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Abstract Binocular rivalry is the alternation in visual perception that can occur when
the two eyes are presented with different images. Wilson proposed a class of neuronal
network models that generalize rivalry to multiple competing patterns. The networks
are assumed to have learned several patterns, and rivalry is identified with time peri-
odic states that have periods of dominance of different patterns. Here, we show that
these networks can also support patterns that were not learned, which we call derived.
This is important because there is evidence for perception of derived patterns in the
binocular rivalry experiments of Kovacs, Papathomas, Yang, and Fehér. We construct
modified Wilson networks for these experiments and use symmetry breaking to make
predictions regarding states that a subject might perceive. Specifically, we modify the
networks to include lateral coupling, which is inspired by the known structure of the
primary visual cortex. The modified network models make expected the surprising
outcomes observed in these experiments.

Keywords Binocular rivalry - Interocular grouping - Coupled systems - Symmetry -
Hopf bifurcation
1 Introduction
Wilson [1] argues that generalizations of binocular rivalry can provide insight into

conscious brain processes and proposes a neural network model for higher level de-
cision making. Here, we demonstrate that the Wilson network model is also useful for
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Fig. 1 a Necker cube illusion
[7] and b rivalry [6]

(a)

understanding the phenomenon of binocular rivalry itself by analyzing several rivalry
experiments discussed in Kovacs, Papathomas, Yang, and Fehér [2]. Mathematical
analysis of these network structures (based on the theory of coupled cell systems
and symmetry in Golubitsky and Stewart [3-5]) leads to predictions that are directly
testable via standard psychophysics experiments.

We begin by making a distinction between two types of perceptual alternations
(Blake and Logothetis [6]): illusions due to insufficient information and rivalry due
to inconsistent information. One of the standard examples of illusion is given by the
Necker Cube shown in Fig. 1(a). There are two percepts that are commonly perceived
when viewing the Necker cube picture: one with the yellow face at the back and one
with it on top. There is not enough information in the picture to fix the percept and
this ambiguity leads to the two percepts alternating randomly.

In rivalry, the two eyes of the subject are presented with two different images such
as the ones in Fig. 1(b) [6]. Typically, the subject reports perceiving the two images
alternating in periods of dominance. There are two main types of mathematical mod-
els for rivalry (Laing et al. [8]). In the first type, rivalry is treated as a time periodic
state (perhaps with added noise), and in the second the oscillation is obtained by
noise driven jumping between stable equilibria in a bistable system (Moreno-Bote et
al. [9]).

The simplest deterministic version of the first type, studied by many authors in-
cluding [1, 10-18], assumes that there are two units a and b corresponding to the two
percepts with a system of differential equations of the form

Xy =F(Xq, Xp)
. (1
Xp=F(Xp, Xa)

where the vector X, consists of the state variables of unit a and the vector X, consists
of the state variables of unit b. The equations in (1) are those associated with the two-
node network in Fig. 2. It is further assumed that one of the variables x£ is an activity
variable and that x£ > xf implies that percept a is dominant. Similarly, percept b is
dominant if xf > xaE . In these models equilibria where X, # X, are winner-take-all
states that correspond to one percept being dominant.

States where X, = X, are called fusion states. Fusion states are typically inter-
preted as states where a subject perceives both of the images superimposed [18-20].
One might wonder why fusion states would be of interest in mathematical models,
since it seems unlikely that the two values X, and X; would be equal. However,
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Fig. 2 Two-node architecture
modeling two units

because of the symmetry in model equations such as (1), the subspace X, = X} is
flow-invariant, and fusion equilibria are structurally stable.

Periodic solutions representing rivalry are most easily found in model equations
(1) by using symmetry-breaking Hopf bifurcation from a fusion state. Note that the
symmetry in (1) is given by permuting the two units. In such systems, there are two
types of Hopf bifurcation: symmetry-preserving and symmetry-breaking. The two
types are distinguished by which subspace

VE={(Xa. Xp): Xp = Xo)} or V7™ ={(Xa. Xp) : Xp = —Xa)}

contains the critical eigenvectors at Hopf bifurcation. Symmetry implies that generi-
cally the critical eigenvectors are either in one subspace or the other [5]. Symmetry-
preserving Hopf bifurcations (with critical eigenvectors in V1) lead to periodic so-
lutions satisfying X, (t) = X,(¢), that is, to oscillation of fusion states. These states
are perhaps uninteresting from the point of view of rivalry. Symmetry-breaking Hopf
bifurcations (with critical eigenvectors in V™) lead to periodic solutions satisfying
Xp(t) = X, (t + %), where T is the period. Such solutions lead to periodic alterna-
tion between percepts a and b; that is, to rivalrous solutions.

Kovécs et al. [2] published an influential paper demonstrating that subjects can
perceive alternations between coherent images even when the components of those
images are scrambled and distributed between the two eyes (Lee and Blake [21]). The
unscrambling of component pieces to obtain a coherent percept, termed interocular
grouping, had been documented previously (Diaz-Coneja [22] and Alais et al. [23]),
and has since been reproduced using a variety of rivalry stimuli (Papathomas et al.
[24]). Of the four rivalry experiments described in [2], only the first can be under-
stood by the simple two-node network in Fig. 2. We will show that the other three
experiments can be modeled using a variant of Wilson networks for generalized ri-
valry. In their first experiment, subjects are presented the monkey and text images in
Fig. 3(a)) and they report rivalry between the two images. In their second experiment,
subjects are presented the scrambled images combining parts of the monkey’s face
and parts of the written text (see Fig. 3(b)). The subjects report that, in addition to
the expected rivalry between the original scrambled images, for part of the time they
perceive alternations between unscrambled images of monkey only and fext only such
as those in Fig. 3(a). We show that the surprising outcome of this experiment is not
surprising when formulated as a simple Wilson network.

