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Abstract

The production of biodiesel results in a concomitant production of crude glycerol (10% w/w). Clostridium
pasteurianum can utilize glycerol as sole carbon source and converts it into 1,3-propanediol, ethanol, butanol, and
CO,. Reduced growth and productivities on crude glycerol as compared to technical grade glycerol have previously
been observed. In this study, we applied random mutagenesis mediated by ethane methyl sulfonate (EMS) to
develop a mutant strain of C. pasteurianum tolerating high concentrations of crude glycerol. At an initial crude
glycerol concentration of 25 g/l the amount of dry cell mass produced by the mutant strain was six times higher
than the amount produced by the wild type. Growth of the mutant strain was even detected at an initial crude
glycerol concentration of 105 g/I. A pH controlled reactor with in situ removal of butanol by gas-stripping was used
to evaluate the performance of the mutant strain. Utilizing stored crude glycerol, the mutant strain showed
significantly increased rates compared to the wild type. A maximum glycerol utilization rate of 7.59 g/I/h was
observed along with productivities of 1.80 g/I/h and 1.21 g/I/h of butanol and 1,3-PDO, respectively. These rates are
higher than what previously has been published for C. pasteurianum growing on technical grade glycerol in fed
batch reactors. In addition, high yields of the main products (butanol and 1,3-PDO) were detected and these two
products were efficiently separated in two steams using gas-stripping.
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Introduction

Limited availability of fossil resources and increasing
global impact from the release of fossil fuel-derived CO,
has increased the development of biological production
of renewable alternatives. Biodiesel production from
plant lipids is considered a renewable alternative to min-
eral oil-derived diesel (Demirbas 2007). The increasing
market for biodiesel has substantially altered the cost
and availability of glycerol released from transesterifica-
tion of fatty acids from lipids. Without purification, this
glycerol (crude glycerol), is considered a waste (Johnson
and Taconi 2007; Dobson et al. 2012) and it is, therefore,
important that new and sustainable solutions for
utilization of the crude glycerol are developed (Pyle et al.
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2008; Yazdani and Gonzalez 2007; Willke and Vorlop
2008).

The major microbial conversion route of glycerol leads
to the production of 1,3-propanediol (1,3-PDO)
(Pagliaro et al. 2007). Currently, 1,3-PDO is used as a
diol component in the plastic poly-trimethylene tereph-
thalate (PTT), which is comparable to nylon (Willke and
Vorlop 2008). PTT is mainly used for carpet and textile
fiber production (DuPont™ Sorona® 2011). The organ-
isms best known for producing 1,3-PDO are Clostridium
butyricum and Klebsiella pneumoniae, which both can
achieve high yields and productivities (Biebl et al. 1999;
Zeng et al. 1994).

Since the 1,3-PDO pathway does not lead to ATP pro-
duction, other pathways are needed for the generation of
energy. The formation of acetate and/or butyrate leads
to ATP production but is also associated with the gener-
ation of reducing equivalents, which are regenerated by
the 1,3-PDO pathway (Rossi et al. 2012; Zeng 1996).
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The most commonly used strategy for 1,3-PDO produc-
tion is fed-batch fermentation, because it combines high
product concentrations with a low excess of glycerol in
the fermentation broth, which both are critical for the
downstream processing (Zeng and Biebl 2002). However,
accumulation of by-products such as acetate, butyrate, or
ethanol can cause inhibition of the organism (Biebl 1991).

Butanol is an important bulk chemical for the synthe-
sis of a variety of chemical products and an efficient bio-
fuel with properties clearly superior to ethanol such as
lower enthalpy of vaporization, lower solubility of water,
less corrosiveness, and a much higher energy density
(Diirre 2008).

The production of butanol and 1,3-PDO from bio-
diesel derived glycerol will not only constitute a sustain-
able utilization of waste glycerol for fuel production, but
also a means to produce two chemicals, which can be
used in the chemical industry.

