fixed at 130 mg/dL.
For simulations under the null hypothesis, the max-

imal uptake rate MRmax
gluc was set the same in the control

and treatment groups, and we evaluated the effect on
the false positive rate (i.e., concluding that there is a
treatment effect when in fact there is none) caused
merely by a change in mean blood glucose. Mean blood
glucose changes of 10%, 20%, and 30% were assessed.
Simulations under the alternative hypothesis compared

the power of the t-tests to detect treatment effects (δ)
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corresponding to an approximate 20% to 30% reduction
in the tumor glucose uptake rate limit MRmax

gluc while

keeping the glucose distribution the same. Sample sizes
were chosen between n = 6 and n= 12.
The robustness of MRmax

gluc to errors in [glucose] and

KM was also investigated by simulations. For errors in
the measurement of blood glucose, we replaced the
quantity Ki (KM+ [glc]) by Ki (KM+ [glc]*), where
[glc]* = [glc] +N(0, 42). That is, the Ki values were gener-
ated using the correct (uncorrupted) glucose values [glc],
while MRmax

gluc was estimated using observed (corrupted)

glucose [glc]*. A similar process of substitution was used
with KM, using scenarios (KM=100 mg/dL, KM*=130 mg/
dL) and (KM=130 mg/dL, KM*=100 mg/dL).
Table 3 False positive error rates (%)

Glucose bias −30% −20% −10% 0% 10% 20% 30%

Ki 25.7 13.1 6.5 4.8 6.5 12.5 18.4

MRmax
gluc 5.0 4.9 5.4 4.9 4.9 5.0 4.5

MRgluc 41.8 18.2 8.6 5.1 6.8 14.2 23.6
Results and discussion
Results
Statistical and blood glucose-induced false-positive error
rates
In the absence of any glucose bias between the control
and treatment groups, the t-tests based on Ki, MRmax

gluc ,

and MRgluc all have simulated false positive rates which
are consistent with the nominal statistical type I false
positive error rate of α= 0.05. However, as seen in
Table 3, for the first simulation setting with n= 12
observations per group, only the test based on MRmax
gluc

preserves the correct false positive error rate in the pres-
ence of a glucose bias, while the tests based on Ki and
MRgluc both perform increasingly poorly as the magni-
tude of the bias grows. The increase in the false positive
rate can be understood by noting that any glucose bias
induces a shift in Ki that is false with regard to effects
intrinsic to the tumor. Specifically, under the Michaelis-
Menten model, a shift in mean glucose between the
control and treatment groups by δg units translates into

an approximate (first-order) �MRmax
gluc =ðKM þ μgÞ2 � δg

change in the mean level of Ki (see Additional file 3).
For instance, in the first simulation setting S1, a 30%
average increase in mean glucose from μg = 90 in the
control to 117 mg/dL in the treatment group induces a
false, average change in Ki of −0.0268 per second or ap-
proximately −11.0%. Substituting for δKi in the analytical
power equation (see Equation 1 in Additional file 3)
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yields an estimated false positive error rate of 19.3%, in
close agreement with the simulated value of 18.4% (see
Table 3). The same strong effect on the false positive
error rate due to a glucose shift was observed for the
second and the third simulation settings, S2 and S3
(results not shown).
The error rates are expressed as percentages for a two-

sided t-test at level α= 0.05 based on Ki;MRmax
gluc , and

MRgluc as a function of glucose bias. Glucose bias is
defined as the percent change in mean glucose between
the control and treatment groups. Here, MRmax

gluc ¼
48; σE ¼ 0:048; n ¼ 12.
As predicted by the derivations, all three metrics

(Ki, MRgluc, and MRmax
gluc ) correctly accepted the null hy-

pothesis at baseline in the 42 comparisons of the con-
trol with treatment groups in the full experimental data
(Table 2). Also as expected, false-positive results began
to appear as the data were resampled at smaller sample
sizes. At sample size n = 8, for example, only one com-
parison showed high false positive rates by Ki and
MRmax

gluc , at which point MRgluc gave false positives in 6

out of the 42 studies (14%).

