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Abstract

Fluid and volume therapy is an important cornerstone of treating critically ill patients in the intensive care unit and
in the operating room. New findings concerning the vascular barrier, its physiological functions, and its role
regarding vascular leakage have lead to a new view of fluid and volume administration. Avoiding hypervolemia, as
well as hypovolemia, plays a pivotal role when treating patients both perioperatively and in the intensive care unit.
The various studies comparing restrictive vs. liberal fluid and volume management are not directly comparable, do
not differ (in most instances) between colloid and crystalloid administration, and mostly do not refer to the
vascular barrier's physiologic basis. In addition, very few studies have analyzed the use of advanced hemodynamic
monitoring for volume management.

This article summarizes the current literature on the relevant physiology of the endothelial surface layer, discusses

fluid shifting, reviews available research on fluid management strategies and the commonly used fluids, and
identifies suitable variables for hemodynamic monitoring and their goal-directed use.

Introduction

There is increasing evidence that fluid management
influences patient’s outcome as well in critical illness, as
during and after major surgery. Hence, the numerous
different aspects contributing to fluid management have
been in the focus of both basic and clinical research
during the past years. Basically three questions are
intrinsically tied to fluid administration perioperatively
and in critically ill patients: 1) What happens to intra-
vascular fluid in health and disease? 2) How do different
intravenous fluids behave after application? 3) What are
the goals for volume administration and how can they
be assessed and reached? Current basic research brought
fascinating insights of the function of the endothelial
vascular barrier and, in particular, regarding functional
changes that lead to vascular leakage. Experimental and
clinical trials investigating the effects of both crystalloid
and colloid solutions—and their natural and artificial
representatives—have shown quite conflicting results.
The same accounts for the mainly clinical studies
that primarily focussed on clinical goals to guide
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perioperative volume therapy. However, all of those
three aspects cannot be separated from each other when
defining rational strategies for fluid management. Thus,
this review article summarizes the knowledge of the
function and dysfunction of the endothelial vascular bar-
rier, on the effect of different intravenous fluids and on
the opportunities of hemodynamic monitoring to enable
drawing conclusions for rational concepts of periopera-
tive fluid and volume management.

The underlying aspects

The physiologic basis: why does fluid stay within the
vasculature?

Two thirds of human body fluid is located in the intra-
cellular compartment. The remaining extracellular space
is divided into blood plasma and interstitial space. Both
compartments communicate across the vascular barrier
to enable exchange of electrolytes and nutriments as the
basis for cell metabolism. The positive intravascular
pressure continuously forces blood toward the intersti-
tial space. Under physiologic conditions, large molecules,
such as proteins and colloids, cannot cross the barrier in
relevant amounts, which is a necessity for the regular
function of circulation. Otherwise, the intravascular
hydrostatic pressure would lead to uncontrollable loss of
fluid toward the interstitial space and disseminated
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tissue edema [1]. In 1896, Ernest Starling suggested an
interstitial colloid osmotic pressure far below the intra-
vascular pressure. The concentration gradient across the
vascular barrier generates a flow, which is directed into
the vasculature and opposes the hydrostatic pressure
resulting in an only low filtration per unit of time.
According to the Starling principle, only the endothelial
cell line is responsible for the vascular barrier function
[1]. In a rat microvessel model, it has been shown that
the interstitial colloid osmotic pressure was nearly 70%
to intravascular osmotic pressure without causing inter-
stitial edema, which is in contrast to the Starling’s con-
cept, suggesting an only minor role for the interstitial
protein concentration [2]. The endothelial glycocalyx
plays a pivotal role in this context. Every healthy vascu-
lar endothelium is coated by transmembrane syndecans
and membrane-bound glypicans containing heparan sul-
fate and chondroitin sulfate side chains, which together
constitute the endothelial glycocalyx [3,4]. Bound plasma
proteins, solubilized glycosaminoglycans, and hyaluronan
are loading the glycocalyx to the endothelial surface
layer (ESL), which is subject of a periodic constitution
and degradation. Under physiologic conditions, the ESL
has a thickness of approximately 1 pum and binds
approximately 800 ml of blood plasma, so plasma
volume can be divided into a circulating and noncircu-
lating part [4,5]. Accordingly, the glycocalyx seems to
act as a molecular filter, retaining proteins and increas-
ing the oncotic pressure within the endothelial surface
layer. A small space between the anatomical vessel wall
and the ESL remains nearly protein-free [2]. Thus, fluid
loss across the vascular barrier is limited by an oncotic
pressure gradient within the ESL [6]! Starlings’ classic
principle was therefore modified to the “double-barrier-
concept” in which not only the endothelial cell line but
primarily the endothelial surface layer constitutes the
vascular barrier [6].