The most studied organism for biological production
of butanol is C. acetobutylicum. However, C. acetobutyli-
cum cannot grow solely on glycerol as it cannot
re-oxidize the excess NADH generated in the cellular
glycerol catabolism. (Girbal et al. 1995; Gonzalez-Pajuelo
et al. 2005)

In contrast to C. butyricum which produces 1,3-PDO
along with the formation of butyrate and acetate, C.
pasteurianum produces butanol, 1,3-PDO, and ethanol
as main products. Fermentation of glycerol by C. pas-
teurianum was firstly described by Nakas et al. (1983)
in an attempt to obtain a marketable product from
photosynthetically produced glycerol from halophilic
algae.

Only few publications have dealt with optimization of
glycerol fermentation by C. pasteurianum (Biebl 2001;
Dabrock et al. 1992). Recently, a study demonstrating
the possibility of utilizing crude glycerol in fermentative
butanol production has been published (Taconi et al.
2009). However, growth and productivity were signifi-
cantly lower compared to results obtained from fermen-
tation of pure glycerol. In order to achieve a high
productivity, upstream purification has been successfully
applied (Venkataramanan et al. 2012; Jensen et al. 2012).
Another approach is to develop strains capable of coping
with the toxicity of the crude glycerol. To construct/
develop such an organism a directed or a random ap-
proach can be used. Even though directed strain im-
provement by systems metabolic engineering may be
necessary as reported by (Lee et al. 2005) and Lee et al.
(2008) the lack of a complete genome sequence and ad-
equate tools limits the application on C. pasteurianum.

In this study we have, therefore, chosen to develop a
strain of C. pasteurianum with elevated tolerance to-
wards to crude glycerol derived from the biodiesel pro-
duction by use of chemical mutagenesis and selection.
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Materials and methods

Bacterial strain

The strain C. pasteurianum (DMSZ 525) was purchased
from the German Collection of Microorganism and Cell
Cultures (DSMZ), Gottingen, Germany.

Medium and conditions

The minimal medium used for both reactor and 10 ml
batch fermentations was described by Jensen et al.
(2012). When solid media were used, 15 g/l agar was
added to the media prior to autoclavation. All cultures
were incubated anaerobically at 37°C at pH 6.0 under a
gas phase of N»/CO, (80:20). The carbon source was ei-
ther purified (technical grade) glycerol (Sigma-Aldrich,
St. Louis, Missouri, USA) or biodiesel derived crude gly-
cerol (Meroco, Leopoldov, Slovakia). The crude glycerol
was derived from 100% rape seed oil and was specified
to contain 800-850 g/l glycerol, less than 1 g/l methanol,
55 g/l NaCl and 2.5% MONG (matter organic non gly-
cerol) by the manufacturer. All amounts of crude gly-
cerol presented are based on measured concentrations.

Chemical mutagenesis and evolutionary adaption

A fresh C. pasteurianum culture (50 or 100uL) was pla-
ted on petri dishes containing solid minimal medium
supplemented with 50 g/l and 70 g/l crude glycerol. A
drop (approximately 7 ul) of ethane methyl sulfonate
(EMS) was placed in the middle of the plates. The plates
were incubated at 37°C for three days in an anaerobic jar
together with a humid anaerocult® A (Merck, Darm-
stadt, Germany). An inoculated plate (without EMS) was
incubated as a control in the jar.

After incubation, single colonies were picked from the
edge of the clearing zones caused by EMS. The selected
colonies were streaked on plates with similar or higher
glycerol concentration without EMS. When growth was
detected, the colonies were repeatedly streaked on plates
with similar or higher glycerol concentration to increase
the tolerance towards the crude glycerol. The crude gly-
cerol concentration in the medium was; 50, 60, 70, 80,
90, 100, and 110 g/1.

Colonies able to grow on 110 g/l crude glycerol plates
were inoculated in liquid minimal medium supplemen-
ted with 25 g/l crude glycerol. The liquid culture was
used as inoculums for the toxicity test.

