
RESEARCH Open Access

Pilot proof of concept clinical trials of Stochastic
Targeted (STAR) glycemic control
Alicia Evans1, Geoffrey M Shaw2, Aaron Le Compte1, Chia-Siong Tan1, Logan Ward1, James Steel1,
Christopher G Pretty1, Leesa Pfeifer2, Sophie Penning3, Fatanah Suhaimi1, Matthew Signal1, Thomas Desaive3 and
J Geoffrey Chase1*

Abstract

Introduction: Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. STAR
(Stochastic TARgeted) is a flexible, model-based TGC approach directly accounting for intra- and inter- patient variability
with a stochastically derived maximum 5% risk of blood glucose (BG) < 4.0 mmol/L. This research assesses the safety,
efficacy, and clinical burden of a STAR TGC controller modulating both insulin and nutrition inputs in pilot trials.

Methods: Seven patients covering 660 hours. Insulin and nutrition interventions are given 1-3 hourly as chosen by the
nurse to allow them to manage workload. Interventions are calculated by using clinically validated computer models of
human metabolism and its variability in critical illness to maximize the overlap of the model-predicted (5-95th percentile)
range of BG outcomes with the 4.0-6.5 mmol/L band while ensuring a maximum 5% risk of BG < 4.0 mmol/L.
Carbohydrate intake (all sources) was selected to maximize intake up to 100% of SCCM/ACCP goal (25 kg/kcal/h).
Maximum insulin doses and dose changes were limited for safety. Measurements were made with glucometers. Results
are compared to those for the SPRINT study, which reduced mortality 25-40% for length of stay ≥3 days. Written informed
consent was obtained for all patients, and approval was granted by the NZ Upper South A Regional Ethics Committee.

Results: A total of 402 measurements were taken over 660 hours (~14/day), because nurses showed a preference
for 2-hourly measurements. Median [interquartile range, (IQR)] cohort BG was 5.9 mmol/L [5.2-6.8]. Overall, 63.2%,
75.9%, and 89.8% of measurements were in the 4.0-6.5, 4.0-7.0, and 4.0-8.0 mmol/L bands. There were no
hypoglycemic events (BG < 2.2 mmol/L), and the minimum BG was 3.5 mmol/L with 4.5% < 4.4 mmol/L. Per
patient, the median [IQR] hours of TGC was 92 h [29-113] using 53 [19-62] measurements (median, ~13/day).
Median [IQR] results: BG, 5.9 mmol/L [5.8-6.3]; carbohydrate nutrition, 6.8 g/h [5.5-8.7] (~70% goal feed median);
insulin, 2.5 U/h [0.1-5.1]. All patients achieved BG < 6.1 mmol/L. These results match or exceed SPRINT and clinical
workload is reduced more than 20%.

Conclusions: STAR TGC modulating insulin and nutrition inputs provided very tight control with minimal variability
by managing intra- and inter- patient variability. Performance and safety exceed that of SPRINT, which reduced
mortality and cost in the Christchurch ICU. The use of glucometers did not appear to impact the quality of TGC.
Finally, clinical workload was self-managed and reduced 20% compared with SPRINT.

Introduction
Stress-induced hyperglycemia often is experienced in cri-
tically ill patients with increased morbidity and mortality
[1,2] in this highly insulin resistant in this group of
patients [1-7]. Glycemic variability and thus poor control

[8] are independently associated with increased mortality
[9,10]. Tight glycemic control (TGC) can significantly
reduce the rate of negative outcomes associated with
poor control by modulating insulin and/or nutrition
administration [7,11,12], including reducing the rate and
severity of organ failure [13] and cost [14,15]. However,
safe, consistent, and effective TGC remains elusive with
several inconclusive studies [16-19]. There is little agree-
ment on the definition of desirable glycemic performance
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[20-22], particularly with regard to how TGC may affect
outcome.
The SPRINT protocol was successful at reducing organ

