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Abstract

Background: Autopsy series commonly report a high percentage of coincident pathologies in demented patients,
including patients with a clinical diagnosis of dementia of the Alzheimer type (DAT). However many clinical and biomarker
studies report cases with a single neurodegenerative disease. We examined multimodal biomarker correlates of the
consecutive series of the first 22 Alzheimer’s Disease Neuroimaging Initiative autopsies. Clinical data, neuropsychological
measures, cerebrospinal fluid Aβ, total and phosphorylated tau and α-synuclein and MRI and FDG-PET scans.

Results: Clinical diagnosis was either probable DAT or Alzheimer’s disease (AD)-type mild cognitive impairment (MCI) at
last evaluation prior to death. All patients had a pathological diagnosis of AD, but only four had pure AD. A coincident
pathological diagnosis of dementia with Lewy bodies (DLB), medial temporal lobe pathology (TDP-43 proteinopathy,
argyrophilic grain disease and hippocampal sclerosis), referred to collectively here as MTL, and vascular pathology were
present in 45.5%, 40.0% and 22.7% of these patients, respectively. Hallucinations were a strong predictor of coincident DLB
(100% specificity) and a more severe dysexecutive profile was also a useful predictor of coincident DLB (80.0% sensitivity
and 83.3% specificity). Occipital FDG-PET hypometabolism accurately classified coincident DLB (80% sensitivity and 100%
specificity). Subjects with coincident MTL showed lower hippocampal volume.

Conclusions: Biomarkers can be used to independently predict coincident AD and DLB pathology, a common finding in
amnestic MCI and DAT patients. Cohorts with comprehensive neuropathological assessments and multimodal biomarkers
are needed to characterize independent predictors for the different neuropathological substrates of cognitive impairment.

Keywords: Alzheimer’s disease, Mild cognitive impairment, CSF, MRI, Autopsy, Neuropathology, Dementia, Biomarkers,
Amyloid, Tau
Background
Studies based on clinical and neuropathological diagnoses
have shown that Alzheimer’s disease (AD) is the most
common cause of dementia [1-4]. However, there are
several neurodegenerative [5-8] and non-neurodegenerative
pathologies [1,9-12] that are known to contribute to
cognitive impairment and a dementia diagnosis. Different
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clinical dementia syndromes have degrees of clinico-
pathological correlation, therefore if clinical diagnosis
is used to estimate the accuracy of biomarkers and their
cutoffs, inaccurate results may occur [13-15]. In addition,
coincident neurodegenerative diseases (NDDs) and vascu-
lar pathology are common findings in subjects with AD in
autopsy series [1,9,14,16-18]. However, clinical studies of
dementia of the Alzheimer type (DAT) and other NDDs
assign a single primary clinical diagnosis to patients.
Accordingly, most biomarker studies are based on clinical
diagnoses and report results on subjects using a single
NDD diagnosis as the outcome. While the use of clinical
diagnoses is helpful for the screening and the evaluation
of new biomarkers, substantial follow up studies are
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needed to establish the performance of these biomarkers.
Such studies should include in the analysis consecutive
series of patients with NDDs and non-NDDs together
with multimodal biomarkers assessing their performance
in complex settings with several coincident diseases.
Previously, retrospective studies have analyzed the correl-
ation between neuropathological findings and CSF
[14,19,20], magnetic resonance imaging (MRI) [21-24] and
positron emission tomography (PET) [21,25-27]. Most of
these studies tried to categorize patients into a single diag-
nostic category. Here, we instead tried to assess how dif-
ferent combinations of biomarkers can detect different
coincident pathologies and therefore predict the different
combinations of neuropathological substrates of the cog-
nitive impairment in the studied subjects to help identify
homogeneous cohorts of patients for clinical studies and
clinical trials. This is especially true of clinical trials for
DAT in which one pathology is targeted for study such as
therapies that target Aβ or tau mediated mechanisms of
neurodegeneration. Thus, here we specifically tested cere-
brospinal fluid (CSF) biomarkers for the diagnosis of AD
(Aβ1-42, total tau (t-tau) and phosphorylated tau (p-tau181)
and dementia with Lewy bodies (DLB) (α-synuclein), MRI
hippocampal and occipital pathology for the diagnosis of
coincident DLB and medial temporal lobe (MTL) patholo-
gies and occipital hypometabolism for the diagnosis of
DLB. In addition, we tested the neuropathological associ-
ation of hallucinations, memory and executive dysfunc-
tion. For this study, we examined the first 22 patients in
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
who were longitudinally followed to death and underwent
postmortem examination.