Kovécs et al. [2] also discuss two colored dot rivalry experiments that are analo-
gous to the conventional and scrambled monkey-text experiments. In the conventional
colored dot experiment, the subjects were shown the single-color images in Fig. 4(a).
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Fig. 3 From Kovics et al. [2] ©(1996) National Academy of Sciences, USA. a Learned images in mon-
key-text rivalry experiment. b Learned images in scrambled monkey-text experiment

(a) (b)

Fig. 4 From Kovics et al. [2] ©(1996) National Academy of Sciences, USA. a Learned images in con-
ventional colored dot experiment. b Learned images in scrambled colored dot experiment

Besides reporting rivalry between the two single-color figures, the subjects unexpect-
edly report images with dots of scrambled colors, such as those in Fig. 4(b). The
corresponding result for the conventional monkey-text experiment seems highly un-
likely.

In the scrambled colored dot experiment, [2] presented the subjects with the im-
ages in Fig. 4(b). Given the results of the scrambled monkey-text experiment, it is not
surprising that subjects reported rivalry between these two scrambled color images
and also rivalry between single color images such as shown in Fig. 4(a). However,
the analogy of the scrambled colored dot experiment with the scrambled monkey-
text experiment is not quite so straightforward, since, as we will see in Sect. 2, the
proposed Wilson networks for the two experiments have different symmetries.

Tong, Meng, and Blake [25] give a simplified description of the colored dot ex-
periments of [2] by using a square array of four dots rather than a rectangular array of
24 dots. Our analysis is based on the simplified 2 x 2 versions of these experiments,
but extends to the 6 x 4 case.

The purpose of this paper is to show that all of the surprising observations made
in the four rivalry experiments reported by [2] can be understood by analyzing asso-
ciated Wilson network models for these experiments. We wish to make the following
points.
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(1) The simplest Wilson model for the conventional monkey-text experiment is the
standard two-node rivalry model in Fig. 2 and leads only to rivalry between the
whole monkey and the whole fext images.

(2) The simplest Wilson model for the scrambled monkey-text experiment leads nat-
urally to rivalry solutions between the scrambled images and also between the
reconstructed images.

(3) The modified Wilson model for the scrambled colored dot experiment also leads
naturally to rivalry solutions between both the scrambled and the reconstructed
images.

(4) The Wilson model for the conventional colored dot experiment leads naturally to
rivalry between scrambled images as well as to between the conventional images.
This is in contrast to the conventional monkey-text experiment.

We will see that our analysis also leads to possible additional rivalry states in the
colored dot experiments and these states may be thought of as predictions made by
our approach.

The remainder of the paper is organized as follows. We describe Wilson networks
in Sect. 2. Our discussion differs from [1] in two important ways. First, we observe
that patterns exist in rivalrous solutions for the Wilson networks that are not learned
patterns. We call these additional patterns derived; the derived patterns are the ones
that correspond to the unexpected results in the Kovécs et al. experiments. Second,
we introduce an additional type of coupling, lateral coupling, based on models of
hypercolumns in the primary visual cortex literature (Bressloff et al. [26]).

Deciding on the exact form of a Wilson network model for a given experiment is
not at this stage algorithmic. Moreover, there are many choices for the exact form
of the network equations once the network is fixed. If we take the strict form of the
Wilson models (where all nodes, all excitatory couplings, and all inhibitory couplings
are identical) and we assume that the associated differential equations are highly
idealized rate models (as Wilson does), then the derived patterns in the monkey-text
experiment are always unstable. However, stability is a model-dependent property of
solutions and simple changes to the network or to the model equations can lead to
stable derived patterns.

There are many ways to modify Wilson networks to address the stability issue and
we have chosen one here, namely, we have added lateral coupling to the network.
Lateral coupling will also enable us to distinguish the Wilson network models for the
two colored dot experiments by a change in network symmetry. The most important
message in this paper is the observation that Wilson networks have derived patterns
that can be classified using methods from the theory of symmetry-breaking Hopf
bifurcations and that these derived patterns appear to correspond to the surprising
perceived states found in psychophysics experiments. More discussion is needed to
arrive at an algorithmic description of which (modified) Wilson network to use when
modeling a given experiment.

Section 3 gives a brief description of equivariant Hopf bifurcation (see Golubitsky
et al. [5]) and shows how to find periodic solutions in Wilson networks modeling the
four rivalry experiments that correspond to the rivalries reported in these experiments.
Our Hopf bifurcation analysis of the colored dot experiments is based on the four-dot
version in [25] and on Hopf bifurcation in the presence of S4 symmetry (analyzed in
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(b)

Fig.5 Architecture for a Wilson network. a Inhibitory connections between nodes in an attribute column.
b Excitatory connections in a learned pattern. ¢ Excitatory lateral connections

Stewart [27]) and of D4 symmetry (as in Golubitsky et al. [5]). Note that Sy is the
group of permutations on four letters and Dy is the symmetry group of a square.

Section 4 summarizes the calculations needed to compute stability for rivalrous
solutions between both learned and derived patterns in the scrambled monkey-text
networks. In this section, we use standard rate models to compute stability and to
illustrate the effect of having lateral coupling.