failure and mortality [11,13], with a patient-specific
approach that directly considered carbohydrate adminis-
tration along with insulin. It provided the tightest control
across all patients of several large studies [8,23], via a
patient-specific approach accounting for inter- and intra-
patient variability in metabolic behavior. However, the
protocol is relatively inflexible, and the clinical burden,
although acceptable, was higher than desired. In particular,
SPRINT had a fixed glycemic target of 4.0-6.1 mmol/L,
fixed measurement intervals and rules, and a fixed
approach with respect to the balance of insulin and nutri-
tion. Hence, although unique in its control of nutrition as
well as insulin, it had no ability to customize the glycemic
target, control approach, or workload to specific patients,
conditions, or responses, all of which are issues common
to most TGC protocols that can hinder uptake and com-
pliance [24-26]. Model-based approaches have been
mooted as a solution [27,28].
This paper presents the initial proof of concept pilot

clinical trial results for a model-based TGC protocol that
ameliorates or eliminates all these issues with clinically
specified glycemic targets and nurse selected measure-
ment intervals (with associated interventions). The meta-
bolic system model uses additional stochastic models
[29,30] to forecast the range of glycemic outcomes for a
given intervention, providing greater certainty over
longer measurement intervals, and the ability to identify
a clinically specified level of risk of exceeding clinically
specified levels of hypo- or hyperglycemia. Its adaptive,
patient-specific control approach is fully customizable to
local clinical standards.

Methods
Patients
Seven patients were recruited based on the need for TGC
(BG > 8.0 mmol/L) or existing treatment with SPRINT
[11], the current standard of care at Christchurch Hospi-
tal. Table 1 shows the patient cohort details. Written,
informed consent was obtained for all patients, and
approval was granted by the NZ Upper South A Regional
Ethics Committee.

Stochastic TARgeted glycemic control
The Stochastic TARgeted (STAR) TGC protocol recom-
mends insulin and nutrition interventions based on the
current patient-specific insulin sensitivity (SI(t)). Insulin
sensitivity is identified hourly for each patient using recent
BG measurements and a computerized metabolic system
model. With this value, the predicted blood glucose
response to a particular intervention can be calculated. A
stochastic model [29,30] of the potential variability in SI(t)

over the subsequent 1-3 hours is used to capture the
potential variation of (patient-specific) modeled insulin
sensitivity and thus the potential range of glycemic out-
comes to an intervention. Although the median and most
likely variation is no significant change from the previous
hour, the interquartile range (IQR) and (5th, 95th) percen-
tile variations can result in significant changes in BG for a
given insulin intervention. The stochastic models and their
use in TGC are presented in detail in references [29-32].
Figure 1 schematically shows this model and its potential
use to determine the impact of variable insulin sensitivity
on BG outcome for a given intervention.
The STAR approach explicitly targets the (5-95th) per-

centile outcomes shown in Figure 1 to best overlay a
clinically chosen target range of 4.4-6.5 mmol/L, yielding
a maximum likelihood of being in this band. The fifth
percentile is never allowed to be lower than 4.0-4.4
mmol/L, providing a risk of 5% for BG below these values
for any intervention. This level can be clinically specified
and can be different for different measurement intervals.
For every intervention, the nurses have a free choice of
measurement interval of 1, 2, or 3 hours when BG is
within 4.0-7.5 mmol/L with a forecasted risk of hypogly-
cemia within tolerance, and measured BG was not signifi-
cantly below previously forecasted values. Outside this
range, targeting and measurement interval are restricted
to 1 hour for patient safety. Table 2 shows the target to
range approach clinically specified for this study.
Specific insulin and nutrition interventions are opti-

mized using an extensively, clinically validated [33-39]
system model detailed in the Appendix (Additional
File 1). The model is used to identify current insulin sen-
sitivity (SI(t)) and to predict outcomes (Figure 1) for dif-
ferent possible interventions. The discrete insulin and
nutrition doses used and limits on allowed dosing
changes from a prior intervention are defined in Table 3,
where these limits provide robustness to assay error and
patient safety.

