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Physiological modeling, tight glycemic control,
and the ICU clinician: what are models and how
can they affect practice?
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Abstract

Critically ill patients are highly variable in their response to care and treatment. This variability and the search for
improved outcomes have led to a significant increase in the use of protocolized care to reduce variability in care.
However, protocolized care does not address the variability of outcome due to inter- and intra-patient variability,
both in physiological state, and the response to disease and treatment. This lack of patient-specificity defines the
opportunity for patient-specific approaches to diagnosis, care, and patient management, which are complementary
to, and fit within, protocolized approaches.
Computational models of human physiology offer the potential, with clinical data, to create patient-specific models
that capture a patient’s physiological status. Such models can provide new insights into patient condition by
turning a series of sometimes confusing clinical data into a clear physiological picture. More directly, they can track
patient-specific conditions and thus provide new means of diagnosis and opportunities for optimising therapy.
This article presents the concept of model-based therapeutics, the use of computational models in clinical
medicine and critical care in specific, as well as its potential clinical advantages, in a format designed for the
clinical perspective. The review is presented in terms of a series of questions and answers. These aspects directly
address questions concerning what makes a model, how it is made patient-specific, what it can be used for, its
limitations and, importantly, what constitutes sufficient validation.
To provide a concrete foundation, the concepts are presented broadly, but the details are given in terms of a
specific case example. Specifically, tight glycemic control (TGC) is an area where inter- and intra-patient variability
can dominate the quality of care control and care received from any given protocol. The overall review clearly
shows the concept and significant clinical potential of using computational models in critical care medicine.

The critically ill patient
Critically ill patients can be defined by the high variabil-
ity in response to care and treatment. In particular,
variability in outcome arises from variability in care and
variability in the patient-specific response to care. The
greater the variability, the more difficult the patient’s
management and the more likely a lesser outcome
becomes. Hence, the recent increase in importance of
protocolized care to minimize the iatrogenic component
due to variability in care. Recent articles [1,2] have

noted that protocols are potentially most applicable to
groups with well-known clinical pathways and limited
comorbidities, where a “one size fits all” approach can
be effective. Those outside this group may receive lesser
care and outcomes compared with the greater number
receiving benefit.
Figure 1 defines this problem in terms of variability in

care that protocolized care can reduce, and a different,
potentially less reducible, component due to inter- and
intra-patient variability in response to treatment. The
larger the area, the more difficult the patient can be to
manage. Thus, protocolized care reduces only the non-
patient portion of this diagram. Equally, those whose
clinical pathway is “straightforward” and can benefit
most from protocolized care are likely to have limited
inter- and intra-patient variability in response to
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treatment. Hence, the smallest, least variable case is one
in which intra-patient response is reduced or managed
in a patient-specific fashion, thus separating the final
area into several smaller ones. A focus of this paper is
that the model-based methods discussed here can pro-
vide patient-specific care that is robust to these intra-
and inter-patient variabilities.
This issue is evident in many areas of care. For exam-

ple, why are the complications of diabetes and therapeu-
tic anticoagulation a leading cause of death or iatrogenic
harm when they are amongst the most highly researched
and understood fields in medicine? A PubMed search
using the key words “diabetes mellitus” and “anticoagu-
lation” returned 19,008 and 288,774 references, respec-
tively, and a Google search multiplied these numbers to
1.14 M and 9.48 M pages. The collective experience of
the drugs used in these conditions also is enormous;
insulin, heparin, and warfarin were first used in humans
more than 89, 76, and 57 years ago, respectively, and yet
despite huge knowledge and experience, management of
these conditions is fraught with problems.
What has led to this paradox? If, for example, mana-

ging diabetes was as straightforward as popping a few
tablets or a daily insulin injection, doctors and patients
would not still be struggling to get this right. Unfortu-
nately, patients with diabetes have a widely variable clin-
ical response, both within and between individuals,
which often leaves clinicians unsuccessfully grappling
with these nonlinear behaviors and responses. The ran-
domized controlled trial (RCT) is regarded as the most
reliable instrument on which to base treatment selec-
tion. However, recommendations from RCTs are based
on overall cohort responses, not individual responses,
and therefore cannot provide the necessary patient-spe-
cific therapeutic guidance, particularly when variability
can have a major impact in titrating treatment.
We examine and review a new, emerging therapeutic

approach that provides for individualized care that
accounts for intra- and inter-patient variability within an
overall protocolized and evidence-based framework. This

review is done with reference to the management of glu-
cose intolerance and diabetes in critically ill patients, but
the overall approach is readily generalizable to other
areas of intensive care medicine.