We end this Introduction by emphasizing that our approach is mainly a model
independent one advocated in Golubitsky and Stewart [4]. We use network structure
and symmetry to create a menu of possible rivalrous solutions, rather than explicitly
finding these solutions in a given differential equations model, such as is typically
done in the literature [1, 10, 11, 28]. This menu is model independent. Stability, on
the other hand, is model dependent. Our discussion of stability in Sect. 4 does rely
on the choice of specific model equations; here we use the rate models introduced by
others.

2 Networks

Wilson networks [1] are assumed to have learned several patterns, and rivalry is iden-
tified with time-periodic states that have periods of dominance of different patterns.
Here, we show that these networks can also support derived patterns in addition to
learned patterns.

A pattern is defined by the choice of levels of a set of attributes. Specifically, Wil-
son networks consist of a rectangular set of nodes, arranged in columns, and two
types of coupling. The columns represent attributes of an object and the rows rep-
resent possible levels of each attribute. There are reciprocal inhibitory connections
between all nodes in each column. See Fig. 5(a). In the Wilson network a pattern
is a choice of a single level in each column. If the network has learned a particular
pattern, then there are reciprocal excitatory connections between all nodes in the pat-
tern. See Fig. 5(b). A Wilson network can learn many patterns. When it does, there
are reciprocal excitatory connections between nodes in each pattern. In our discus-
sion of rivalry, we assume that the images shown to each eye are the two learned
patterns.

Before discussing networks for the rivalry experiments in [2], we consider a vari-
ant of Wilson networks that introduces a third type of coupling. This coupling is in-
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Fig. 6 a Distinct areas in scrambled monkey-text experiment. b Schematic two-attribute two-pattern Wil-
son network for scrambled monkey-text experiment with reciprocal inhibition in attribute columns and
reciprocal excitation in learned patterns. ¢ Wilson network with reciprocal lateral excitation

spired by the hypercolumn structure of the primary visual cortex (V1). Neurons in V1
are known to be sensitive to orientations of line segments located in small regions of
the visual field. Moreover, V1 consists of hypercolumns, which are small regions of
V1 that correspond to specific regions of the visual field. Optical imaging of macaque
V1 suggests that in each hypercolumn there are neurons that are sensitive to each ori-
entation, and that neurons within a hypercolumn are all-to-all coupled (Blasdel [29]).
This coupling is usually assumed to be inhibitory. Thus, when considering V1, the
columns in the Wilson networks correspond to hypercolumns where the attributes are
the direction of a line field at a specified area in the visual field. However, V1 imag-
ing also indicates a second kind of coupling, called lateral coupling that connects
neurons in neighboring hypercolumns [26, 29]. Moreover, the neurons that are most
strongly laterally coupled are those that have the same orientation sensitivity [26, 30],
albeit at different points in the visual field. Finally, lateral coupling is usually taken
to be excitatory.

With the structure of V1 as inspiration, we define an excitatory lateral coupling in
the Wilson networks by connecting those nodes in different columns that correspond
to the same level. See Fig. 5(c).

The scrambled monkey-text experiment can be modeled by a two-level, two-
attribute Wilson network with two learned patterns. To specify the network, we con-
ceptualize the Kovacs images in Fig. 3(b) as rectangles divided into two regions: one
indicated by white and the other by blue in Fig. 6(a). The first attribute in the network
corresponds to the portion of a rectangular image in the white region and the second
attribute corresponds to the portion of that rectangular image in the blue region. In the
Kovécs experiment, the possible levels of each attribute are the portion of the monkey
image in the associated region and the portion of the fext image in that region.

This network has four nodes, where X;; represents level i of attribute j as shown
in Fig. 6(b). More specifically, X1 represents monkey in the white region in Fig. 6(a)
and X»; represents fext in the white region. Similarly, X1 represents monkey in
the blue region and X», represents text in the blue region. Thus, there are recip-
rocal inhibitory connections between nodes X; and X; and between X, and
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(a) rivalry between learned patterns  (b) rivalry between derived patterns

Fig. 7 Simulations of network in Fig. 6(c) showing stable rivalry for equations in (11), where
Gx) = lﬂﬂ(’% I=2,w=0258=15,g=1,6=0.6667.Ina, s =0and in b § = 0.5, where
§ is the strength of the lateral coupling

X2>. There are also reciprocal excitatory connections between X1 and X»> and be-
tween X»; and X1, representing the two learned patterns. In this network, the state
{xfE1 > xfl and xfz > xlEz} corresponds to the scrambled image in Fig. 3(b)(left),
whereas the state {)cf1 > xﬁ and xfz > xfz} corresponds to the scrambled im-
age in Fig. 3(b)(right). Importantly, the network also supports two derived pattern
states: {xf; > x% and x[5 > x£}, which corresponds to the monkey only image in
Fig. 3(a)(left), and {xf1 > )clE1 and xi > xfsz}, which corresponds to the fext only
image in Fig. 3(a)(right).

Note that lateral coupling changes the network in Fig. 6(b) to the one in Fig. 6(c).
Simulations of the equations associated with the network in Fig. 6(c) show stable
rivalrous solutions between both learned and derived patterns (see Fig. 7). These
simulations use the standard rate equations (11) introduced in Sect. 4.

The symmetries of the networks in Fig. 6(b) and 6(c) are the same. Hence, for this
experiment, the addition of lateral coupling does not change the expected types of
periodic solutions that can be obtained through symmetry-breaking Hopf bifurcation.
However, lateral coupling does change the symmetry of the Wilson network (and
hence the expected types of solutions) corresponding to the scrambled colored dot
experiment as shown in Fig. 9.