Table 1 Baseline clinical data for STAR pilot trials
patients

Patient Age Sex Hours Diagnosis APACHE
II

APACHE
III

Aa 61 M 92 AAA Rupture 23 117

Ba 61 M 17 AAA Rupture 23 117

C 80 M 264 Head Trauma 16 75

D 80 M 96 CABG 21 85

E 65 F 119 Pancreatic
Surgery

13 58

F 66 M 23 GI Surgery (post) 22 83

G 52 F 49 Pancreatitis 14 70

AAA = Abdominal Aortic Aneurysm; APACHE = Acute Physiology and Chronic
Health Evaluation; CABG = Coronary Artery Bypass Graft; GI = Gastro-Intestinal.
a Consecutive episodes of insulin usage in same person.
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At each measurement, the algorithm searches over all
feasible solutions within these intervention constraints.
If no feasible solution is available for a 2- to 3-hour
interval, the 5th percentile is set for a value > 4.4 mmol/L
within these limits. If more than one solution is feasible
for a given measurement interval, then the algorithm
selects that which is the same as, or closest to, the prior
intervention to minimize clinical effort (e.g., keeping the
enteral feed rate and/or insulin input the same). If both
interventions are changing, then the protocol selects the
feasible option with greatest nutrition administration, a
choice that was clinically specified.
Finally, Table 4 defines four special cases for which

measurement intervals are restricted to 1 and/or 2
hourly and interventions modified, and/or where the
interventions are modified for highly insulin resistant
patients where the limits of Table 3 are not sufficient to
reduce hyperglycemia. Each case represents a significant
risk to patient safety where insulin can be dosed exces-
sively in other protocols. Computer-based, STAR auto-
matically detects these situations and offers only the
relevant options.

Finally, it is important to note that STAR is a frame-
work, rather than a specific protocol. The STAR frame-
work is the overall stochastic approach to glycemic
control shown in Figure 1. It includes the ability to spe-
cify risk of hypoglycemia below a clinically set threshold
(Table 2), and the ability to enable multiple hourly mea-
surements based on clinically set glycemic thresholds
(Table 2). Within that framework, clinical or site-specific
constraints may be added for how control is provided
(Table 3), which is via insulin and nutrition control in
this study with insulin delivered primarily via bolus deliv-
ery, and any special cases or rules (Table 4). Hence,
STAR is a flexible framework or overall model-based
approach that could admit a multitude of control
approaches that could be quite different than the speci-
fics used here. Specifically, two uses of STAR might pro-
vide very different glycemic outcomes.

Analyses
Data are presented as median [IQR] for both cohorts
and for median values across patients. For contextual
comparison only, the same glycemic outcomes are
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Figure 1 Stochastic model (left) can be used with an identified current level of SI(t) to provide a forecast range of SI(t) values over the
next 1- to 3-hour interval. This forecast range of values can be used with a given insulin intervention and the system model of Equations (1)-
(6) to yield a range of BG outcomes of differing likelihood. Note that the stochastic model shown is for a 1-hour interval, the 2- to 3-hour
interval models are very similar but not shown here. More details are provided in previous studies [29,30].

Table 2 STAR BG target ranges and approach for BG in the 4.0-7.5 mmol/L range

Measurement
interval

BG percentile and target BG for that
measurement interval

Goal and outcome

1-hour 95th percentile is targeted equal to 6.5 mmol/L
unless 5th percentile BG < 4.0 mmol/L
ELSE: 5th percentile targeted at 4.0 mmol/L

Ensures 95% of outcome BG are in 4.0-6.5 mmol/L target range and risk of
moderate hypoglycemia BG < 4.0 mmol/L does not exceed 5%.

2-hour 5th percentile targeted at 4.4 mmol/L Ensures most likely BG values are in 4.4-6.5 mmol/L range, and a maximum risk
of 5% for BG < 4.4 mmol/L. It also accepts a potentially greater likelihood of
exceeding 6.5 mmol/L at end of interval as preferable to being lower than 4.4
mmol/L.

3-hour 5th percentile targeted at 4.4 mmol/L Ensures most likely BG values are in 4.4-6.5 mmol/L range, and a maximum risk
of 5% for BG < 4.4 mmol/L. It also accepts a potentially greater likelihood of
exceeding 6.5 mmol/L at end of interval as preferable to being lower than 4.4
mmol/L.
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shown for all 371 patients reported for SPRINT [11].
Cumulative time in the 4.0-7.0 mmol/L band over 50%
(cTIB ≥ 0.5) was associated with faster reduction in
organ failure in SPRINT [13] and also is assessed. Data
for time in band assessments was resampled between
measurements to ensure the same measurements per
day for each cohort compared, so there was no bias
from different measurement intervals. Safety from hypo-
glycemia is assessed for moderate (percent BG < 4.0
mmol/L and < 4.4 mmol/L) and severe (number with
BG < 2.2 mmol/L). Finally, measurements per day and
the number of unchanged interventions are recorded as
surrogates for clinical effort.