Physiological and clinical problem
Critically ill patients often experience stress-induced
hyperglycemia and high insulin resistance [3-5] asso-
ciated with increased morbidity and mortality [6-8].
Strong counter-regulatory (stress) hormone and proin-
flammatory immune responses lead to extreme insulin
resistance and hyperglycemia, often exacerbated by high
carbohydrate nutritional regimes and (relative) insulin
deficiency. Inter- and intra-patient variability over differ-
ent patients and as patient condition evolves make pro-
viding consistently tight glycemic control (TGC) across
every individual patient a significant challenge, despite
the growing use of protocolized care approaches.
This article uses TGC to present how computer mod-

els can be used at the bedside, within protocolized care,
to provide patient-specific care and thus reduce the
impact of intra- and inter-patient variability and provide
care (within the shaded lower corner of Figure 1). TGC
is a particularly apt example for model-based methods,
as intra- and inter-patient variability in response to insu-
lin can be extreme, leading to significant difficulty in
providing safe and effective control [9].
In particular, recent randomized trials of TGC have

failed to repeat promising early results [10-12]. Equally,
reduced outcomes due to hyperglycemia, hypoglycemia
(if control is poor), and glycemic variability [13,14], and
the overall physiological basis in inflammatory and oxi-
dative stress responses are increasingly understood
[15-17]. Thus, it seems increasingly clear that protocoli-
zation of care alone has not been able to reduce the
variability in patient outcomes and that patient-specific
solutions that manage inter- and intra-patient variation
may be required to determine if TGC offers significant
benefit. Hence, this review examines (physiological)
model-based methods for TGC as a case example of the
patient-specific solutions that are possible and the
potential of these methods to improve care.

A series of questions
This review takes the reader through mathematical
models in the context of TGC based on a series of clini-
cally focused questions.

What is a mathematical model? Physiological relevance
and representation
A mathematical model is a mathematical description of
reality. In physiology, such a model underlies a certain
number of assumptions about the physical, chemical,
and biological processes involved. These mathematical
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Figure 1 Variability in outcome of the critically ill patient
defined by variability in response to therapy and variability in
care. Shaded area defines the target zone for patient-specific care.
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models may vary significantly in their complexity and
their objectives. They can range from relatively simple
lumped-compartment models [18-20] to very complex
network representations and finite element models of
several million degrees of freedom [21,22].
For model-based TGC, the models should capture the

fundamental underlying physiology as illustrated sche-
matically in Figure 2. In particular, they should capture
the transport of exogenous insulin, the production of
endogenous insulin, the appearance of endogenous and
exogenous carbohydrate as blood glucose, and, critically,
both insulin-mediated and insulin-independent uptake
of glucose. In addition, insulin-mediated uptake must
have the ability to capture inter- and intra-patient varia-
bility in the time-varying insulin resistance observed in
these patients. The model structure and physiological
relevance of Figure 2 is detailed in several references
[23,24] and in the appendix in Additional File 1 with
TGC specific modeling details for the interested reader.

In the critical care arena, the use of in silico physiolo-
gical models is only emerging. However, there are
already model-based or model-derived applications for
managing sedation [25,26], cardiovascular diagnosis and
therapy [27,28], mechanical ventilation [29,30], and the
diagnosis of sepsis [31,32]. Particular to TGC, there are
already some attempts at modeling for both understand-
ing and implementing TGC [23,33-42], with a review of
many in [43].

What can a model do? Capabilities and limitations
All models have different uses or goals. A model may be
used to describe, interpret, predict, or explain [18,19] a
physiological process. Real capabilities depend on the
chosen degree of approximation, based on a combina-
tion of the knowledge of the physiological processes
involved and implementation goal.
However, a model definition is not enough. Model

parameter values must be assumed from clinical data or

Figure 2 Relevant physiology required to create effective models of human metabolism for the critically ill patient. Insulin sensitivity is
a whole body parameter representing is the average of the insulin resistance of each particular organ, which are all differentially regulated in
stress conditions, and thus the dashed line indicates insulin-mediated uptake. Its value is patient-specific and can vary hourly [48,73].
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reports, or identified (mathematically) from clinical data.
These values determine whether the model is generic to
a population or (more) patient-specific with parameters
identified from a particular patient’s data. In reality,
most models are a mixture of both approaches, where
patient-specific parameters are identified for those para-
meters critical to the application.
However, once identified, patient-specific models in

particular offer a range of potential opportunities,
including, for TGC, the:

• Simulation of so-called virtual patients [41,44-48]
to design [33,41], analyze [49,50], or optimize glyce-
mic control methods.
• Implementation at the bedside for patient-speci-
fic care in which patient-specific model para-
meters are identified in real-time to guide care
[34-36,40,47,51-53].