Elimination of MRgluc from further consideration
Because results based on MRgluc were highly influenced
by relatively modest levels of glucose bias (Table 3),
results that we considered to be false in terms of treat-
ment response, we judged that the most suitable
Power vs. Treatment Effect

Figure 3 Power curves as a function of the treatment effect (δ). Simul
MRmax

gluc ¼ 48; σE ¼ 0:048; n ¼ 10, and in S2 (right), MRmax
gluc ¼ 55; σE ¼ 0:02

power curves for MRmax
gluc and Ki, respectively (see derivations in Additiona

The dotted cyan line shows the peak simulated improvement in power
alternative to MRmax
gluc was the (uncorrected) Ki. We

henceforth simplify the presentation of simulation
results and analytical derivations by restricting them
only to Ki and MRmax

gluc . The performance of MRgluc in

the experimental data is, however, shown alongside
Ki and MRmax

gluc (Additional file 1 and Figure 1).

Statistical power in theory and in simulation
As shown in the analytical power derivations presented
in Additional file 3, an improvement in power for
MRmax

gluc , Pm, relative to the power for Ki, Pk, occurs

whenever the coefficient of variation (CV) in Ki evalu-
ated at the mean glucose level is less than 1. That is,
with Pk, Pm the power curves for a test of means of Ki

and MRmax
gluc , respectively, then, whenever CV = σE/Ki(μg)

< 1, where Ki μg

� �
¼ MRmax

gluc = KM þ μg

� �
, we have

Pm > Pk. Moreover, through manipulation of Equations 1
and 2 in Additional file 3, we see that the difference
Pm − Pk is monotonic, increasing with decreasing CV. Fur-
ther, the difference Pm − Pk grows as σ2g increases (holding

CV constant). We now detail these facts by simulation.
Figure 3 shows the theoretical power curves Pk (blue

solid line) and Pm (black) for the first and second simu-
lation settings, S1 (left panel) and S2 (right panel). The
first case, S1, represents an average study with para-
meters MRmax

gluc and σE set at the mean levels and with

n = 10; a potential improvement of approximately 10%
Power vs. Treatment Effect

ation settings S1 and S2 are as shown in Figure 2. In S1 (left),
8; n ¼ 6. The solid blue and black lines represent the theoretical

l file 3), while the solid cyan lines show the power improvement.

for the two settings S1 and S2 at δ= 0.25 and δ= 0.18, respectively.
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occurs at a treatment effect of δ= 0.25 (cyan solid line),
with a corresponding simulated improvement of 9.8%.
The second case, S2, exemplifies a study with a particu-
larly good signal-to-noise ratio, i.e., low σE. Here, an im-
provement of approximately 29.2% occurs for δ= 0.18,
with a simulated improvement of 29.9%.
The third simulation case, S3, representing very noisy

data where MRmax
gluc ¼ 38;σE ¼ 0:057;n ¼ 10 , has a max-

imum improvement in power of 2.2%, occurring for
δ=0.55 (plot not shown). This indicates that with low
signal-to-noise ratios in the Ki measurement, there is no
meaningful improvement in power from using MRmax

gluc .

However, cases with high coefficient of variation inevitably
have low power and require either very large treatment
effects or very large sample sizes to detect a difference in
means. Indeed, for case S3, we would require n=40 for
80% power to detect a treatment effect of δ=0.25.
For the case n= 8, δ= 0.3, the left panel of Figure 4

shows the power improvement as a function of the coef-
ficient of variation across the 66 cohorts considered
(Table 2). The right panel of Figure 4 offers an alterna-
tive perspective on this power improvement, being the
sample size required to perform a well-powered study
(80% chance of correctly rejecting the null hypothesis).
An average study that requires 10 animals per group
using Ki is equivalently powered using 8 animals per
group with MRmax

gluc . In addition, the MRmax
gluc measurements

resist false positive results in the event of glucose bias.
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in Ki. The power curve for Ki is shown in black and for MRmax

gluc , in blue. The

settings S1, S2, and S3 are depicted for reference in each plot.
Congruent with the main result outlined in the deri-
vations presented in Additional file 3, the improvement
in power is strongly dependent on the coefficient of
variation in Ki, with the largest power improvement
reaching approximately 25%. Moreover, the greater the
coefficient of variation for Ki, the less we can discern
the effects due to glucose; however, as noted, no test
performs well with excessively noisy data.
Statistical power in experimental data
On the average and in agreement with the simulations,
MRmax