Results
Table 5 shows the glycemic control results for the cohort.
Table 6 shows the glycemic control results per patient.
Overall performance is similar or slightly better for
STAR versus the (contextual comparison only) SPRINT
data. Moderate hypoglycemia (BG < 4.0 mmol/L) is
under the clinically specified threshold risk of 5%, as
designed. Equally, the number of measurements per
patient was reduced ~20% for the patients studied

compared to SPRINT and the number of unchanged
interventions was similar for the cohort. However, the
per-patient results showed significant increases in
unchanged interventions (Table 6), indicating that STAR
was more dynamic for variable patients, as required
(patient C in particular), and less so for others.
Figure 2 shows the number of patients for each day

with cTIB ≥ 0.8 (band = 4.0-7.0 mmol/L, BG data
resampled hourly), where all patients achieved this level
for all days. Figures 3, 4 and 5 show the BG data, model
curve, and interventions for all seven patients; Figure 3
also shows the modeled insulin sensitivity for patient A,
which is used as input for the stochastic model (see
Figure 1) to forecast the range of possible intervention
outcomes in optimising interventions. Hence, control
was very tight.
Also of note, patient G received a constant enteral nutri-

tion rate on clinical orders. STAR managed that change
directly and, equally importantly, recognized there was no
need for insulin as the patient (previously on SPRINT)
was stable. Equally, patient E became stable and did not
require insulin in the second half of the trial, before STAR
was stopped as a result, which also was recognized by

Table 3 Insulin and nutrition dose increments and limits on rate of change in dose per measurement interval
designed for patient safety

Intervention Increments used Maximum change

Insulin 0.0-6.0 U/h in increments of 0.5 U excluding 0.5 U/h +3U (dosing is per hour)
reduce to 0 U/h

Nutrition 30-100% of ACCP/SCCM goal feed of 25 kcal/kg/h [40,41] in increments of 5%, using a low
carbohydrate enteral nutrition formula (local clinical standard) of 35-40% carbohydrate content. Nutrition
may be turned off for other clinical reasons (0%) leaving only insulin as an intervention
Same rules apply if parenteral nutrition is used

± 20%
May be set to 0% if
clinically specified

Table 4 Special cases definitions and outcome impact on interventions and measurement interval

Case Condition Outcome Maximum measurement
interval (h)

Gradual reduction of hyperglycemia BGi > 7.5 mmol/L Percentile used for
Targeting

50th 1

Target Value 0.85 ×
BGi

Rapid decrease in glucose levels BGi < BGi-1 (5th)

- 1
BGi <
5.0

Background insulin infusions
stopped

1

BGi ≥
5.0

Background insulin infusions
stopped

Nutrition suspension Feed turned off by
clinician

Use only insulin intervention
Stop all extra insulin infusions

2

Added insulin infusion of 1 U/h over 6 U/h
maximum

Must meet:
• Insulin at ≥5 U/h, for
the past 3 hours
• At least 4 hours has
elapsed since the last
time the enteral feed was
turned off

Add 1 U/h insulin infusion on top
of 6 U/h maximum level
This infusion is maintained for 6
hours unless:
A) Nutrition is stopped for any
reason
B) If “Rapid Decrease in Glucose
Levels” is detected
C) BG predicted to be below lower
cceptable limit with insulin infusion

1-3 hours as chosen by nurse
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STAR and the model as it eventuated. Thus, overcontrol
and excessive insulin use was avoided.

Discussion
STAR is a unique, model-based TGC protocol that
uses clinically validated metabolic and stochastic mod-
els to optimize treatment in the context of possible
future patient variation. Probabilistic forecasting
enables more adaptive, optimized patient-specific care
with clinically specified maximum risk(s) of hyper- and
hypoglycemia. This forecasting capability is only

possible in computerized, model-based protocols, and
enables increased protocol flexibility, increased safety,
and reduced clinical effort, in this case by design.
The stochastic approach enables a unique targeting

method, where interventions are selected to maximize
the likelihood of BG in a clinically specified range, while
providing a clinically specified maximum acceptable risk
of light hypoglycemia. The stochastic output range is
thus overlaid with a clinically specified desired control
range (4.0-4.4 ® 6.5 mmol/L depending on intervention
interval in this case) to maximize the likelihood of being