Tong et al. [25] suggest a simplified version of the colored dot experiments in [2],
where each eye is presented with a square symmetric pattern of four dots. So, in the
Tong version of the conventional colored dot experiment, one learned pattern has four
red dots and the other has four green dots, as shown in Fig. 8(a). To our knowledge,
this proposed rivalry experiment has not been performed.

We model this experiment by a Wilson network consisting of four attribute
columns, where each attribute refers to the position of one of the dots (upper left,
lower left, lower right, upper right) and has two levels (red and green). The eight-
node Wilson network with two learned patterns is shown in Fig. 8(b). Adding lateral
coupling to this network does not change the symmetry since the lateral coupling and
the learned pattern coupling are coincident in this model.
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\ \

0 00 Q
0 00 %
(a) left eye / right eye s -

Fig. 8 aImages in simplification of the conventional colored dot experiment in [2, 25]. b Network with
two learned patterns corresponding to the simplified experiment; symmetry group is I" =S4 X Zy(p).
UL = upper left, LL = lower left, LR = lower right, UR = upper right

LL LR
(a) left eye / right eye (b)

Fig. 9 a Images in simplification of the scrambled colored dot experiment in [2, 25]. b Network with
two learned patterns and lateral coupling corresponding to the simplified experiment; symmetry group is
=Dy x Zy(p)

The Wilson network with lateral coupling for the scrambled colored dot exper-
iment is shown in Fig. 9(b). This network is presented so that the learned pattern
couplings are in horizontal planes; that is, the red and green levels are inverted in the
LL and UR attribute columns. Note that if lateral coupling were not included then
this network would be isomorphic to Fig. 8(b), and hence have the same symmetry
groups. It would follow that we would predict the same solution types for the two
colored dot experiments, which is not what is observed.
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3 Symmetry and Hopf Bifurcation

Wilson networks have symmetry and these symmetries dictate the kinds of periodic
solutions that can be obtained through Hopf bifurcation from a fusion state. The clas-
sification of periodic solutions proceeds as follows. See [5].

(1) Determine the symmetry group I” of the network and how I" acts on phase space.

(2) Determine the irreducible representations of this action of I". (Recall that a rep-
resentation V is an invariant subspace of the action of I"; V is irreducible if the
only invariant subspaces are the trivial subspace {0} and V itself.)

(3) Classify the periodic solutions for each distinct irreducible representation by their
spatiotemporal symmetries.

Step 1 is straightforward for the networks we consider. Step 2 is most easily deter-
mined by computing the isotypic decomposition of I". An isotypic component con-
sists of the sum of all isomorphic irreducible representations. In general, step 3 is
difficult, but it has been worked out in the literature for most standard group ac-
tions. Note that if a symmetry y € I" acts trivially on an isotypic component, then
all bifurcating periodic solutions corresponding to this component will be invariant
under the symmetry. This remark enables us to identify representations that only lead
to oscillating fusion states, which are uninteresting from the rivalry point of view.
Specifically, let p be the symmetry that transposes the two nodes in each column.
A solution that is invariant under p will have activity variables equal in each column
and, therefore, be fusion states.

3.1 The Scrambled Monkey-Text Experiment Networks
The form of equations relevant to the network in Fig. 6(b) is
X11=F(X11. X21, X22)

X21 = F(Xa1, X11, X12)
) 2)
X2 =F(X12, X22, X21)

X = F(X2, X12, X11)

where in F(X,Y, Z), X is the internal state variable of the given node, Y is the
node connected to X with inhibitory coupling, and Z is the node connected to X
with excitatory learned pattern coupling. Note that for general networks X;; € R,
Howeyver, in the models we use, k = 2.

We claim that two types of non-fusion oscillation can be obtained by Hopf bi-
furcation from fusion states (X1; = X12 = X21 = X72). Our argument is based on
symmetry and utilizes the theory of Hopf bifurcation in the presence of symmetry
[5]. The symmetry group D, of this Wilson network is generated by two symmetries,
namely, the symmetry p that swaps rows and the symmetry « that swaps columns.
Specifically,

p(X11, X21, X12, X22) = (X21, X11, X22, X12)
k(X11, X21, X12, X22) = (X12, X22, X11, X21)
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An important consequence of symmetry is that at a symmetric equilibrium the Ja-
cobian of a symmetric system of differential equations, such as (2), is block diago-
nalized by the isotypic decomposition of the symmetry group acting on phase space
[5].

The isotypic decomposition for D, on R3 is given by
RR=vTTeovt-evitev " ©)
where the V9 are defined in (4).
v ={(X. X, X, X)} p=1,k=1 fusion

Vi ={X,X,-X,-X)}  p=1,k=-1 fusion

“
Vot = {(X, -X. X, —X)} p=—1,k=1 derived: unscrambled
v =|

T={X,-X,-X,X)} p=—1,k=—1 learned: scrambled

where X = (xE,xH) € RZ. Note that any point (X117, Xo1, X12, X22) € R3 that is
fixed by p satisfies X1; = X21 and X2 = X2;. Since the attribute levels of such
states are equal, these states are fusion states and are so labeled in (4). It also follows
from the theory of Hopf bifurcation with symmetry and from (4) that Eq. (2) have
four possible types of Hopf bifurcation from a fusion state X where all X;; are equal.
One type of bifurcation leads to rivalry between learned patterns, a second type leads
to rivalry between derived patterns, and as noted the remaining two types (where p
fixes all points in the isotypic component) lead to rivalry between fusion states.