Treatment of the crude glycerol

Glycerol was stored at room temperature for 10 months
as previously described (Jensen et al. 2012. Approxi-
mately 0.05 g of activated stone carbon 0.4 - 0.85 mm
per 10 ml of medium (Gert Strand, Malmo, Sweden)
was added prior to autoclavation (Jensen et al. 2012).
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Toxicity test

To assess the inhibition of the glycerol, toxicity tests were
performed in batch experiments. A series of vials were
prepared with different concentrations of glycerol ranging
from 10 to 200 g/l. The vials were inoculated with 0.2 ml
of an overnight culture. After 20 hours of incubation,
growth was evaluated based upon the amount of dry cell
mass. The dry cell mass was determined spectrophoto-
metrically after establishing a linear correlation between
the dry cell mass and cell suspension absorbance at
595 nm. All tests were conducted in at least duplicates.

Reactor fermentation
The reactor fermentation experiments were carried out
as described by Jensen et al. (2012) in 500 ml glass reac-
tors at 37°C. The active volume was 400 ml and the in-
oculation volume was 10%. pH was maintained at 6.0 by
addition of 1 M KOH. Mixing was performed by mag-
netic stirring. For inm situ removal of solvent, gas-
stripping was applied, circulating the produced gas by
means of a peristaltic pump at a flow rate of approxi-
mately 600 ml/min.

For stoichiometric calculations the composition of cell
biomass was assumed to be CH; g5 N 230045 (Hild et al.
2003).

HPLC analysis

Liquid samples were analyzed for glycerol, lactate, acet-
ate, 1,3-PDO, butyrate, ethanol, acetone, and butanol
using high-pressure liquid chromatography. The HPLC
system was equipped with a Rezex ROA-Organic Acid
column (Phenomenex, Torrance, California, USA) and a
RI 101 refractive index detector (Shodex, Kawasaki,
Japan). The mobile phase was 4.5 mM H,SO,, pumped
at a flow-rate of 0.6 mL/min. Prior to the analysis the
samples were centrifuged at 12,000 x g for 10 minutes.
The supernatant was separated and diluted to a suitable
concentration range before it was loaded on the HPLC.

Results

Strain development

After incubation in the presence of EMS for 3 days, col-
onies appeared only on the plates with the lowest initial
crude glycerol concentration (50 g/l). A clearing zone
was present on the plates around the droplet of EMS. In
total, 37 colonies from the edge of the clearing zone
were picked and streaked on plates with 50 g/l glycerol
serving as a strain library. Repeated transfers of the col-
onies to plates with increasingly higher glycerol concen-
trations enhanced the tolerance to the crude glycerol
further. However, only few of the 37 colonies were able
to grow at a crude glycerol concentration of 110 g/l. The
most promising four strains were benchmarked in a tox-
icity test towards the wild type strain (Figure 1). At an
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Figure 1 Toxicity test of 4 selected mutant strains and the wild
type (WT). Incubation for 20 hours, the error bars indicate the
standard deviation. (C): Crude glycerol; (T): Technical grade glycerol.
Data of the WT grown on technical grade glycerol derived from

Jensen et al. (2012).

initial glycerol concentration of 25 g/l the amount of dry
cell mass of MNO24 was 3.5 times higher compared to
the wild type on crude glycerol, however, with a consid-
erable deviation. At the same initial glycerol concentra-
tion, MNOG6 grew better than the wild type, producing 6
times the amount of dry cell mass. Growth characteris-
tics by the mutant strains MNO3 and MNO10 were al-
most similar to the wild type. At an initial crude glycerol
concentration of 53 g/l growth by the wild type, MNOS3,
and MNO10 was almost negligible, while MNOG6 and
MNO24 were less inhibited than the wild type grown on
technical grade glycerol. At an initial glycerol concentra-
tion of 75 g/l, MNOG6 produced 16.5% dry cell mass
compared to the wild type growing on technical grade
glycerol. The amount of dry cell mass produced by
MNO24 constituted 7.7% of the amount produced by
the wild type on technical grade glycerol while the wild
type on crude glycerol only yielded 2%. At an initial gly-
cerol concentration of 105 g/I, growth of MNO6 was de-
tectable. Based on these results strain MNOG6 appeared
most tolerant to crude glycerol and was, therefore,
chosen for the subsequent experiments.