Table 5 Summary of cohort glycemic performance results

STAR
pilot trials

SPRINT
clinical data

BG median [IQR] (mmol/L) 5.9 [5.2-6.8] 5.7 [5-6.6]

%BG in 4.0-6.5 mmol/L 63 70

%BG in 4.0-7.0 mmol/L 76 79

%BG in 4.0-8.0 mmol/L 90 88

%BG < 4.4 mmol/L 8.0 9.1

%BG < 4.0 mmol/L 4.2 3.8

Median insulin rate [IQR] (U/hr) 2.5 [0.0 - 6.0] 3.0 [2.0 - 3.0]

Median glucose rate [IQR] (g/hr) 6.8 [5.5-8.7] 3.8 [1.6-5.5]

Average measurements/day 15 15

% Unchanged enteral nutrition interventions 86% 80%

% Unchanged insulin interventions 39% 48%

% Unchanged insulin AND nutrition interventions 36% 41%

Table 6 Summary of per-patient glycemic performance results

STAR
pilot trials

SPRINT
clinical data

Hours of control (h) 92 [29.5-113.3] 53 [19-146]

Median BG median [IQR] (mmol/L) 5.9 [5.8-6.3] 5.8 [5.3-6.4]

%BG in 4.0-6.5 mmol/L 61.1 [55.3-78.4] 66.7 [51.7-78.9]

%BG in 4.0-7.0 mmol/L 79.2 [68.6-88.8] 77.2 [63.6-86.8]

%BG in 4.0-8.0 mmol/L 96.2 [89.3-100] 86.6 [75-94.3]

%BG < 4.4 mmol/L 4.3 [0.4-11] 6.9 [1-16.1]

%BG < 4.0 mmol/L 0 [0-6] 1.8 [0-6.9]

Median insulin rate [IQR] (U/h) 2.5 [0.1-5.1] 3.0 [2.0 - 3.0]

Median glucose rate [IQR] (g/h) 6 [5.6-6.9] 2.2 [0-4.5]

Average measures/day 14 17

%Unchanged nutrition interventions 86 [83-93] 82 [72-90]

%Unchanged insulin interventions 59 [27-75] 42 [30-54]

%Unchanged insulin AND nutrition interventions 58 [20-74] 36 [25-48]
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in that range. Its control thus selects treatments that are
justified by their predicted effect on the full range of pos-
sible BG outcomes.
To date, the initial clinical results are positive. Patients

C and D, for example, clearly demonstrate different levels
of intra-patient and inter-patient metabolic variability, all
of which was equally well managed with respect to glyce-
mic performance and safety. Patient E was a unique case,
where the controller recognised the relatively high insulin
sensitivity of the patient after about half their stay and
was able to recommend no insulin be given. This recom-
mendation was correct given the resulting good glycemic
control within the desired target band for more than ~50
subsequent hours. The correct recommendation of no
insulin is one that many protocols find difficult as their
design is implicitly based on and biased toward active
intervention. Hence, the STAR controller was able to
avoid overcontrolling the patient with insulin where
necessary.
The remaining four patients had similarly good results

(Tables 5, 6 and Figures 3, 4, 5), particularly for achieving
high cTIB ≥ 0.8 values (Figure 2), where patients had

cTIB ≥ 0.8 for all days. These cTIB results indicate that
control over all patients in this initial study was very tight
compared with SPRINT (as seen in [13]). Thus, initially,
STAR appears able to provide tighter control across
patients than SPRINT, which also is seen in Table 5 and
particularly in Table 6 where median values across
patients are much more tightly clustered over a 0.5
mmol/L wide interquartile range.
The STAR framework and approach presented allows

nurses free choice of measurement interval to reduce real
and perceived clinical burden through longer intervals
(compared to SPRINT) and free choice [24,26]. While
longer intervals used different targeting, the overall glyce-
mic performance was very comparable to SPRINT.
Equally, all degradation or difference in control in Tables
5 and 6 was toward a moderately hyperglycemic range.
This result is partly due to the higher (4.4 vs. 4.0 mmol/L)
5% maximum hypoglycemic risk threshold specified at
these intervals (Table 2). This approach directly accounts
for the greater opportunity for significant variation over
longer intervals and thus maximizes safety while keeping
the glycemic outcome distribution best aligned in the
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Figure 2 Number and percentage of patients with cumulative time in the 4.0-7.0 mmol/L band of at least 80% per day, along with
number of patients on STAR per day.
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desired range to maximise the opportunity for outcome
BG in that range.
These initial results indicate that STAR is effective at

