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Abstract

Background: Anemia is usually not taken into account in internal radiotherapy. We investigated whether the
hemoglobin (Hb) level could have an impact on the tumor response, as observed in external beam radiotherapy (EBRT).

Methods: Absorbed doses of 25 hepatic metastatic sites in eight patients who underwent a liver selective internal
radiotherapy (SIRT) were computed by a 3D convolution of a dose deposition kernel with the *°Y time-offlight positron
emission tomography (TOF-PET) images acquired following therapy. Early tumor response was assessed by comparing a
follow-up FDG TOF-PET scan with a baseline scan. Hb level was measured on the day of the SIRT procedure.

Results: All patients displayed early tumor response increasing with the tumor-absorbed dose. Significant differences
between patients were noted, the response slope correlating with the Hb level. After applying a global fit on all
metastases using a tumor radiosensitivity modulated by a Hb enhancement factor (HEF) linearly dependent on the Hb
level, a strong correlation (R =0.96) was observed between the early response and the absorbed dose. Hb level had a

major impact on tumor response by modulating HEF by a factor 6.

Conclusions: These results prove the significant impact of Hb level on the tumor response and support the study of
methods for correcting tumor hypoxia, such as intensively performed in EBRT. The quantitative analysis of the
relationship between tumor doses and early response has the power to allow fast screening of such correction
methods in limited patient series. Internal radiotherapy could be more efficient if performed earlier in the therapy line,
when the disease- and treatment-related anemia remains limited.
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Background

The importance of anemia as a prognostic factor of pa-
tient outcome in external beam radiotherapy (EBRT) of
solid tumors has been documented in large clinical series
and thoroughly reviewed [1-8]. This impact results from
three related key points: (1) the hemoglobin (Hb) level
was shown to strongly correlate with tumor oxygenation
in numerous cancers [9], (2) substantial data show that
tumor hypoxia is involved in processes conferring a
growth advantage and the development of a more malig-
nant phenotype [10-15], and (3) hypoxic tumors are
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reported to be less sensitive to ionizing radiation since
the production of free radicals, which are responsible for
lethal DNA breaks, increases with the O, partial pressure
(pO>) [16-18].

Internal radiotherapy differs from EBRT by higher
tumor-absorbed doses delivered at a lower dose rate and
with a more heterogeneous pattern. To the best of our
knowledge, the impact of hypoxia on tumor response in
patients treated by internal radiotherapy has never been
directly addressed. Only the effect of Hb level on global
symptoms, i.e., pain or cumulative survival, was reported
in the treatment for painful osseous metastases in prostate
cancer with '®Re-hydroxyethylidene-diphosphonate and
89Sr [19,20]. The demonstration of a significant impact of
anemia on tumor response in internal radiotherapy should
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allow improvements by considering strategies under inten-
sive development in EBRT [21-26] but, as of today, totally
ignored in internal radiotherapy.

Selective internal radiation therapy (SIRT) using *°Y-
labeled microspheres is a rapidly emerging treatment of
unresectable chemorefractory primary liver tumors and
hepatic metastases mainly originating from colorectal can-
cer (CRC). Development of *°Y imaging by PET [27] after
the SIRT procedure, and recently by pinhole bremsstrahl-
ung SPECT [28], proved that tumor dosimetry is feasible
[29-31] and evidenced a promising relationship between
absorbed dose and early metabolic response [32] as already
observed using **"Tc-MAA-based dosimetry [33]. The
aim of this study is to further analyze this relationship and
to investigate whether the Hb level measured on the day
of the SIRT procedure has an impact on the early tumor
response. For this purpose, an estimate of the tumor cell
survival fraction was fitted using a tumor radiosensitivity
modulated by a hemoglobin enhancement factor (HEF).
This radiosensitivity modulation was implemented in the
similar way that was performed for the tissue oxygenation
when this parameter can be directly assessed [16-18].