gluc gave greater power than Ki or MRgluc in

detecting the known direct on-tumor drug effects in
all three tumor treatment models studied (Table 1 and
Figure 1). As expected, all metrics progressively lost
power as the sample size decreased. For example, in
Figure 1A at eight mice per group, MRmax

gluc was able to

reject the null hypothesis in 93% of the 4,000 combina-
tions of control vs. treatment groups, while Ki did so in
only 52% of the sample combinations. In Figure 1B,
MRgluc completely misses the treatment effect at all sam-
ple sizes, but Ki and MRmax

gluc correctly identified it. Lastly,

in Figure 1C, looking at six mice per group, we observe
that MRmax

gluc detected a statistically significant difference

between the groups, 89% of all the sample combinations,
while MRgluc did so in only 62% of the cases. However,
caution must be exercised in drawing fully general
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conclusions from these limited and somewhat noisy ex-
perimental data alone.

Discussion
Application of MRgluc
The original intent behind the multiplication of Ki by
[glucose] was to estimate the metabolic rate of glucose
(MRgluc) in tissue under given blood glucose levels based
on rate constants derived from monitoring a radioactive
glucose-like tracer in blood and tissue [13,32]. The esti-
mation implies the assumption that MRgluc depends on
substrate concentration, i.e., [glucose] in blood. It fol-
lows that MRgluc is unsuitable for our particular task of
quantitatively compensating for changing glucose levels
when comparing scans collected under different glucose
conditions. Our results show that even seemingly small
differences in blood glucose, such as the natural varia-
tions within a group of similar individuals, are sufficient
to warrant careful attention to glucose correction when
making quantitative comparisons.

The lumped constant
Measurement of the lumped constant (LC) is not trivial,
and thus, the (ideal) per-patient or per-lesion values are
rarely measured and reported with FDG-PET treatment
studies. Instead, a common constant value of LC is ap-
plied to all scans. This approach was employed in this
study too with an assumed LC value of 1, and as previ-
ously noted [14], the chosen value of LC simply behaves
as a scaling factor common to every data point and thus
makes no difference to calculated group statistics such
as the coefficient of variation, t-test p-values, or correla-
tions with blood glucose levels. The statistical results
presented remain equally valid at all (non-zero) values
of LC.

Glucose bias and false positive test results
All three metrics performed correctly in terms of the
false positive rate in the absence of any systematic glu-
cose difference between the treatment groups. The fact
that the t-tests based on Ki and MRgluc suffer an
increased false positive error rate under a glucose shift
(Table 3) renders these tests admissible and useful only
if one is certain that a treatment can have no systematic
effect on glucose. Since blood glucose levels may vary,
we suggest that MRmax

gluc makes a more robust and useful

default metric for FDG-PET data.

Statistical power in the absence of any glucose bias
Figure 4 (left hand side) shows the simulated improve-
ment in power for a modest treatment effect of 20% and
a sample size of n= 8. As can be seen, the power im-
provement can be as large as 25% and is highly
dependent on CV. As predicted by the analytical deriva-
tions, the benefit of using MRmax

gluc is most pronounced at

low CV. Conversely, for values of CV greater than 35%,
the power benefit is negligible even though the benefit
of reduced glucose bias remains. However, for data that
is very variable (relative to the mean), larger treatment
effects or sample sizes are always required for adequate
power, a fact that is detailed in the right hand plot of
Figure 4.
Figure 4 (right hand side) shows the required sample

size for Ki and MRmax
gluc as a function of the coefficient of

variation in order for a study to have 80% power with a
treatment effect size of 30% (δ= 0.3). As expected, for
both Ki and MRmax

gluc , the required sample size is an in-

creasing function of the CV value. We see that a CV of
22% (the average in our experiments) requires a sample
size of n= 10 per group for Ki and n= 8 per group for
MRmax

gluc . To further describe the results, we can assume a

fixed sample size and consider what proportion of our
66 experimental cohorts represented adequately pow-
ered groups for a treatment study: For the sample size of
n= 8, we see that 48% were adequately powered using
MRmax

gluc , whereas only 26% were adequately powered with

Ki. For a sample size of n= 12 there are more adequately
powered groups, of course, but still a benefit to using
MRmax

gluc : 76% using MRmax
gluc and 59% using Ki. Independ-

ent of CV, the sample size savings achieved through the
use of MRmax

gluc in this simulation setting is approximately

two mice; in (relatively rare) situations where a CV as
low as 10% can be anticipated, we see that studies can
be adequately powered with only a handful of animals
per group.
Understanding this behavior has practical value in

designing appropriately powered preclinical FDG-PET
experiments and, perhaps, in permitting a futility ana-
lysis to be conducted after beginning a study with base-
line scans and before expending further significant effort
in drug dosing and repeated scanning.