Vascular barrier dysfunction: reasons and consequences

The ESL constitutes the first contact surface between
blood and tissue and is involved in many processes
beside vascular barrier function, such as inflammation
and the coagulation system. A number of studies identi-
fied various agents and pathologic states impairing the
glycocalyx scaffolding and ESL thickness. In a genuine
pig heart model, Chappell et al. demonstrated a 30-fold
increased shedding of heparan sulphate after postis-
chemic reperfusion [7]. These data were approved by a
clinical investigation, which showed increased plasma
levels of syndecan-1 and heparan sulphate in patients
with global or regional ischemia who underwent major
vascular surgery [8]. Beside ischemia/reperfusion-injury,
several circulating mediators are known to initiate glyco-
calyx degradation. Tumor necrosis factor-(a.), cytokines,
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proteases, and heparanase from activated mast cells are
well-described actors in systemic inflammatory response
syndrome leading to reduction of the ESL thickness,
which triggers increased leucocyte adhesion and trans-
endothelial permeability [7,9,10]. Interestingly, hypervo-
lemia also may cause glycocalyx impairment mediated
by liberation of atrial natriuretic peptide [11]. Hypervo-
lemia resulting from inadequately high fluid administra-
tion therefore may cause iatrogenic glycocalyx damage.
As shown in basic research, the dramatic consequence
of a rudimentary glycocalyx, which loses much of its
ability to act as a second barrier, is strongly increased
transendothelial permeability and following formation of
interstitial edema [7,11]. The relevance of these experi-
mental data were impressively underlined by Nelson et
al.,, who found increased plasma levels of glycosamino-
glycans and syndecan-1 in septic patients, whereas med-
ian glycosaminoglycan levels were higher in patients
who did not survive [12].

Fluid balance: where does fluid get lost?