Chemical mutagenesis selecting for increased tolerance
may lead to down-regulation of the genes responsible for
the desired products (Borden and Papoutsakis 2007).
Therefore, the product concentration at different initial
glycerol concentrations was measured (Figure 2). Strain
MNOG6 exhibited the highest growth and achieved the
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highest concentration of butanol. At 25 g/l, strain MNO6
produced 2.32 g/l butanol while the wild type only pro-
duced 0.14 g/1. This demonstrates that the enhanced toler-
ance by MNOG6 was neither achieved at the expense of
butanol formation nor by product degradation.

We have previously found that growth on crude glycerol
was highly supported by storage of the glycerol combined
with supplementation of activated stone carbon (Jensen
et al. 2012). To assess growth at these conditions, strain
MNO6 was benchmarked against the wild type in a tox-
icity test (Figure 3). As expected, the amount of dry cell
mass produced by both strains on treated crude glycerol
was higher compared to the amount produced on non-
treated crude glycerol, and even higher than the amount
produced by the wild type on technical grade glycerol
(Figure 1). Compared to the wild type, MNOG6 was less
inhibited by the treated crude glycerol, as more cell mass
was produced. However, the difference between the strains
was only significant at 25 g/l (p = 0.047).

Fermentation

To assess the fermentation capabilities of MNOG6 under
pH controlled conditions, a reactor fermentation was
set up utilizing stored crude glycerol supplemented with
activated stone carbon. MNOG6 was not tested on tech-
nical grade glycerol as it was irrelevant for industrial
applications. The fermentation profile is shown in
Figure 4. During the initial 21 hours, only a slow gly-
cerol consumption was observed. After 21 hours the
consumption of glycerol increased until a maximum
rate of 7.59 g/l/h was reached after 39 hours of

incubation. In order to maintain a sufficient amount of
substrate, 25 ml glycerol (250 g/l) was added shortly
after the maximum rate had been achieved. After this,
too high amounts of butanol were produced and the
gas stripper could no longer maintain the concentration
below the toxic level. After 43.75 hours butanol con-
centration reached 12.6 g/l which arrested the metabol-
ism of MNO6. When no production occurred, the
removal rate by the gas-stripper was estimated to
0.79 g/l/h at the observed butanol concentration.
Accounting for butanol removal, the maximum butanol
productivity was calculated to 1.80 g/l/h. In the same
period 1,3-PDO productivity was 1.21 g/l/h. Although,
no butanol was produced for a considerable period, it
was not possible to reduce butanol concentration below
5 g/l with this reactor-setup. After 75 hours, gas circu-
lation was stopped and the products were quantified.
Since, the activity was unaffected by addition of glycerol
at t=39.25 h and the activity did not resume when the
butanol concentration was reduced below 6 g/l, at
which the wild type regain metabolic activity (Jensen
et al. 2012), a lack of nutrients have probably caused
the discontinuation.

A mass-balance in mol based on the measured pro-
ducts was established:

C3H803 — 0.251 CgHgOg + 0.036 C2H402
+0.018 CLHO + 0.020 C4Hg O,
+ 0.252 C4H100 + 0.559 CO,
+ 0.388 H, + 0.466 H,O
+ 0.184 cell-biomass (1)
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Figure 4 Profile of the fermentation of stored crude glycerol supplemented with activated stone carbon by MNOG6. The initial glycerol
concentration was 122 g/I, pH was maintained at 6, and the temperature was 37°C. Butanol concentration was measured in the fermentation

The strain did not produce any lactate, and only very
low amounts of acetate, ethanol, and butyrate. The car-
bon recovery was only 87%. The missing carbon could
be butanol, as accumulation of butanol in the gas collec-
tion bag was observed. Adding the gas-phase products
to the mass balance leads to a butanol yield of
0.296 mol/mol and a CO, yield of 0.687 mol/mol. The
butanol yield achieved represents 59.2% of the theoret-
ical maximum based on the stoichiometry:

2C3H303 — C4H100 + 2C02 + 2H2 + H2O (2)

The two main compounds 1,3-PDO and butanol were
produced in almost equimolar amounts with a 18% sur-
plus of butanol after the mass-balance had been
adjusted.