3.2 The Conventional Colored Dot Network

The Wilson network in Fig. 8(b) has S4 x Z,(p) symmetry, where Sy is the permuta-
tion group of the four attribute columns and Z(p) interchanges the upper and lower
nodes in each column. The rivalry predictions from this network require using the
theory of Hopf bifurcation in the presence of S4 symmetry (Stewart [27] and Dias
and Rodrigues [31]).

Equivariant Hopf bifurcation is driven by the irreducible representations of I" =
S4 x Z>(p) on R® and there are four such distinct irreducible representations. First,
recall that S4 decomposes R* into two (absolutely) irreducible representations

Vi={(X,X.X.X): X eR?}
Vs = {(X1. X2, X3, X4) : X; € R X + X2 + X3+ X4 = 0}
It follows that the irreducible representations of I" acting on R® = R* @ R* are
VlJr ={(.,v):veV} fusion
={(,—v):veV;} Ilearned: single color )
V3 = {(v, V):vE V3} fusion
={

(v,—v):ve V3} derived: scrambled colors
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Table 1 Isotropy subgroups of
periodic solutions from
S4 x Zy(p) symmetry. We use

Pattern of oscillation X (¢)

: ap ap 4o aog .
the notation eg (t) = e(t +6T) o (01/2 arp 01/2) Figure 8(a)
where e(?) is T-periodic. 5 ag aipaip ag - 0 Lo 0
Moreover, the frequency of u is 1 (al 52 ap ap aj /2) igures 10(a) or 10(b) or 10(c)
three times the frequency of a, 5 (L ap aijz L) Fusi
2 usion
v '—3a, and the frequency of ¢ ‘a‘f)l/il /‘20[1 2‘/4 a3 ‘
is twice the frequency of a 33 (a2/4 a4 ao a|/4) Figure 11
ap az/6 a4/6 o . ..
Xy (‘13/6 asye 16 '41/2) Complicated transitions
s ( -0 ) Figure 12

ajjpaijp aij2 viy2

The decomposition (5) is the analog for the conventional colored dot network of the
decomposition (4) for the scrambled monkey-text network. Note that p acts trivially
in the plus representations and as multiplication by —1 in the minus representations.
All solutions bifurcating from a plus representation are invariant under p, and hence
are fusion states, since invariance under p implies that the entries in each attribute
column are equal.

On the other hand, all periodic solutions bifurcating from a minus representation

satisfy
ap by co do
X)) = 6
® <a1/2 bip cip2 dl/z) ©)

We use the notation ey (t) = e(t + 6T) where e(t) is T -periodic. Hopf bifurcation
based on V| leads to solutions of the form of X in Table 1, that is, to rivalry between
the two learned patterns in Fig. 8(a).

Next, we consider Hopf bifurcation based on V; . This bifurcation is driven by
Hopf bifurcation of S4 on V3, which has been analyzed in [27]. (The stability of
resulting solutions is discussed on p. 634 in [31].) Up to conjugacy, these authors
find five types X, ..., X5 of periodic solutions whose structures are listed in Ta-
ble 1. Patterns corresponding to ¥| give rivalry between the derived patterns shown
in Fig. 10(a) (note that because of symmetry, Figs. 10(b) and 10(c) are conjugate
to Fig. 10(a), and all three patterns coexist). Patterns corresponding to X3 are those
shown in Fig. 11; patterns corresponding to Xs are those shown in Fig. 12. We have
not computed the transition of patterns that are associated with X4 solutions.

We have focused on the simplified version of the conventional colored dot experi-
ment with a 2 x 2 grid of dots. However, the bifurcations using a 6 x 4 grid of dots,
as in the original experiment [2], are completely analogous. Suppose there are n dots.

o0 006 o000 00 00
(@) (b) (©

Fig. 10 Predicted percept alternations for proposed conventional colored dot experiment. Rivalry between
two red and two green dot patterns: a diagonal; b adjacent top and bottom; ¢ adjacent sides
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(a)0<t<i (b) L <t< 2 () 2L <t<3  (d) 2L <

Fig. 11 Predicted percept alternations for proposed conventional colored dot experiment. Rivalry in a
rotating wave

Fig. 12 Predicted percept
alternations for proposed . . ‘ ’

conve.ntional cplored dot
e dosofone coor o0 00
Then there will be n attribute columns with a symmetry group I" =S, X Z»(p). The
isotypic decomposition is
Vi={(X,....X): X eR?}
Vici={(X1,....X»): X; eRE X1+ + X, =0}
It follows that the irreducible representations of I" acting on R =R” @ R” are

V+ = {(v, V):IVE V1} fusion

—v):veV;} learned: single color

@ (7
={(,v):veV,_;} fusion
{(

v,—v):veV,_ 1} derived: scrambled colors

Hence, the bifurcation structure for n dots is analogous to that of 4 dots; there are two
types of bifurcation to fusion states (V:‘_l, V1+), one to rivalry between the learned
patterns (V;"), and one to bifurcation to derived patterns (V,_ ;). The actual solution
types depend on n and we will not attempt to interpret the bifurcation results of [27]
in the n dot case as we have in the four dot case.