Urine production and insensible perspiration are physio-
logically replaced by free water absorbed from the gastro-
intestinal system and primarily affect the extravascular
space, if they are not pathologically increased. Because
the physiologic replacement is limited in fasted patients,
it has to be compensated artificially by infusing crystal-
loids. The composition of the used infusion should be
similar to the physiologic conditions to avoid acid-base
disorders, which mostly accounts for balanced crystalloid
infusions. During surgery, trauma or septic shock
additional fluid loss (blood loss, vascular leakage)
affects mainly the intravascular compartment [13,14].
Consequently, the first type of fluid loss is attenuated by
redistribution between intracellular, interstitial, and
intravascular space slowly and causes dehydration,
whereas the second type of loss leads to acute hypovole-
mia. Preoperative hypovolemia after an overnight fasting
period, as described in anesthesia text books [15,16], can-
not be explained by the considerations above and does
not occur regularly in all patients [17]. Fluid reloading is
unjustified, at least in cardiovascular healthy patients
before low-invasive surgery [17]. Mediated by increased
liberation of atrial natriuretic peptide, undifferentiated
fluid loading can cause glycocalyx degradation, increase
vascular permeability, promote tissue edema formation
and therefore may constitute a starting point of the
vicious circle of vascular leakage and organ failure
[11,18]. Fluid loss from insensible perspiration also is
obviously overestimated in many patients, although loss
of only 1 ml/kg per hour occurs even when the abdom-
inal cave is opened [19]. In theory, it should be adequate
to substitute only the losses described earlier to maintain
a normal blood volume in the critically ill patient. Based
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on the assumption that a generous fluid administration
could prevent hypotension and postoperative renal fail-
ure, frequently much greater amounts are infused perio-
peratively [20], although there is no evidence that the
incidence of renal failure is decreased by a liberal infu-
sion regimen during surgery [21]. Furthermore, prophy-
lactic crystalloid infusion does not influence the
occurrence of hypotension caused by vessel dilatation
[22]. Nevertheless, patients require much more intrave-
nous fluids than suggested by physiologic considerations.
Shown by blood volume measurements, major surgery
causes a deficit of 3-6 liters in the perioperative fluid bal-
ance [23,24]. The peak even persists up to 72 hours after
trauma or surgery [25]. The common explanation for this
phenomenon is a fluid shift into the so-called third space.
This third space can be divided into an “anatomic” and a
“nonanatomic” part. Physiologic fluid shifting from the
vessel toward the interstitial space across an intact vascu-
lar barrier contains only small amounts of proteins. It
does not cause interstitial edema as long as it can be
quantitatively managed by the lymphatic system. Losses
into the “anatomic” third space are based on this
mechanism but in a pathologic quantity [13,14], which
transgresses the capacity of the lymphatic system. The
nonanatomic third space, in contrast, is believed to be a
compartment separated from the interstitial space
[13,14]. Losses toward this compartment are assumed to
be trapped and lost for extracellular exchange. Cited
examples for nonanatomic third space losses are fluid
accumulation in traumatized tissue, bowel, or peritoneal
cavity [15,16], but despite intensive research, such a
space has never been identified! Fluid is shifted from the
intravascular to the interstitial space! This fluid shift can
be classified into two types [13]:

Type 1, occurring always and even if the vascular bar-
rier is intact, represents the physiologic, almost protein-
free shift out of the vasculature. Occasionally it emerges
at pathologic amounts.

Type 2, the pathologic shift is caused by dysfunction of
the vascular barrier. In contrast to type 1, fluid crossing
the barrier contains proteins close to plasma concentra-
tion [13]. This shift has basically three reasons. First,
surgical manipulation increases capillary protein perme-
ability excessively [26]. Interstitial fluid raised approxi-
mately 10% during realization of an enteral anastomosis
in a rabbit without any fluids being infused [27]. Conco-
mitant administration of 5 ml/kg of crystalloid infusion
even doubled this edema. Second, reperfusion injury and
inflammatory mediators compromise the vascular barrier
[7-10]. Third, iatrogenic hypervolemia can lead to glyco-
calyx degradation and cause an extensive shift of fluid
and proteins toward the tissue [23,24]. The pathologic
shift affects all intravenous fluids. Opposed to the com-
mon believe that, in contrast to crystalloids, colloids
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would stay within the vasculature, Rehm et al. described
a volume-effect >90% only when a tetrastarch solution
was infused titrated to the actual intravascular volume
loss. Administered as a bolus in a normovolemic patient,
two thirds of the infused volume left the vasculature
immediately [23,24]. Volume resuscitation with colloids
obviously requires careful titration to current losses to
avoid a remarkable protein shift toward the interstitial
space [14]. Based on the double-barrier concept, hypo-
proteinemia even intensifies a vascular barrier dysfunc-
tion and promotes tissue edema formation. Perioperative
fluid shifting is reflected in clinical data published two
decades ago. Lowell et al. showed a weight gain of more
than 10% in >40% of patients admitted to the intensive
care unit after major surgery. This increase of body
weight, representing interstitial edema, correlated
strongly with mortality [28].

Dehydration or hypovolemia?