Methods

Patient series

Eight patients with fludeoxyglucose (FDG)-positive hepatic
metastases (six from CRC and two from melanomas)
underwent a 45-min *°Y time-of-flight positron emission
tomography (*°Y TOF-PET) scan (Gemini TE Philips
Medical Systems, Cleveland, OH, USA) within 4 h follow-
ing the SIRT procedure. SIRT was performed according to
the standard recommendations [34] (mean activity + SD =
1.45+0.45 GBq). Two ["®FJFDG PET scans were per-
formed: a baseline (FDG-BL) scan 2.4 + 2.1 weeks (mean +
SD) before SIRT and a follow-up (FDG-FU) scan
6.8 +0.8 weeks (mean = SD) after SIRT (see Table 1). All
scans were reconstructed using the line of response recon-
struction algorithm from Philips Medical Systems (4 itera-
tions x 10 subsets). In all patients, a blood analysis
including the Hb level was performed on the day of SIRT.
All these procedures are part of the standard therapy as
routinely performed in our institution. After approval by
the local ethics committee, the metabolic change of 25
tumors before and after therapy was retrospectively
analyzed.

Delineation of volumes of interests

A total of 25 metastatic sites were identified on the
FDG-BL scan (number of sites per patient ranging from
one to eight, mean = 3.1). Since the purpose was to study
the early response to the absorbed dose (D), viable areas
of large, partly necrotic tumors were delineated using
the FDG-BL scan and were analyzed as individual sites
with their own absorbed dose, while the necrotic area
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was not incorporated in the analysis. Volumes of inter-
est (VOIs) were manually drawn on the fused FDG-BL
and *°Y-PET images. The same VOIs were used for the
evaluation of the FDG-FU scan. Some undertreated vi-
able metastatic sites, i.e., visible on the FDG-BL scan
but not well targeted by the microspheres, disclosed a
large size increase between the FDG-BL and FDG-FU
scans (see Figure 1). In this case, the size of the VOI was
then tuned accordingly in order to encompass all the
metabolic cells of the metastatic site that were visible on
the FDG-FU scan, i.e., the survival cells and the new
cells originating from the site regrowing. A VOI of about
100 ml was drawn in a region of the liver that was con-
sidered healthy on the basis of the FDG scans, CT scans,
and MRIL.

Calculation of absorbed dose

The dosimetry was obtained using a previously vali-
dated method [30]: the *°Y-PET images were 3D, con-
volved with a dose deposition kernel directly providing
the voxel-based dosimetry (in milligray per megabec-
querel). Individual tumor-absorbed dose (in gray) was
determined as the mean of the voxel-based dosimetry
in the “°Y-PET VOI times the total injected activity.

Determination of the early response
The tumor metabolic ratio at follow-up (MR) was cal-
culated as:

i
. SUVil
SUVIY,

MR — (SUVER — SUVE)) x Vol
(SUVEm — SUVIY) x Volg™

(1)

where SUV is the mean FDG standardized uptake
value, and Vol is the volume of the VOI. Assuming that
the metabolism of the tumor cells does not change too
much between the FDG-BL and FDG-FU scans, the
mean tumor SUV multiplied by the tumor volume is
related to the number of living cells in the tumor. Two
improvements were introduced in Equation 1: (1) sub-
traction of the mean liver SUV that takes into account
the fact that, due to the replacement by normal liver
cells and to the finite spatial resolution of the PET sys-
tem, the measured mean SUV of a responding tumor
may not be different than that of the liver; and (2)
multiplication by the mean liver SUV inverse ratio that
corrects, to some extent, for the variation of the patient
glycemia between the FDG-BL and FDG-FU scans and
for a possible metabolic boosting resulting from a gen-
eral inflammation of the liver and hepatic metastasis as
an effect of irradiation. Different variations of this
tumor-to-liver ratio method were already used by
others [35-37].
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Table 1 Patients' dosimetric data
Patient Type Site Hb BL time FU time MR D (Gy) Volume BL
number (g/dL) (weeks) (weeks) (ml)
1 mel. 1 10.0 -0.2 6.1 0.74 2332+52.1 11
2 1.14 1300£423 31
2 CRC 1 134 —6.2 8.1 0.1 169.9+799 58
2 4.00 6.1+82 17
3 CRC 1 1.1 -32 7.2 0.18 1722+558 127
4 CRC 1 14.8 -23 6.2 0.15 11094331 93
2 6.25 521+£185 34
3 19.52 50+£108 11
4 20.20 64+124 25
5 1.67 185+£17.0 32
6 143 84+116 37
7 333 79+76 6
8 0.10 131.0£298 10
5 CRC 1 14.3 -35 7.2 0.05 1785+35.2 34
2 175 204+6.1 6
6 CRC 1 130 -29 6.1 032 1139+219 3
2 0.34 1147 +148 3
3 0.22 1273+£248 4
4 4932 146+28 5
5 0.86 520+96 3
6 0.89 555+10.7 4
7 CRC 1 13.1 -06 6.1 132 522+106 37
2 2.08 266+6.2 36
8 mel. 1 134 -02 7.0 0.26 115.0£17.8 7
2 0.17 147.0+21.2 6