Glucose ‘normalization’ and errors in the measurement of
blood glucose
Glucose sampling errors have been postulated as a
source of variability experienced [9,10] when applying
the common [glucose]/constant normalization method
[33] which is analogous to estimating MRgluc at the
population mean glucose measurement (the value of the
constant), typically given as 5 mM or 100 mg/dL.
We suggest that the problem with this normalization

scheme lies not with the glucose measurements, but
with the linear nature of the algorithm. Rather than lin-
ear scaling to the population mean glucose value,
MRmax

gluc asymptotically follows the Michaelis-Menten ex-

trapolation to a hypothetical saturating glucose level.
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Simulations showed that MRmax
gluc results were robust

even with relatively large 10% errors in the glucose mea-
surements (full results not shown). This can be intuited
by noticing that the KM term is on the order of the [glu-
cose] term, making the glucose measurement error, Eglc,
a small part of the total correction factor, KM + [glc] +
Eglc. We also note that the algebraic form of this correc-
tion factor, i.e., [glucose] + constant, appears as a solu-
tion in analytical derivations that simply start with the
very general assumption that Ki is negatively correlated
with [glucose] over a limited range of glucose values.
This is presented in Additional file 3 for the interested
reader.

Optimal group comparisons with linear regression
We note that MRmax

gluc is optimally estimated by regres-

sing Ki on the quantity 1/(KM+ [glc]) under the
Michaelis-Menten model assumptions specified, with
the noise process E following the Gaussian distribution
and with a fixed value for KM. Here, we condition on
the glucose measurements and set the intercept to
zero. Given our setup, in the regression framework,
the t-test of equality of the maximal uptake rates

MRmax;C
gluc and MRmax;T

gluc is a likelihood ratio test and the

uniformly most powerful unbiased test [34]. Moreover,
statistically speaking, the regression estimator is best
linear unbiased under non-Gaussian assumptions [35].
We also note that the variance of the regression esti-
mator and that of the sample average �MRmax

gluc are close

provided that the spread in the term (KM + [glc]) is
low relative to its mean. In our setting, since

σg= KM þ μg

� �
� 0:1, the linear regression and sample

average solutions are very close to each other, and ei-
ther may be used when testing for a treatment effect.
Thus we expect that the familiar and straightforward
use of sample means (averaging data from multiple
individuals) will be satisfactory when using MRmax

gluc in

practice, just as it is for Ki.

Conclusions
Quantitative comparisons of FDG-PET scans across
time or between animals are subject to an elevated
risk of erroneous results when they ignore blood glu-
cose levels. Multiplying PET data by blood glucose
levels or ‘normalizing’ the blood glucose to a common
reference value (100 mg/dL, for example) offers no
protection; in fact, it is frequently counterproductive.
However, by calculating the hypothetical value of the
maximum glucose uptake rate under saturating glucose
conditions, MRmax

gluc , we see reduced problems of glu-

cose bias and gain increased statistical power to detect
treatment effects. Based on the average properties
observed across 66 preclinical cohorts, the power im-
provement for MRmax

gluc was equivalent to reducing the

sample size by 20% compared to the next best option,
which was using the uncorrected Ki data.
These benefits were realized in our preclinical studies

of tyrosine kinase inhibitors by computing MRmax
gluc ¼

Ki � KM þ glc½ �ð Þ using a KM of 130 mg/dL. The analyt-
ical derivations and simulation methods described in this
work should facilitate the exploration and assessment of
our method in other settings. Because it is superior to
making no glucose correction and its benefits are easily
obtained and come with no penalty, we highly recom-
mend the use of (KM+ [glc]) rather than [glucose] or
[glucose]/(100 mg/dL) as the glucose correction factor
in quantitative FDG-PET studies.
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