Discussion

Random mutagenesis is a generally an accepted and
widely used approach for increasing tolerance of a bac-
terial strain towards an unknown inhibitor. EMS and N-
methyl-N-nitro-N-nitrosoguanidine  (MNNG), which
both act by direct mutagenesis inducing base substitu-
tions or deletions, have been used with success in the
closely related C. acetobutylicum (Annous and Blaschek
1991; Elkanouni et al. 1989). Recently, Malaviya et al.
(2012) succeeded in developing an effective butanol pro-
ducing mutant strain of C. pasteurianum by the use of
MNNG. However, both Lemmel (1985) and Syed et al.
(2008) obtained C. acetobutylicum mutants with higher
tolerance and productivity using EMS and reported that
MNNG was a less effective mutagenic compound. Our
success with increased tolerance towards crude glycerol
and increased butanol productivity by EMS mutagenesis

confirmed the efficiency of EMS for development of C.
pasteurianum mutants. As the mutant strain was devel-
oped by chemical mutagenesis it will not be classified as
a Gene Modified Organism (GMO) reducing the operat-
ing costs and safety precautions necessary to run a
GMO-based production.

We have previously examined yields and fermentation
of stored crude glycerol supplemented with activated
stone carbon by C. pasteurianum wild type (Jensen et al.
2012). The fermentations by MNOG6, performed in this
study was done with the same crude glycerol as sub-
strate and under almost similar conditions, and bench-
marking of MNOG6 against data from the wild type strain
study, is therefore relevant (Table 1).

The maximum glycerol utilization rate attained by
MNO6 was 7.59 g/l/h whereas the wild type strain
reached rates of 4.08 g/l/h and 4.94 g/1/h utilizing stored
crude glycerol and technical grade glycerol, respectively.
This corresponds to an increased rate of 86% and 55%
compared to the wild type on crude and technical grade
glycerol. The production rates were similarly increased
by 33% for 1,3-PDO and 46% for butanol compared to
the wild type grown on technical grade glycerol. When
the rates achieved with MNOG6 were compared to rates
of the wild type grown on similar glycerol, maximum
1,3-PDO productivity was increased by 89% and max-
imum butanol productivity was increased by 49%.
Malaviya et al. (2012) demonstrated significantly increased
production rates in a high cell density continuous bioreac-
tor using a so-called hyper producing C. pasteurianum
mutant strain. Under batch conditions the mutant strain
had a 14% higher butanol productivity compared to the
wild type. This is lower than the increase in productivity
by MNOG6 demonstrated in this study.
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Table 1 Comparison of fermentation data obtained in this study with a related study

Technical grade glycerol
(Jensen et al. 2012)

Stored crude glycerol + activated
stone carbon (Jensen et al. 2012)

Stored crude glycerol + activated
stone carbon

Wild type Wild type MNO6

Maximum Glycerol rate 494 g/l/h 408 g/l/h 759 g/I/h
Maximum 1,3-PDO rate 0.64 g/lI/h 091 g/I/h 1.21 g/I/h
Maximum Butanol rate 1.21 g/I/h* 1.30 g/I/h 1.80 g/I/h
Butanol yield 264 mmol/mol 280 mmol/mol 252 mmol/mol
1,3-PDO yield 217 mmol/mol 169 mmol/mol 251 mmol/mol
Ethanol yield 164 mmol/mol 55 mmol/mol 18 mmol/mol
Carbon Recovery 97% 88% 87%

*The rate was based on a fermentation without gas-stripping.