BL, baseline FDG; CRC, colorectal cancer; D, dose; FU, follow-up FDG; Hb, hemoglobin; mel., melanoma; MR, tumor metabolic ratio.

patient No. 6

FDG-BL PET (day -20) FDG-FU PET (day 43)

Figure 1 PET scans. One transverse slice of the patient No. 6 showing the metabolic sites of its large necrotic tumour that received different
absorbed dose. The FDG uptake of the metabolic sites 1,2,3,5, that were well targeted by the microspheres, decreased between the FDG-BL and
FDG-FU scans, while the metabolic site 4 not targeted by the microspheres rapidly increased in FDG uptake and in size as well, to become a new
large necrotic metastatic site. The VOI on the FDG-FU scan was increased to encompass all the FDG activity originating from the increased site 4.

90Y PET (day 0)




Walrand et al. EJNMMI Research 2012, 2:20
http://www.ejnmmires.com/content/2/1/20

Early dose-response analysis
The early dose-response relationship was fitted by
minimizing:

2
X* = Zp,m|SFy — SEwd ) (2)

where m is the index of the metastatic site in patient
p, and SF is the survival fraction, i.e., the ratio between the
number of living cells just after and before the therapy. SF
is related to the metabolic ratio measured at follow-up by:

SFp’m — e ln(Z)At[,/DTj\41ep7WI7 (3)

where At, is the delay between the FDG-FU and FDG-BL
scans, and DT is the tumor doubling time. The modeled
survival fraction is:

SFpt = e S )

where a expresses the ability of one particle to induce a
DNA double-strand break. HEF was assumed to be the
same for all metastatic sites m in patient p and related to
the Hb level (in gram per deciliter) according to:

HEF, = 1+ k(Hb, — 13). (5)

This results in a global fit of three parameters, DT
(days), a (per gray), and k (deciliter per gram), on 25
points (number of metastatic sites), where DT and «
were constrained to be positive.

HEF was introduced in Equation 4 in the similar way
that the oxygen enhancement ratio (OER) was intro-
duced for acute hypoxia [17,18]. Equation 5 was designed
to give HEF =1 for patients having a Hb level of 13 g/dL,
which is a normal value. This is an arbitrary choice; a
value other than 13 g/dL will just give other values for a
and k but will give an identical fit quality.

Results and discussion

Results

Figure 2 shows the relationship between the absorbed
doses and the response, estimated as the tumor meta-
bolic ratio at approximately 7 weeks post-therapy for all
metastatic sites. The tumor response was highly variable
between patients but, per patient, was clearly dependent
on the absorbed dose. Two patients showed a convincing
response (gray squares and brown circle), one patient
had two nonresponding tumors (cyan hexagons),
whereas the remaining patients displayed a mix of
responding and nonresponding tumors, depending on
the absorbed doses.

All tumors show a trend towards a similar prolifera-
tion rate by extrapolation of the response for D =0, ex-
cept for four metastases that clearly behave as outliers
(Figure 2, see box in the left upper corner). These four
metastases belong to two patients with a long disease
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and therapy history (2 and 4 years). It is likely that
these metastases may have acquired a phenotype
resulting in a doubling time significantly shorter than
the mean of the other metastases. The global fit is per-
formed assuming that all the metastases have the same
doubling time (DT, Equation 3); accordingly, these four
metastases were considered to be outside the applica-
tion domain of the model and were ruled out for the
global fit.