Dehydration, affecting primarily the extravascular com-
partment, and acute hypovolemia are two different diag-
noses and deserve different therapeutic considerations.
Urine production and insensible perspiration cause a
loss of colloid-free fluid, which, due to redistribution
between intravascular and extravascular space, does nor-
mally not impair the intravascular compartment directly.
Thus, the resulting dehydration has to be treated by
refilling the extravascular space and replacing further
losses by crystalloid administration [13]. In contrast,
acute hypovolemia at first affects the intravascular com-
partment. Because crystalloids distribute freely between
interstitial and intravascular space, they are not suitable
for volume resuscitation in acute hypovolemia. Lost
colloids and proteins cause a decreased intravascular
oncotic pressure, which would be aggravated by admin-
istration of colloid-free intravenous fluid and would
enforce the formation of interstitial edema. Thus, fluids
that mainly remain within the vasculature and maintain
oncotic pressure are needed to treat acute loss of plasma
volume effectively: colloids.

Intravenous fluids: crystalloids and colloids
Crystalloids

Crystalloids freely distribute across the vascular barrier.
Only one fifth of the intravenously infused amount
remains intravascularly [15,16]. Proclaimed by text-
books, a fourfold amount of crystalloid infusion is
needed to reach comparable volume effects as achieved
with colloid administration. Whereas this is true if the
vascular barrier is intact, in patients suffering from
capillary leakage ratios from only 1.6:1 to 1:1 (crystal-
loid to colloid infusion) were observed to reach equiva-
lent effects [29,30]. Nevertheless, colloid treatment
resulted in a greater linear increase in cardiac preload
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and output in septic and nonseptic hypovolemic
patients compared with crystalloid administration [31],
and its volume expansion lasted longer during acute
hemorrhage experimentally [32]. Although currently
discussed, regarding the double-barrier concept one
could assume that colloids distribute nearly as freely as
crystalloids across a seriously impaired vascular barrier.
However, volume resuscitation with crystalloid infu-
sions was associated with serious complications, such
as respiratory distress syndrome, cerebral edema, and
abdominal compartment syndrome in patients with
major trauma [33-35] and promotes the development
of hyperchloremic acidosis [36]. Even if there is
ongoing discussion about the benefits and risks of
balanced crystalloid solutions, their use is beneficial to
avoid acid-base disorders [25].

Colloids

The only natural colloid used in clinical matters is albu-
min. The artificial colloids hydroxyethyl starch (HES)
and gelatin are used prevalently in European countries,
whereas albumin is applied less commonly [37].

Albumin

Under physiologic conditions, albumin is the molecule
mainly accountable for intravascular osmotic pressure
and should be an ideal colloid to restore protein loss
from the vasculature. However, as a natural colloid,
albumin may cause severe allergic reaction and immu-
nologic complications. Current date concerning albumin
use to treat hypovolemia mainly originate from critically
ill patients. A Cochrane review of 30 randomized, con-
trolled trials, including 1,419 patients with hypovolemia,
showed no evidence for a reduced mortality comparing
albumin to crystalloid volume resuscitation. Usage of
albumin may contrariwise even increase mortality [38].
More recently, the SAFE Study, including 6,997 patients
and comparing albumin to normal saline fluid resuscita-
tion, found neither beneficial effects nor an increased
mortality in the albumin group. Additionally, no differ-
ences in days of mechanical ventilation or need for
renal-replacement therapy were observed [39]. In con-
trast to isooncotic albumin, which does not influence
the outcome of critically ill patients, treatment with
hyperoncotic albumin increased mortality [40]. There-
fore, administration of isooncotic albumin may be justi-
fiable in particular cases but not as a routine strategy
for volume resuscitation.