In a glucose fed batch bioreactor with gas-stripping,
Ezeji et al. (2004) achieved a maximum butanol product-
ivity of 1.81 g/1/h (65% of total solvent productivity) util-
izing the well known ABE producing strain C.
beijerinckii BA101. This is similar to the maximum buta-
nol productivity achieved by MNO6. However, Ezeji
et al. reached the productivity by utilizing pure glucose
where MNOG6 utilized stored crude glycerol.

In the mass balance the carbon recovery was 87%
(Table 1). A similar carbon recovery was observed in the
fermentation by the wild type utilizing stored crude gly-
cerol supplemented with activated stone carbon
(Table 1). We assume that the resulting carbon was non-
condensed butanol in the gas-phase. Also, activated
stone carbon has been considered as an adsorbent for
butanol in downstream processing (Qureshi et al. 2005;
Groot and Luyben 1986). When fermentations were car-
ried out without activated stone carbon (on technical
grade glycerol) a higher carbon recovery was observed
(Table 1).

After adjusting the mass balance, the yield of butanol
from stored crude glycerol by MNOG6 was 0.296 mol/mol
compared to 0.264 mol/mol by the wild type utilizing
technical grade glycerol. Venkataramanan et al. (2012)
reported a butanol yield of 0.347 mol/mol by C. pasteur-
ianum utilizing purified crude glycerol and 0.322 mol/
mol when technical grade glycerol was used. Both yields
are higher than those achieved by MNOG6 and the wild
type. Low initial glycerol concentration, low utilization of
glycerol as well as other dissimilarities in growth condi-
tions in the two studies, could cause this difference.

Strain MNOG6 had a 1,3-PDO yield of 0.249 mol/mol,
which is 47% higher than the yield by the wild type
(0.169 mol/mol) grown on stored crude glycerol. Even
though the 1,3-PDO yield was lower than the theoretical
maximum of 0.720 mol/mol (Zeng 1996) MNOG6 has an
interesting potential, as 1,3-PDO is produced simultan-
eously with butanol. Productivity of 1,3-PDO in fed
batch has been reported to 0.9-3.0 g/1/h by the dedicated

1,3-PDO producer C. butyricum (Willke and Vorlop
2008; Chatzifragkou et al. 2011; Wilkens et al. 2012;
Reimann and Biebl 1996). The achieved maximum 1,3-
PDO production rate of 1.21 g/I/h by MNOG6 is compar-
able to C. butyricum.

MNOG6 produced ethanol in very small amounts
(0.018 mol/mol). Compared to the fermentation by the
wild type, the ethanol yield was reduced by 68% and
89% from stored crude glycerol and technical grade gly-
cerol, respectively. The biomass yield of MNOG6 was also
significantly reduced, constituting only 90% of the wild
type. The reduced amount of biomass diminishes the
need for ATP. By extrapolating the ATP yield from the
mass balances (both in this study and from Jensen et al.
2012 (data not shown)) it is clear that also the ATP yield
is reduced by 10% in MNOG6. The reduced ATP require-
ment/production may be causing the shift in product
pattern, as observed in this study.

In a fed-batch fermentation with MNO6 and in situ
removal of butanol, 1,3-PDO would accumulate in the
reactor, reaching high titers critical for downstream pro-
cessing. Recently, the discovery of a bacterial strain pro-
ducing both 1,3-PDO and ethanol from crude glycerol
has been published (Rossi et al. 2012). In order to reach
high 1,3-PDO titers, the concentration of the second
product, ethanol will also increase and possibly inhibit
the organism. The fermentation by MNOG6 only leads to
small amounts of ethanol but high concentrations of bu-
tanol, which is even more toxic than ethanol. However,
as butanol can be removed simultaneously by gas-strip-
ping, it is possible to achieve high 1,3-PDO titers.

In this study, we have demonstrated that our mutant
strain of C. pasteurianum can tolerate high concentra-
tions of crude glycerol, has a high glycerol utilization
rate, and high productivity of butanol and 1,3-PDO.
Based on these results and on the results on non-treated
crude glycerol, we consider MNOG6 a more robust and
more efficient strain than the wild type and, therefore,
also better suited for industrial applications.
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