The global fit, run to estimate the biological para-
meters, was therefore performed on the 21 remaining
metastases using SigmaPlot 2000 version 6.00 (Systat
Software Inc, San Jose, CA, USA) and resulted in the fol-
lowing values (best parameter =+2.1*std error, ie., 95%
confidence interval): DT =50+8 day, a=0.018+0.003/
Gy and k=0.23+0.05 dL/g. The left axis in Figure 3
shows the tumor cell survival fraction (Equation 3) as a
function of HEF,D,,, that takes into account the Hb
level (Equation 5). The line is the survival fraction mod-
eled by Equation 4 using the parameters determined by
the global fit (R=0.96). It can be observed that a number
of tumors showed a metabolic ratio higher than one
(right axis) even though their survival fraction was lower
than one. These tumors actually showed a response that
is not sufficient to counterbalance at week 7 the re-
growth of the viable tumor cells.

=N

10-0-F

metabolic ratio at week 7 post therapy

05
02
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0-14

~ 134-F

0051 14.8-M 1.3.F 134F 13.0F
0 50 100 150 200 250
D (Gy)

Figure 2 Relationship between absorbed doses D and tumor
metabolic ratio (MR). MR for the responding tumors are lower than
1. Each color refers to each patient (black - 1, blue - 2, brown - 3, red -
4, pink - 5, green - 6, cyan - 7, and grey - 8). Open circles and hexagons
correspond to metastases from CRC, and open squares refer to
metastases from melanoma. The patient gender and the Hb level (in
gram per deciliter) on the day of the SIRT procedure are indicated at
the extremity of each fitted line. Individual patient tumors were fitted
by gf e, where gf is the growing fraction in the absence of an
absorbed dose and d'is the overall cell radiosensitivity, ie, containing
the HEF factor. The box in the upper left corner identifies outliers (see
‘Results and discussion’). The lines are the patient data individually
fitted with this single exponential.
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Figure 3 Tumors survival fraction. Relationship between absorbed dose D corrected by the HEF and the tumor cell survival fraction (left axis)
and metabolic ratio (right axis) calculated at week 7 post-therapy using the doubling time obtained by the global fit. For colors and symbols refer
to Figure 2. The line corresponds to Equation 4 with the parameters a, k and DT minimizing Equation 2, excluding the four metastases with
SF > 1, which proved their shorter DT (using the actual metastasis DT in Equation 3 should necessarily give SF < 1). These four metastases were
already considered as outliers from Figure 2. See animation of the fit in Additional file 1.

The optimal values of HEF for each patient in relation
with their Hb level are shown in Figure 4. This graphical
representation of Equation 5 indicates that the prediction
of response in individual patients, taking into account
their Hb level, is very close (R=0.94) to what would be
expected from the global fit (see Additional file 1).

2
®)
E 1 R=0-94
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o
0 . . :
8 10 12 14 16

Hb level (g/dL)

Figure 4 Optimal values of HEF for each patient in relation with
their Hb level. Relationship between the Hb level and the optimal
values of the HEF, parameter obtained by individually fitting HEF for
each patient dose-response using a and DT values determined from
the global fit. The line corresponds to Equation 5, with k obtained by
the global fit. R is the correlation coefficient obtained by making a
linear regression of these optimal HEF,,.