Gelatins

Gelatins are polydispersed polypeptides from degraded
bovine collagen. The average molecular weight of gela-
tin solutions is 30,000 to 35,000 Da and their volume-
expanding power is comparable. Several studies have
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examined the pharmacological safety of gelatins. In
brief, all preparations are said to be safe in regard to
coagulation and organ integrity [15,16] except kidney
function. Mahmood et al. demonstrated higher levels
of serum urea and creatinine as a more distinct tubular
damage in patients treated with 4% gelatin solution
compared with hydroxyethyl starch (HES) solutions
while undergoing aortic aneurysm surgery [41]. There-
fore, use of gelatins is limited in renal-impaired
patients.

Hydroxyethyl starch

Hydroxyethyl starch, an artificial polymer, is derived
from amylopectin, which is a highly branched chain of
glucose molecules obtained from waxy maize or pota-
toes. Conservation from degradation and water solubility
are achieved by hydroxyethylation of the glucose units.
HES solutions are available in several preparations and
vary in concentration, molecular weight, molar substitu-
tion, C2/C? ratio, solvent, and pharmacologic profile.
Although small HES molecules (< 50-60 kD) are elimi-
nated rapidly by glomerular filtration, larger molecules
are hydrolyzed to smaller fractions and are partially
taken up in the reticuloendothelial system. Although
this storage seems not to impair the mononuclear pha-
gocytic system, it is remarkable that low molecular
weight HES accumulates less compared with high mole-
cular weight HES [42]. Negative effects of high molecu-
lar HES on the coagulation system are well described.
Preparations >200 kD lead to a reduction of von Willeb-
rand factor and factor VIII, causing a decreased platelet
adhesion. Low molecular weight preparations, such as
HES 130/0.4, have only minimal effects on coagulation.
HES in balanced solution increases the expression of
activated platelet GP IIb/IIla, indicating an improved
hemostasis [43,44]. Focusing on kidney function, an 80%
rate of “osmotic nephrosis-like lesions” and impaired
renal function were reported in kidney transplant recipi-
ents after administration of HES 200/0.62 to brain-dead
organ donors [45,46]. In septic patients, usage of 10%
HES 200/0.5 correlated with a higher incidence of renal
failure compared with crystalloids [47]. Admittedly, HES
was administered without regard to exclusion criteria
and dose limitations in this study. The most likely
pathomechanism of renal impairment by colloids is the
induction of urine hyperviscosity by infusing hyperonco-
tic agents in dehydrated patients. Glomerular filtration
of hyperoncotic molecules causes a hyperviscous urine
and results in stasis of the tubular flow [48]. Elevated
plasma oncotic pressure, regardless of which genesis, is
known to cause acute renal failure since more than 20
years [49]. Based on this pathogenesis, all hyperoncotic
colloids may induce renal damage, whereas iso-oncotic
tetra starch solutions, such as 6% HES 130/0.4, seem
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not to impair renal function [41,46]. After administra-
tion of extremely high application rates (up to 66 liters
in 21 days) in patients with severe head injury, no
impairment of renal function was observed [50]. In con-
trast to results of the VISEP study [47], the SOAP study,
which included more than 3,000 critically ill septic
patients treated with pentastarch and tetrastarch solu-
tions, also showed no higher risk for renal failure [51].
Hydroxyethyl starch was administered in much lower
amounts (13 vs. 70 ml/kg) and for a shorter period in
the SOAP study. There is evidence that HES also modu-
lates inflammation. Synthetic colloids inhibit neutrophil
adhesion to the endothelium and neutrophil infiltration
of the lung [52,53].

Furthermore, HES attenuated inflammatory response
in septic rats as well as in rats volume resuscitated with
HES 130/0.4 during severe hemorrhagic shock by
decreasing tumor necrosis factor-alpha, interleukins, and
oxidative stress [53,54]. Although advantageous aspects
of volume replacement with so-called “modern” isoon-
cotic tetrastarch solutions, in particular in reaching early
hemodynamic stability are comprehensible [31,32], data
on focussed, adequately powered, prospective clinical
trials proving their outcome-relevance are needed.