Equally, metabolic models can be used with patient
data to investigate a range of physiological behaviors
[54-56].
In intensive care, patient-specific metabolic model

parameters also have been used as sepsis biomarkers
because they can accurately reflect the inflammatory sta-
tus of the patient and severity of illness [31,32]. These
studies showed that model-based insulin sensitivity
alone could provide 70-80% sensitivity and specificity in
assessing sepsis compared with a control cohort, yield-
ing a negative predictive value (NPV) greater than 99%,
thus clearly identifying periods where antibiotic therapy
was not necessary. Such an outcome thus uses model-
based physiological insight not otherwise available to
provide a novel, non-invasive diagnostic.
Similarly, model-based insulin sensitivity has been

used to assess the impact of glucocorticoid therapy on
glycemic control [57]. In particular, it has been thought
that glucocorticoid therapy would significantly increase
insulin requirements in TGC based on the results of
studies showing significantly increased insulin resistance
when given to healthy individuals. However, this model-
ing showed the effect to be 5-10 times smaller in ICU
patients, to be highly patient-specific depending on
patient status, and to (overall) have very little impact on
TGC dosing requirements, as a result. The ability to dis-
cern patient-specific impacts at the bedside using the
model can provide significant insight.
Finally, TGC models can be used to assess the quality

of control achieved clinically relative to other protocols
using virtual patients [24,33,46,50]. In Suhaimi et al [50]
the multi-center Glucontrol trial [12] protocol was eval-
uated versus the control achieved with the Specialized
Relative Insulin and Nutrition Titration (SPRINT) [58]
protocol. The model and analysis yielded clear

directions on protocol compliance and the importance
of understanding nutrition delivery in the provision of
TGC. It also was able to show a surprising similarity in
the inter- and intra-patient metabolic variability of criti-
cally ill patients between the centers and studies
compared.
Finally, physiologically relevant computer models have

a longer, similar history in the broader diabetes field,
primarily for research to gain patho-physiological insight
rather than direct use in controlling glycemia
[18,54,55,59-64].
All models have limitations. Limited bedside data

and the quality of the mathematical process used to
find model parameters from data (identification
method) can have a significant impact on identified
parameter accuracy and model performance [24,64-66],
as well as entailing specific assumptions [23,24,46,67].
In particular, models that are not physiologically rele-
vant [37] or do not have all the necessary physiology
relevant to the patient group to which it is applied
[68-70] can yield inaccurate results. These studies
failed to capture the enhanced glycemic production
and reduced renal and hepatic clearances, the balance
of which can dominate the overall metabolic behavior
of the critically ill. Similarly, one can over-model a
situation with too much complexity and create models
that are not useful for implementation. As a result,
their predictive ability and use in control was less
effective. Such limitations must be rigorously quanti-
fied [23,57] to understand the quality of answer that
any given model can provide.

How do we know that a model is good? Prediction and
validation
Making suitable assumptions and choosing a desired
degree of approximation do not naturally generate a
“good” model. Similarly, being able to find model para-
meters that ensure it fits a set of clinical data does not
make a model valid, except to show that it can capture
the dynamics observed clinically. It is critical to validate
the model to determine if its performance is acceptable
for its intended application.
For designing and/or implementing model-based

TGC, where the model is directly used to provide
patient-specific advice, it is necessary to ensure the
models ability to:

• For design: predict the overall glycemic outcomes
(median and variation) of patients and/or cohorts
for a (simulated) protocol [44,46]
• For implementation: predict the glycemic outcome
of a clinical intervention during a relevant 1- to
4-hour timeframe typical of TGC intervention fre-
quencies [24,38,46,47,49,50,71,72].
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These metrics define validity in its ability to capture
patient-specific behaviors to a clinically acceptable level
(approximately equivalent to measurement error). Errors
thus reflect model limitations.
To date, only two ICU focused metabolic model struc-

tures have been validated with respect to individual
patient-specific predictions (for implementation and
design) [23,24,39,44,46]. Only one has been validated for
cohorts [46].
The specific models in these studies define the criti-

cally ill patients by their time varying counter-regulatory
and inflammatory status, as seen metabolically via their
overall insulin sensitivity or metabolic balance that can
vary hourly in acute cases, as illustrated in Figure 2. All
other parameters were set at population constants fol-
lowing detailed parametric sensitivity studies based on
assessing parameters impact on predictive performance
[23,24,48]. Hence, the models provide median blood glu-
cose prediction errors for specific interventions that are
less than 3-4%. When an independent clinical protocol
was simulated on virtual patients created the median
cohort and patient glycemia and its variation were cap-
tured to within 3% and 5% respectively compared with
the original clinical data (see [46] and appendix). Hence,
validate the models and modeling approach, as well as
show how they capture, through one main parameter,
the metabolic dynamism of the critically ill patient.