3.3 The Scrambled Colored Dot Network

Next, we return to the Kovacs scrambled colored dot experiment where the subjects
are shown the scrambled colored images in Fig. 4(b). In this case, subjects report
perceiving rivalry between the all red dot and all green dot images in Fig. 4(a) for
nearly 50 % of the duration of the experiment. This result is difficult to explain with
a standard Wilson network. The reason is that when lateral coupling is ignored, this
experiment leads to a Wilson network with the same symmetry group as the conven-
tional Kovdcs dot experiment. It follows that rivalry between the images in Fig. 4(a)
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is one of several types of possible solutions and it is not clear why this particular
solution type should be observed for such a large percentage of the time.

If, however, we include lateral coupling we arrive at the network in Fig. 9 whose
symmetry group is I' = D4 x Z»(p). Differential equations that correspond to this
network have the form

X1 = f(X1; X2; X3, Xs, X7; X4, X5, X5)

Xy = f(X2; X1; X4, X6, Xs; X3, X6, X7)

X3 = f(X3; Xq; X1, Xs, X7; X2, X6, X7)

X4 = f(Xy4; X3; X2, X, Xs; X1, X5, X5) ©

Xs = f(Xs; X¢; X1, X3, X7; X1, X4, X5)

X6 = f(X¢: Xs; X2, X4, Xs; X2, X3, X7)

X7 = f(X7; Xs; X1, X3, Xs; X2, X3, Xg)

Xs = f(Xs; X7; X2, X4, X¢; X1, X4, X5)

where the overbar indicates terms whose order can be interchanged. The form of
(8) emphasizes the fact that there are three different types of coupling: inhibitory,
excitatory learned, and excitatory lateral.

The isotypic decomposition of R® under I" = Dy x Z,(p) now has six compo-
nents, as follows. Let

Wo={(X,X,X,X): X eR?}
Wi ={(X.-X,X,-X): X eR?}
Wy = {(X],Xz,-X],-Xz)IX],Xz GRZ}

It follows that the isotypic components of I" acting on R'® = R® @ R® are
W, ={(v,v):ve Wy} fusion
(v,v):ve W} fusion

(v,v):vE Wz} fusion

&)

Wi = |
Wi = |
Wy ={(v,—v):ve Wy} learned: scrambled color
W ={(,—v):ve W} derived: single color
W= |

(v,—v):ve Wz} derived: other scrambled colors

As in the previous examples, bifurcation with respect to W]T|r leads to fusion states.
Bifurcations with respect to W,," leads to rivalry between the learned patterns and
bifurcation with respect to W~ leads to rivalry between the single color dots, as

desired. Finally, bifurcation with respect to W, leads to scrambled color patterns
similar to (but not the same as) those obtained in the S4 x Z,(p) case. From an
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abstract point of view, the Wilson network with lateral coupling is a much more
satisfactory explanation for the existence of the single color rivalry when scrambled
dots are presented than is the Wilson network without lateral coupling.

Finally, we note that the discussion in this section generalizes to the scrambled dot
experiment with a 6 x 4 grid of colored dots, as long as the number of green dots and
the number of red dots in the scrambled learned patterns are equal, as in Fig. 4(b).

4 Stability in Scrambled Monkey-Text Networks

The classification of possible solution types, as given in Sect. 3, is model independent.
We do not need to know the particular equations in order to complete the classifica-
tion; we just need to know that the equations are I"-equivariant. Given a system of
equations, we can prove that solutions of the types that we have classified actually
exist only by showing that a Hopf bifurcation that corresponds to the appropriate
isotypic component actually occurs. See the equivariant Hopf theorem in [5]. We can
also determine whether these solutions are stable, which is model dependent; we need
to know the equations.

There are three steps in the calculation of stability. First, we need to determine that
there is a fusion equilibrium. Second, we must show that the Hopf bifurcations them-
selves can be stable. That is, we must find Hopf bifurcation points where the critical
eigenvectors of the Jacobian J at the fusion equilibium correspond to the given iso-
typic component and all other eigenvalues of J have negative real part. Third, we need
to calculate higher order terms in a center manifold reduction to check that the bifur-
cating solutions are actually stable. Alternatively, we can just simulate the equations
for parameter values near a stable Hopf point and see whether we can detect stable so-
lutions. Indeed, this was our approach for the scrambled monkey-text model in Sect. 2.

The principal conclusion is that derived pattern rivalry (between unscrambled im-
ages) can be stable in this model only if the strength of the lateral coupling is greater
than the strength of the learned pattern coupling (see Proposition 3). Note that this
cannot happen if lateral coupling is absent. We also show that learned pattern rivalry
(between scrambled images) can only be stable when the strength of the learned pat-
tern coupling is greater than the strength of the lateral coupling (see Proposition 2).

4.1 Equations for the Scrambled Monkey-Text Network

There is some leeway in choosing differential equations associated to a given net-
work. In this context, we follow Wilson and others and assume that the nodes are
neurons or groups of neurons and that the important information is captured by the
firing rate of the neurons. Thus, we follow [1] and assume that in these models each
node (i, j) in the network has a state space x;; = (xg s xifjl ), where x5 is an activ-
ity variable (representing firing rate) and xiH is a fatigue variable. Coupling between
nodes is given through a gain function G. Specifically,

8)&5:—x5+§<[,-j+w Z qu—i—cs Z xE -8 Z erj—gxi[;)
(10)

pq—ij UVH>ij rj=ij
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where — indicates an excitatory learned pattern connection, — indicates an excita-
tory lateral connection, and = indicates an inhibitory connection. Similar rate models
are often used in the rivalry literature (Wilson et al. [32, 33]). The parameters are: re-
ciprocal learned pattern excitation between nodes w > 0, reciprocal lateral excitation
8 > 0, reciprocal inhibition between nodes 8 > 0, the external signal strength I;; > 0
to nodes, the strength of reduction of the activity variable by the fatigue variable
g > 0, and the ratio of time scales ¢ < 1 on which +E and 7 evolve. Note that § =0
for the simulations in [1]. The gain function G is usually assumed to be nonnegative
and nondecreasing, and is often a sigmoid.