Goals and strategies for volume replacement
Because the primary goal of the cardiovascular system is
to supply adequate amounts of oxygen to the body and
to match its metabolic demands, the target of volume
management is to maintain adequate tissue perfusion to
ensure tissue oxygenation. Hypovolemia, as well as
hypervolemia, decreases tissue perfusion and may result
in organ failure [55-59]. Even supplemental oxygen does
not improve oxygenation in hypoperfused tissue [60].
Because hypovolemia is a frequent cause for hemody-
namic deterioration in critically ill patients, securing an
adequate intravascular volume is a cornerstone of hemo-
dynamic management. But how can we assess “ade-
quate” intravascular volume? Because the relation
between hemodynamic variables is complex in health
already, it is even more complex in disease and their
interpretation requires a solid understanding of cardio-
vascular regulation mechanism.

In hemodynamic unstable patients, basically four
functional questions need to be answered. Because the
primary goal of resuscitation is to secure tissue oxyge-
nation, the first question is already the most decisive,
but also the most difficult one: Is tissue oxygenation
adequate? Because representative tissue oxygenation is
not measurable directly, primarily three variables are
used as surrogates: mixed venous oxygen saturation;
central venous oxygenation; and serum lactate. Use,
interpretation, and significance of these parameters
concerning assessment of tissue oxygenation are
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discussed elsewhere. In brief, none of them is able to
detect tissue oxygen debt definitely, because every sin-
gle one is influenced by various morbidities and drug
interactions [61-64]. The second question is: How can
cardiac output (CO), as the main determinate of oxy-
gen delivery, be improved? Or, better representing
clinical matters: Is the patient volume responsive? The
third question regards the vasomotor tone: Is it
increased, decreased, or normal in the hypotensive
patient? Fourth, heart work: Is the heart able to sustain
an adequate CO when arterial pressure is restored
without going into failure [65]?

Usually physicians address these questions by mea-
suring mean arterial pressure (MAP), central venous
pressure (CVP), and by observing diuresis [66]. All of
these parameters are easy to measure, but actually do
not allow to assess hemodynamic instability sufficiently
or to differentiate its cause adequately. If disease leads
to a decrease of CO, the physiologic reaction of the
body, mediated by baroreceptors, is to restore the like-
wise decreased arterial pressure to maintain cerebral
perfusion pressure [67]. This is frequently accompa-
nied by tachycardia, caused by modulation of the sym-
pathetic tone. Hence, hypotension reflects the failure
of this compensating mechanism, whereas normoten-
sion does not automatically ensure hemodynamic sta-
bility [68]. In addition, tachycardia and hypotension
can be absent during hypovolaemic shock until intra-
vascular volume loss reaches 20% or more [69,70].
CVP shows a poor correlation to blood volume [71], is
inadequate to detect hypovolemia reliably, and most
notably cannot sense a decreased cardiac output and
tissue oxygen debt in an early state. Furthermore,
changes in CVP after volume administration do not
allow any conclusions to changes in stroke volume
(SV) or cardiac output (CO) [72]. Measuring CVP is
therefore inadequate to assess the patient’s hemody-
namics and to manage volume resuscitation. Because
CO is the primary determinate by which oxygen dona-
tion to the tissue is varied to match metabolic require-
ments, the effectiveness of a resuscitation therapy can
be evaluated best by continuous monitoring of cardiac
output. Several different methods, ranging from the
classical indicator dilution techniques to less invasive
approaches, such as arterial pulse contour analysis and
Doppler techniques, are clinically available. A detailed
description and discussion of their individual advan-
tages and disadvantages is beyond the scope of this
article and can be found in recent reviews [73,74]. Sui-
table monitoring techniques for defining treatment
strategies are able to assess cardiac output as well as
cardiac preload and, first of all, to predict volume
responsiveness of the patient, which mostly applies to
volumetric and functional parameters utilizing the