Why use models? Patient-specific insight and care from
available data
The time-scale for decision making in the ICU ranges
from 1-2 minutes in acute cases to hours for some
therapies, such as mechanical ventilation or TGC. It
often requires the synthesis of a wide range of patient-
specific data across a number of monitors, assays, and
physiological systems. Typically, clinicians apply their
experience and intuition to make diagnoses and develop
treatment plans, based on how they aggregate that data
and how it fits their mental model of what they are
observing. More specifically, they are using this data and
a mental model to estimate occult physiological vari-
ables (i.e., make a diagnosis or determine patient state)
and from that developing decisions for treatment. Given
the range of experience, intuition, and mental models
across clinicians, diagnosis is open to error and care can
be quite variable.
A validated and relevant physiological model can cre-

ate a more consistent, high-resolution physiological pic-
ture of the overall physiological system that also is
potentially more accurate than the clinician’s mental
model. In particular, computer models and methods
offer the ability to aggregate more data and to discern
subtle trends in data that may otherwise be easily
missed.

For model-based TGC, the patient-specific model vari-
able that determines patient-specific state and response
to therapy is the overall, whole body insulin sensitivity
[42,48,73]. This value is itself the average of the insulin
resistance of each particular organ, each of which is dif-
ferentially regulated in stress conditions and sets the
balance between insulin and nutrition inputs and out-
come glycemia. However, given the variations in patient
kinetics and levels of these inputs, it is very difficult, if
not impossible, for a clinician to review these and arrive
at an accurate assessment of its current value. But, with-
out such a value, optimal dosing of insulin, including
the effects of insulin saturation, for example, is not pos-
sible with any resolution.
Hence, the ability of a validated, physiologically rele-

vant model to provide a patient-specific value and its
potential variation in future offers unique insight and
potential to optimize interventions that is not otherwise
available [48,72,73]. Thus, validated, patient-specific
models can test these insights and proposed treatments
in silico, before application, improving safety. Because
they use existing data and can predict accurately they
offer the clinician a window on past and present beha-
viors, as well as a view of how to customize treatment
for optimal future behaviors.

What are the differences between computer-based,
model-based, and model-derived TGC? The model, the
implementation, and the level of patient-specificity
There are an increasing number of computer-based
TGC protocols that are not model-based [74-79] and
thus do not offer the same physiological insight or “pic-
ture.” They are, more accurately, an extension of proto-
colized care in that they take a protocol and put it on
the computer. Equally, such protocolized care provides a
cohort-based approach that is consistent ("one size fits
all”) but not necessarily patient-specific. Thus, the main
element that differentiates a model-based system is the
use of a physiologically relevant, validated model to cre-
ate a patient-specific picture of patient state and provide
patient-specific ("one method fits all”) advice.
A hybrid path uses what we denote “model-derived”

protocols. The only current example of this approach is
the SPRINT protocol [58]. This paper-based system was
created and optimized in silico by using clinically vali-
dated models and virtual patients [33,80]. However, it
provides patient-specific care, based on its design using
the model, within the paper-based abstraction used to
provide easy uptake in the ICU.
Hence, the critical difference is that model-based

methods implicitly enforce a protocol, but, in their
patient-specificity, translate the “one size fits all”
approach of a fixed protocol to a “one method fits all”
patient-specific form of care. For TGC these methods
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are already (increasingly) proven in both model-derived
[44,58] and model-based [36,47,48,52,53] formats. Their
success is due to their unique ability, when properly
modeled and validated, to provide much better, real-
time management of both intra- and inter-patient varia-
bility that typical non-model-based clinical protocols
cannot and, as a result, provide a level of care that is
beyond existing clinical protocols.

Summary
Models and model-based methods have a lot to offer in a
wide range of clinical areas in medicine, and in critical
care specifically. Using TGC as an example, they can
offer significant physiological insight into patient status
and behavior that are not readily available at the bedside
or part of the typical, clinical mental model. Hence, they
enable the means to develop and implement “one
method fits all” patient-specific approaches to diagnosis
and care. Their ability to reduce the impact of intra- and
inter-patient variability, within a protocolized framework
that reduces variability in care, can improve care and out-
comes for all patients. Hence, models and model-based
methods represent an important area of potentially
increasing significance to the practice of critical care
medicine, and TGC in particular, in the coming years.

Additional material

Additional file 1: Appendix: Metabolic System Model and Insulin
Sensitivity (SI). This file contains a full description of the metabolic
system model equations, their validation and physiological validity, the
methods to identify the model-based insulin sensitivity (SI) parameter, its
correlation to gold-standard tests, and, finally, the definition and
application of stochastic models of model-based insulin sensitivity (SI).
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