Discussion

This study clearly shows the impact of Hb level on
tumor response. This impact was quantitatively inter-
preted, introducing a HEF, as the effect of tumor hyp-
oxia induced by the patients' anemia (Figure 3). This is
the first time that such analysis was applied to in vivo
human data. This methodology is usually limited to
preclinical models, such as cell assays or xenograft
tumors in rodents. In preclinical models, almost all
parameters are under control, such as the tumor cell
line and time of progression. In the clinics, there is a
large heterogeneity of metastases between patients but
also within the same patient. In particular, the duration
of progression of a single lesion in a particular patient
is usually totally overlooked. This may lead to variations
in the tumor cell phenotype, with some metastases be-
coming significantly more proliferative. We initially
assessed tumor metabolic response using FDG uptake
without knowledge of any other parameters. As already
observed using morphological estimates, 50 Gy was
required to observe any response. There was a clear
trend towards a dose-response relationship, but the
correlation was weak (R=0.51). After observing the dif-
ferent response patterns between patients, we looked at
the Hb level as a possible factor accounting for this
variance. After individually fitting patient data and
highlighting the Hb level in Figure 2, it appeared obvi-
ous that some relationship did exist. We therefore ap-
plied the concept of a radiosensitivity modulation to
the data, a paradigm that is classically utilized for
in vitro data, and that, to the best of our knowledge,
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has never been applied to internal radiotherapy of
patients.

This correction factor appeared tightly related to the Hb
level and, hence, was called HEF. For Hb level ranging be-
tween 10 and 15 g/dL, the individual HEF estimate dis-
played a linear increase, reaching a ratio of 5.6 between
these two extreme Hb levels (Figure 4). This is in keeping
with the major impact of Hb level observed for EBRT in re-
current rectal cancer [38]. This is also in line with the ob-
servation of Vaupel et al. [9] showing by an invasive method
that the tumor pO, can vary by a factor 4 in breast cancer
as a function of the Hb level. Such linear relationship is
however not the rule: in uterine and cervical cancer and in
head and neck cancer, a bell-shaped relationship was
reported by Vaupel et al. [9], with a maximal pO, value
measured for Hb levels of 12.5 and 14 g/dL, respectively.
Such intraoperative pO, measurements are lacking for hep-
atic metastases from CRC.

The radiation sensitivity parameter alpha found
(0.018/Gy for a normal Hb level of 13 g/dL) is about 15
times lower than values found in cell assays [39]: 0.31/
Gy for melanoma and 0.25/Gy for CRC. However, this
is consistent with the comparison of in vivo xenograft
and in vitro data that suggests that the survival is con-
siderably higher in vivo [40]. In a retrospective analysis
of SIRT in 73 patients with hepatocellular carcinoma,
Strigari et al., using a radiobiological model of tumor
control probability (TCP) assessed in CT scan by the
RECIST criteria but without addressing anemia, found
two very low extreme bounds for the value of alpha
[41]: 0.001 and 0.005/Gy, much lower than values
reported using cell assays [42]: 0.1 and 0.4/Gy for
HepG2 and Hep3b cell lines, respectively. The factor 5
between the extreme bounds of the radiosensitivity
found by Strigari et al. is similar to the factor 5.6 that
we found between patients with extreme Hb levels.

Kato et al. [43] set up an elegant experiment that
enlightens the observations listed in both previous
paragraphs. They modeled chronic hypoxia, which is
usually the rule in patients, by culturing gastric can-
cer cells (OCUM-12 line) in successively decreasing
partial oxygen pressures (pO2). An important frac-
tion of cells died, but the survivors resulted in an
OCUM-12 line that was still able to proliferate at
13 mmHg pO2 (called OCUM-12/hypo). The fit of
the survival curves they measured shows that the
chronic 13 mmHg pO2 exposure reduced by a factor
14 the radiosensitivity @ of the OCUM-12/hypo line
as compared to that of the original OCUM-12 parent
line set in acute 13 mmHg pO2 for 24 h. For com-
parison, acute 13 mmHg pO2 in most cell lines
decreases the radiosensitivity by only a factor of
about 1.2 versus normoxic conditions ([44], Figure 3).
Lastly, the results of Vaupel et al. [9] show that, for
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a normal Hb level of 13 g/dL, the typical tumor pO2
is in fact about 13 mmHg due to the disturbed vas-
cular architecture.