Strunden et al. Annals of Intensive Care 2011, 1:2
http://www.annalsofintensivecare.com/content/1/1/2

heart-lung interaction under mechanical ventilation
[75-78]. In the past, various studies were published
that favored individual concepts of perioperative
volume management strategies. Most of them origi-
nated from perioperative care and focussed primarily
on the treatment in the operating room. Of course,
those strategies impact postoperative ICU treatment as
well. “Restrictive” strategies were compared with “per-
missive” or “liberal” ones. However, commonly
accepted definitions of “restrictive” or “liberal” fluid
strategies do not exist, making those studies nearly
incomparable. Investigators normally labelled their tra-
ditional standard fluid regimen the “standard” group
and compared it with their own restrictive fluid
administration model. “Liberal” in one study was
already “restrictive” in the other trial and fluid admin-
istration followed rigid schemas or different goals.
Additionally, endpoints of the given studies varied
from postoperative vomiting, pain, or tissue oxygena-
tion to bowel recovery time, which de facto rules out a
comparison [79-82]. One of the most cited studies in
this regard is the work of Brandstrup et al., who
demonstrated that perioperative fluid restriction (2740
vs. 5388 ml) reduced the incidence of anastomotic
leakage, pulmonary edema, pneumonia, and wound
infection in 141 patients undergoing major colorectal
surgery without increasing renal failure rate. Interest-
ingly, a closer look at the infusion protocol reveals a
comparison between crystalloid versus colloid fluid
administration. The restrictive group received mainly
colloids, whereas the liberal group was treated exclu-
sively with crystalloids [79]. All of those studies have
in common that no hemodynamic goals were set,
which is in contrast to the “goal-directed-therapy
(GDT) approach” known most prominently from the
study by Rivers et al., in which the authors used cen-
tral venous pressure, mean arterial pressure, serum lac-
tate, and mixed venous oxygen saturation as goals to
optimize the early treatment in septic patients [83].
Further peri- and postoperative studies in surgical
patients underline the importance of “functional”
hemodynamic goals to improve patients’ outcome. In a
meta-analysis encasing four prospective randomized
trials, cardiac output guided fluid management reduced
hospital stay and lessened complication rate [84].
Additionally, interleukin-6 response was attenuated in
a colorectal surgery study using a Doppler-optimized
goal-directed fluid management [85]. Gopfert et al.
reported a reduced time of mechanical ventilation and
intensive care unit stay in cardiac surgery patients
using the global end-diastolic volume index and car-
diac output to manage volume administration [86].
The extravascular lung water index may be a useful
tool for GDT, too, and is subject of current discussion
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[87]. Furthermore, goal-directed fluid therapy reduces
inflammation, morbidity, and mortality not only in
severe sepsis and septic shock, but also in patients who
undergo major surgery [88-90].

Conclusions

Consolidated findings regarding the endothelial surface
layer led to a new comprehension of the vascular barrier.
Starlings’ principle was adjusted to the “double-barrier con-
cept” and the mechanisms of ESL alteration in critically ill
patients seem to play a major role in tissue edema forma-
tion. Because glycocalyx diminution leads to an increased
capillary permeability, fluid loss toward the interstitial
space, commonly considered to be a loss toward the “third
space,” is one major consequence of ESL degradation. Stu-
dies concerning fluid and volume therapy prove an adverse
effect of tissue edema formation on organ function and
mortality. Therefore, knowledge of the consequences of
infusing different types of crystalloids and colloids during
physiologic and pathologic states is necessary. Furthermore,
fluid and volume administration are two different therapies
for two different diagnoses. Dehydration resulting from
urine loss, preoperative fasting, and insensible perspiration
requires fluid administration primarily based on crystalloid
infusions. Intravascular volume deficit, i.e., acute hypovole-
mia, resulting in a decreased cardiac output requires
volume replacement, where colloid administration appears
meaningful, although current clinical data are not finally
consistent. The right amount of administered volume
should be titrated “goal directed” using a strategy based on
macro-hemodynamic parameters of flow and volume.
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