reducing clinical effort, which has been a major drawback
for TGC [20]. In particular, STAR reduced the number of
measurements per day for all patients and the number of
changes in intervention for most. Thus, over a larger
study, STAR should reflect the savings in clinical burden
from ~20% reductions in measurements (vs. SPRINT)
and further savings from reduced numbers of changed
interventions (more unchanged interventions).
From a broader human factors aspect, staff perception

of workload is influenced by the number of measure-
ments per day, actual time spent at the bedside perform-
ing measurements and administering treatment, and the

quality of control obtained [24]. Thus, if a protocol is
able to effectively regulate glycemic levels and achieve
clinical outcomes, impressions of clinical staff are more
positive and perceived effort is (at least slightly) reduced.
Although STAR reduced measurements per day and
other effort it is computer-based, which requires data
entry and calculation run-time. As a paper-based proto-
col SPRINT, is faster in this respect and may be more
transparent in its operation to users [24], which also
affects perceived effort and compliance. Hence, percep-
tions of effort will likely hinge on the longer-term out-
comes of clinical implementation.
Interestingly, in this initial study, nurses chose the 2-

hour interval far more frequently than the (equally)
available 3-hour interval. This outcome may reflect

Patient A 

Patient B 

Figure 3 Patients A and B, glycemic outcomes with STAR (top panel) and interventions (bottom panel). Patient A shows (middle panel)
the model identified insulin sensitivity (SI(t), see Appendix (Additional File 1) for details). For BG, the “x” symbols are measured BG values and
the solid line is the modeled value. The straight horizontal lines in the BG plots are at 4.0 and 7.0 mmol/L defining that range between them.
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habit from using SPRINT, which has a maximum 2-
hour interval, lack of familiarity or trust of the new sys-
tem, or that the effort required was acceptable to nurses
with the shorter interval.
One limitation of any model-based approach is the

model and its ability to predict outcomes to interven-
tions [28]. However, this model and related in silico
methods have been extensively tested clinically
[33,35-37,42] and validated for specific patients and in

predicting both the median and variability of clinical
trial outcomes, as well as for predicting specific inter-
vention outcomes [23,43,44]. It is the only such model
validated to this extent to date [34].
The STAR glycemic control approach presented is

fully generalizable. The clinical targets and ranges can
be set directly by clinical staff, as can the desired risk of
hypo- or hyperglycemia (maximum 5% for BG < 4.0-4.4
mmol/L in Table 2). Hence, the approach is entirely

Patient C 

Patient D 

Patient E 

Figure 4 Patients C, D, and E, glycemic outcomes with STAR (top panel) and interventions (bottom panel). For BG, the “x” symbols are
measured BG values and the solid line is the modeled value. The straight horizontal lines in the BG plots are at 4.0 and 7.0 mmol/L defining
that range between them.
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flexible. The ranges and risk values used represent those
chosen at Christchurch Hospital.
In contrast, whereas the glycemic ranges used in this

study broadly match those in the design of SPRINT,
SPRINT was fixed in its implementation and did not allow
this flexibility and could not be adjusted directly by clinical
staff for different patients or groups. This flexibility has
been demonstrated for the STAR framework in ongoing
pilot trials in Belgium [45]. As noted, two uses of STAR in
the overall framework might yield very different glycemic
outcomes due to: 1) different glycemic targets; 2) different
choices of risk levels for the 5% lower glycemia bound; 3)
different control intervention choices (insulin, nutrition, or
both); 4) any specific clinical rules within the STAR
approach that would modify the use of certain interven-
tions, such as bolus or infusion insulin delivery; and
5) choice of glycemic limit of for 2- or 3-hourly

measurements. As a result, this work is quite different
from the use of STAR in [45], which uses fixed nutrition
rates (nutrition is not used in control), delivers insulin via
infusion rather than bolus delivery, has a higher
(5.5 mmol/L) 5% lower glycemic threshold (vs. 4.0-4.4
mmol/L here), and thus a higher (5.5-8.0 mmol/L) desired
glycemic band (vs. 4.0-6.5 mmol/L here). Thus, the com-
parison of these two works, as well as to SPRINT, clearly
shows the flexibility of the overall STAR framework to
deliver very different glycemic control approaches within
the same stochastic, model-based approach, as well as the
resulting ability to customize the TGC approach to meet
local clinical standards, goals, and clinical workflow.
A further potential limitation of this overall STAR fra-

mework and approach is the stochastic model. Its fore-
casting is at the center of all the major advantages
enabled by this approach. It also is a cohort-based model,