In a previous study on “°Y-DOTATOC therapy in
patients with neuroendocrine tumors [45], we have
shown for the first time a good relationship between
tumor shrinkage and absorbed dose using morpho-
logical imaging. There was, however, considerable
spread in this dose-response relationship. In the current
study, the correlation is excellent (R = 0.96) and with lit-
tle spread. This can be explained by the presence of
more favorable features in the current study: (1) the
absorbed dose is directly assessed from the distribution
of the therapeutic agent, (2) the effective half-life is
assumed identical to that of the physical decay and thus
known with high accuracy, and (3) the Hb enhancement
effect was taken into consideration.

In this study, the mean absorbed dose modulated by the
Hb level proved being sufficient to correlate to the tumor
metabolic response. Using this mean absorbed dose, the cell
killing is overestimated in the regions of the VOI that
received lower dose, but is underestimated elsewhere. Both
effects tend to average. Further refinement to account for
the dose distribution in the VOI, such as using the equiva-
lent uniform dose (EUD), will also require the assess-
ment of living cell distribution in this VOI. This could be
done using the base-line FDG scan. However, due to
tumor evolution, the delay in our study between the base-
line FDG and the *°Y-microsphere scans makes a tumor
co-registration on a voxel basis between the two scans
impossible.

Conceptually, the doubling time could be assessed by
extrapolating for each patient the absorbed dose-meta-
bolic ratio relationship to the left axis (i.e., D=0), as
shown in Figure 2. However, this method is not applic-
able in view of the following: (1) the doubling time is
not only patient dependent but also metastasis
dependent (illustrated by the red and green circles),
and (2) some patients have only one tumor (brown cir-
cle) or only two metastases far away from the left axis
(gray squares), making the extrapolation impossible or
very unstable, respectively. Accordingly, a single doub-
ling time value common to all the metastasis was used
in the global fit, and the value found (50 days) is in
good agreement with CEA doubling time measured in
33 patients with hepatic CRC metastases (47 + 25 days)
[46]. Individually fitting the four outlier metastases
using Equations 3 and 4 with a=0 allows giving an
upper bound for their doubling time that was found to
be 22.5, 13.9, 13.7 and 11.2 days, respectively. In a pro-
spective clinical study, the individual metastasis doub-
ling time could be assessed by acquiring an additional
FDG scan close to the *°Y-PET scan, the FDG-BL scan
being usually performed a few weeks before the SIRT
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procedure. This procedure should also help to investi-
gate whether a lag time before regrowth starts after ir-
radiation should be introduced in Equation 3, such as
proposed in other models [47].

Our results showed that a higher Hb level is import-
ant to get an optimal tumor response in *°Y SIRT. Vari-
ous correction methods to overcome tumor hypoxia in
EBRT are under clinical investigation and intensively
reviewed [21-26]: red cell transfusion or the use of re-
combinant human erythropoietin to correct anemia,
enriched oxygen breathing or hyperbaric condition to
increase tumor oxygenation, and the use of radiosensi-
tizing drugs. Although some strategies are currently
being proposed, contradictory results still exist be-
tween clinical studies. These studies are based on the
late assessment of the disease outcome: local tumor
control using morphological measurements (e.g., CT
scan) or patient cumulative survival curves. Of course,
these clinical studies are highly demanded because they
really assess the final purpose of the therapy. However,
they require large patient series and long follow-up
period. Up to now, the quantitative analysis of the rela-
tionship between SF and absorbed dose has been widely
performed on in vitro assays. Similar studies in rodent
models allow obtaining this information on an individ-
ual tumor cell line in a small animal series. The same
paradigm applied here allows, in individual patient, as-
sessment of the effect of hypoxia on several tumors.
This may, in turn, be used to evaluate potential
optimization protocols in small patient series.

Conclusions

The current results show that absorbed dose alone is not
sufficient to predict early tumor response, but this become
feasible when introducing a simple hemoglobin enhance-
ment factor linear to the patient's Hb level. While the oxy-
gen effect is an important field of research in EBRT, these
results support the study of similar strategies to reduce
hypoxia in the framework of internal radiotherapy. The
quantitative analysis of the relationship between tumor-
absorbed doses and early response has the power to allow
fast screening of hypoxia correction methods in limited
patient series. Internal radiotherapy may be more efficient
if performed earlier in the therapy line, when anemia
related to disease progression or to treatment remains
limited.
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