In this case, we assume all /;; = I and for the network in Fig. 6(c) the system (10)
reduces to:

Xy = —xﬁ +6(1+ wxfz + Sxﬁ — ,Bxfl — gxﬁ)
i} =xij — 2]

8)'65:1 = —xﬁ + Q(l + wxfz + 6sz2 - ,BXIEI — gxg)

T

.H _ E H
Xa1 =X21 — X231

(1)

EXIEZ = —xlEz + g(] + wxfl + Sxﬁ - ﬂxfz — glez)

X

“H _ E H
X2 = X2 — *12

- E E E E E H

ey = —x35 + G(I +waxyy +8xp; — xp; — gx))
- H E H
X2 =Xpp = X2
As we will see, there is an advantage of lateral coupling in the four-node model for

the scrambled monkey-text experiment. The additional coupling allows the rivalrous
solutions with respect to the derived patterns to be asymptotically stable at bifurca-
tion; these solutions are not stable if lateral coupling is excluded.

4.2 Calculation of Fusion Equilibria

The equations for a fusion equilibrium for (11) reduces to

x=G(I+w+38—B—gx) (12)

E_ H
where all X =%;;

It is convenient to define

= x. Solutions of this equation have been studied by [10, 11, 34].

p=w+d—p—-g
Then (12) can be rephrased as
g +px)—x=0 (13)

Diekman et al. (Lemma 3.1 in [34]) state that for every p thereisan / > 0 and x > 0
that satisfies (13). Thus, we can assume there is a fusion state for any choice of w, §,
B, g, €. We are particularly interested in the case when p < 0.
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Lemmal Fixw,$,pB,g,1, G6 > 0. Fix xg > 0 so that the (I — xg)p > 0. Then there
exists a gain function G(z) satisfying

1
G(xo) = ;(XO - (14)

and G'(z0) =

It follows from Lemma 1 that xq is a fusion equilibrium and that we can choose
G’ (xo) > 0 arbitrarily.
Proof of Lemma I The sigmoidal function

2a
1 + e—@b/a)x—x0)

Gx)=

satisfies G(xo) = a and G'(x9) =b. Set b = G, > 0 and a equal to the RHS of (14),
which is also positive since p and xo — I have the same sign. U

4.3 Calculation of Critical Eigenvalues

Jtt = <—1 + (w +5 -Bg —gg/)

—&

—&

—1+(— w—a—ﬁ)g/ —gg/)
(15)

—&

< 1+ (— w+8+ﬂ)g’ —gg”)

—1+ (w -8+ PG —gg/>

—&
det(JTT (1+(g+ﬂ w—8)G
(1+@E+B+w+8G
(I1+@g—B+w—208G
(

(")
()
()
det(J ™) =¢e(l+(g—B—w+8G
()
(")
()

=¢&

det(J T~

Il
o

det(J ") =¢

)

) (16)
)

)
JN=—1+w+8-8)G —¢
=—1+(—w—-8-B)7G —¢
—14+(—w+8+pBG —¢
wr(J7)=—1+w—-8+B)G —¢

tr(J ™
(I7)

tr(J T

For Hopf bifurcation to exist, we need one trace to be zero and the corresponding
determinant to be positive. For that Hopf bifurcation to be stable, we require all four
determinants to be positive and the remaining three traces to be negative.
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4.4 Stability of Learned Pattern Rivalry

Proposition 2 7o have stable Hopf bifurcation to learned pattern rivalry in (11), it
is necessary that

B>
(13)
w>4

Sufficient conditions for stable Hopf bifurcation to learned pattern rivalry are given
by (18) and

g>w—346+8
o 1 (19)
T wW—_5+8

Proof For Hopf bifurcation to learned pattern rivalry to exist, we need tr(J~~) =0,
that is,

s=—14+w-38+p8)7

It follows from (19) that & > 0. For this bifurcation to be stable we also need the other
three traces to be negative. Thus, substituting for ¢ in (17), we obtain the necessary
conditions

tr(1++) <0 B>6
tr(J+_) <0 B4+w=>0 (20)
tr(J_+) <0 w>$
Note that the necessary conditions (18) follow from directly from (20) and the second
condition in (20) follows from the first and third.
To prove the sufficiency part of the lemma, we need to verify that the determinants
are all positive. This follows from (16) if
g+B—-—w—-686>0
g+B+w+é8>0
g—B4+w—-56>0
g—B—w+46>0

2L

Note that the second inequality is always satisfied and, assuming (18), the first and
third follow from the fourth. Finally, the fourth inequality follows from (19). (]

Note that Hopf bifurcation to stable learned patterns is possible when the lateral
coupling is nonexistent; that is, § = 0.
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4.5 Stability of Derived Pattern Rivalry

Proposition 3 To have stable Hopf bifurcation to learned pattern rivalry in (11), it
is necessary that

B>w
(22)

d>w

Sufficient conditions for stable Hopf bifurcation to learned pattern rivalry are given
by (22) and

g>8—w+p
o 1 (23)
TS —w+§p

Proof For Hopf bifurcation to derived pattern rivalry, we need tr(J —+) =0, that is,
e=—14+(—w+8+p8)7

It follows from (23) that ¢ > 0. For this bifurcation to be stable, we need the other
three traces to be negative. On substituting for ¢ in (17), we obtain the necessary
conditions:

tr(J++) <0 B>w
r(JT7) <0 B+8>0 (24)
tr(J__) <0 S>w

Note that the necessary conditions (22) follow directly from (24) and the second
condition in (24) follows from the first and third.