Patient G 

Patient F 

Figure 5 Patients F and G, glycemic outcomes with STAR (top panel) and interventions (bottom panel). For BG, the “x” symbols are
measured BG values and the solid line is the modeled value. Note that patient G received constant enteral nutrition rate on clinical orders and
STAR managed, which change directly by recognizing that there was no need for insulin, because the patient (previously on SPRINT) was stable.
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which means that for some patients it will be too conser-
vative, whereas for others potentially not conservative
enough [32,45]. Equally, there is no guarantee that all
ICU cohorts would have similar metabolic variability.
However, these models can be readily created from exist-
ing clinical data for any reasonably similar metabolic sys-
tem model [29,30,32]. Perhaps more importantly, a
recent study found similar metabolic variability between
NZ and Belgian ICU cohorts [23], although this specific
result needs to be further generalized going forward.
Compliance and delays can be limitations of TGC stu-

dies. In this study, although not directly quantified,
compliance to recommendations was very good. Equally,
where STAR recommendations are overridden by nurses
the system is told, as part of regular use, and thus it
adapts by using that data for the next recommendation.
Equally, delays are accounted for by the computerized
system and thus do not really exist as a factor. Hence,
the computerized approach enables delays to be tabu-
lated without input and noncompliance to recommenda-
tions to be noted and accounted for in subsequent
calculations, advantages that paper-based protocols do
not offer.
Finally, this study is limited to the initial results show-

ing performance and safety. Whereas patient numbers
are limited, the overall hours of control is significant with
more than 600 hours for critically ill patients. However,
further studies [45] will provide evidence to the overall
quality of the STAR framework in different uses, as well
as its robustness to larger cohorts. These trials are
ongoing internationally. However, although these results
may not yet provide fully generalizable conclusions to
guide therapy overall, they do serve to show initial safety
and efficacy to justify extended use and trials.
Clinically, the comparison to the SPRINT results in

Tables 5 and 6 yields insights relevant to the broader
field. Specifically, whereas SPRINT was successful in pro-
viding safer and tighter control than most studies, it
required 2-hourly measurements. These initial results
clearly show that control can be achieved in measure-
ment interval to 3-hourly, thus reducing clinical effort
and burden, without reducing safety or efficacy. Second,
the nutrition rates are much higher for these patients
than for SPRINT, indicating that a model-based approach
can achieve better control whilst providing more nutri-
tion at the same time. Hence, the overall results can
influence clinical thinking with respect to the measure-
ment rates and nutrition levels from which good control
might be still be achieved, where, in contrast, protocols
with uncontrolled or unknown nutrition levels and 4-
hourly or greater maximum measurement intervals
[23,46,47] have not provided the same efficacy or safety
as this initial study and SPRINT.

Conclusions
This research presents the initial pilot trial results for a
novel Stochastic TARgeted (STAR) TGC framework and
approach. The results show that this approach can pro-
vide quality control performance that is tighter across
patients and thus more patient-specific. Equally, it also
reduced light hypoglycemia using a clinically specified
maximum risk with stochastic forecasting of metabolic
variation, as well as significantly reducing clinical work-
load compared with the current clinical standard proto-
col at Christchurch Hospital. The stochastic forecasting
is unique in this field and enables a maximum likelihood
approach to targeting a desired glycemic range while
enabling the clinical risk of hypo- or hyperglycemia to
be directly managed. It also enables patients with very
different metabolic (intra- and inter- patient) variability
to be directly managed and controlled within a single
(STAR) model-based framework.
More specifically, the STAR approach presented is

fully generalizable and clinical targets and ranges can be
set directly by clinical staff, with those used here repre-
senting those chosen at Christchurch Hospital. These
initial results remain to be proven over subsequent clini-
cal pilot trials ongoing toward a potential transition to
regular clinical practice implementation.

Additional material

Additional file 1: Appendix: Metabolic System Model.
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