To prove the sufficiency part of the lemma, we need to verify that the determinants
are all positive. This follows from (16) if the four conditions (21) are satisfied. Note
that the second inequality is always satisfied and, assuming (22), the first and fourth
follow from the third. Finally, the third inequality follows from (23). U

Note that Hopf bifurcation to stable derived patterns is possible only when the
strength of the lateral coupling is larger than the strength of the learned pattern cou-
pling; that is, § > w.

5 Discussion

We have shown that the surprising results in three binocular rivalry experiments de-
scribed by Kovics et al. [2] can be understood through the use of Wilson-type net-
works [1] and equivariant Hopf bifurcation theory [5], as interpreted in coupled cell
systems [3].

We would like to put our results in a broader context. We showed in Diekman et
al. [34] that rivalry between two patterns in Wilson networks collapses to the two-
node network in Fig. 2 when the patterns have no attribute levels in common. This
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Fig. 13 a Regions A-F in image rectangle of scrambled monkey-text experiment. b Network with six
attribute columns corresponding to monkey or text image in each region. All inhibitory couplings are
shown, but only “nearest neighbor” learned and lateral couplings are shown

reduction uses the notion of a quotient network discussed in [3] and proceeds by
identifying equivalent levels in different attribute columns. Let S denote the subspace
obtained in this way [34]. This subspace is flow-invariant for the dynamics; moreover,
if one uses the rate models (10) (without lateral coupling), then there are regions in
parameter space where the dynamics are attracting to S. We mention this for two
reasons. First, bifurcation in directions transverse to S yields the derived patterns
discussed in this paper. For such bifurcations to occur, S cannot be attracting and this
occurs when lateral coupling is present. Second, one can think of the reduction to S
(that is, reduction to the two-node network) as aggregating the information contained
in several different attributes into one combined attribute. We believe this is a more
general phenomenon with different levels of pattern complexity, as we now describe.

To construct a Wilson network for a given experiment, we must assume which
attributes and which levels appropriately define a pattern. For example, in the sim-
plified colored dot experiments, we assume that the attributes are the colors of the
dots at four geometric locations. On the other hand, in the scrambled monkey-text
experiment, we assume that the attributes are the kind of picture (monkey or text) in
two regions of the image rectangle (the blue and the white regions in Fig. 6(a)). One
can ask whether these attributes are the reasonable ones to describe patterns in these
experiments.

For example, suppose we assume that the attributes in the scrambled monkey-text
experiment are the type of image in the six regions labeled A-F in Fig. 13(a). Then
we are led to the 12-node network in Fig. 13(b) as a model for this experiment. Such
a decomposition is closer in spirit to the geometric decomposition in the colored
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dot experiments. It is reasonable to ask whether there is a relationship between the
networks in Figs. 6(c) and 13(b), and there is. The larger network in Fig. 13(b) has a
quotient network on the flow-invariant subspace

Fix((ACE)(BDF)) = {Xia = Xic = Xig and X;p = X;p = X;p fori = 1,2}

(see [3]) that is isomorphic to the smaller network in Fig. 6(c). Hence, the solution
types that we discussed previously for the smaller network also appear in the larger
network (which corresponds to a more refined geometry). In principle, other solu-
tion types can appear in the larger network, but there were no indications of such
solutions in the scrambled monkey-text experiment. We believe that there is a gen-
eral relationship between refined patterns (the addition of extra attribute columns in
Wilson networks) and the quotient networks from coupled cell theory [3].

There are two prevalent views about what leads to alternations during binocular
rivalry: eye-based theories postulate that the two eyes compete for dominance, while
stimulus-based theories postulate that it is coherent perceptual representations that
are in competition (Papathomas et al. [24]). Kovécs et al. [2] interpreted their results
on interocular grouping (IOG) as evidence against eye-based theories of rivalry.

Lee and Blake [21] reexamine IOG during rivalry, and argue that, whereas IOG
rules out models of rivalry in which one eye or the other is completely dominant at
any given moment, IOG can be explained by simultaneous dominance of local eye-
based regions distributed between the eyes. To demonstrate this, they performed a
series of experiments using the Kovacs monkey-text images and an eye-swap tech-
nique that exchanges rival images immediately after one becomes dominant (Blake
et al. [35]). In their analysis, [21] consider a decomposition of the monkey-text im-
ages into six regions that is very similar to the decomposition shown in Fig. 13(a).
Our mathematical construction, based on Wilson networks and an abstract notion of
quotient networks, is not meant to represent V1 or any specific brain area. However,
our results support the conclusion of [21] that global IOG (derived patterns) can be
achieved by simultaneous local eye dominance.

We end by noting that it should be possible to test our predictions of likely per-
cepts by performing the simplified colored dot experiments. We also note that illu-
sions are part of this network theory and they themselves can lead to interesting kinds
of perceptual alternations. This topic, as well as symmetry-breaking steady-state bi-
furcations that lead to various types of winner-take-all states, will be discussed in
future work.
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