Methods
Participants and neuropsychological testing
Data used in the preparation of this article, was downloaded
from the ADNI database August 19th 2013. The ADNI was
launched in 2004 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengin-
eering (NIBIB), the Food and Drug Administration, private
pharmaceutical companies and non-profit organizations as
reviewed elsewhere [28] (see additional information in
http://www.adni-info.org and Additional file 1: Table S1).
Here, we focused on the first 22 ADNI subjects who came
to autopsy, i.e. 21 from ADNI 1 and one subject from ADNI
2 (Table 1 and Additional file 1: Table S3). A diagnosis of
MCI was established as previously described [29,30] and
DAT was based on the National Institute of Neurological
and Communicative Disorders and Stroke–Alzheimer’s Dis-
ease and Related Disorders Association criteria for probable
AD [29,31]. Summary composite executive and memory
measures developed by Gibbons et al. [32] and Crane et al.
[33], respectively, were used to estimate the cognitive profile
differences associated with the neuropathological diagnoses.
CSF biomarker collection and analysis
Baseline CSF samples were obtained using polypropylene
collection and transfer tubes in the morning after an over-
night fast and processed as described (Additional file 1)
[34,35]. Aβ1-42, t-tau, and p-tau181 were measured using
the multiplex xMAP Luminex platform (Luminex Corp,
Austin, TX) with Innogenetics (INNO-BIA AlzBio3; Ghent,
Belgium; for research use–only reagents) immunoassay
kit–based reagents. The capture monoclonal antibodies
used were 4D7A3 for Aβ1-42, AT120 for t-tau and AT270
for p-tau181. The analyte-specific detector antibodies were
HT7, for tau, and 3D6, for the N-terminus of Aβ (im-
munoassay performance details described in Shaw et al.
[35] and Additional file 1). For the α-syn assay, Luminex
MicroPlex Microspheres (Luminex Corp, Austin, TX)
were chemically coated with rabbit anti-α-syn antibody
ASY-1 and biotinylated goat anti-human α-syn antibody
(R&D systems, Minneapolis, MN, USA) was used as the
detection antibody [36,37].

Magnetic resonance imaging acquisition and processing
Acquisition of 1.5-T MCI data at each performance site
for the 21 ADNI 1 subjects followed a previously
described standardized protocol that included a sagittal
volumetric 3D MPRAGE with variable resolution around
the target of 1.2 mm isotropically. The scans subjected
to several correction methods including gradwarp, B1
calibration, N3 correction, and (in-house) skull-stripping
(see http://adni.loni.usc.edu/ and [38] for further details).
The images were processed with a freely-available pipe-
line [39] (for software, see www.rad.upenn.edu/sbia).
Briefly, images were segmented into 3 tissue types: GM
white matter (WM), and CSF. After a high-dimensional
image warping to an atlas, regional volumetric maps for
GM, WM and CSF were created, referred to herein as RA-
VENS maps. RAVENS maps are used for voxel-based ana-
lysis and group comparisons of regional tissue atrophy, as
well as for constructing an index of AD brain
morphology.

FDG-PET acquisition
FDG-PET data was acquired and reconstructed with the
use of measured-attenuation correction and the specified
reconstruction algorithm for each scanner type according
to a standardized protocol (http://adni.loni.usc.edu/data-
samples/access-data/). All images were pre-processed
by ADNI PET Coordinating Center investigators at the
University of Michigan and uploaded to the LONI
ADNI website. These images were downloaded by inves-
tigators at Banner Alzheimer’s Institute for additional
pre-processing using SPM5 (http://www.fil.ion.ucl.ac.uk/
spm) for computation of the HCI, for voxel-wise group
comparison and by the investigators at U. Penn for the
primary FDG-PET measure of left/right occipital regions.

http://www.adni-info.org/
http://adni.loni.usc.edu/
http://www.rad.upenn.edu/sbia
http://adni.loni.usc.edu/data-samples/access-data/
http://adni.loni.usc.edu/data-samples/access-data/
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


Table 1 Subject characteristics

AD AD +MTL
pathology

AD + DLB AD +DLB +MTL
pathology

p-value

n = (7) n = (5) n = (6) n = (4)

Longitudinal clinical
diagnosis

1 CN to MCI 1 MCI stable 1 MCI to DAT 2 MCI to DAT -

2 MCI stable 3 MCI to DAT

1 DAT 5 DAT 2 DAT2 MCI to DAT

2 DAT

Neuropathological
diagnosis

1 LNC AD 1HNC AD +MTL-TDP 1 HNC AD + DLB 1 DLB-LNC -

3 HNC AD AD + AGD

3 HNC AD + SVD-I 2 LNC AD + AGD
+MTL-TDP

3 HNC 1 DLB- LNC AD
+MTL-TDP

2 HNC AD + DLB
+MTL-TDP

1HNC AD + AGD
+MTL-TDP + HS

1HNC AD + AGD
+MTL-TDP + HS + SVD-I

AD- + DLB

1 HNC AD-DLB + SVD-I

1 DLB + LNC AD

Age at death (years) 2 80 (77–83) 86 (82–88) 80.5 (72.25-83.75) 81 (77.75-84.75) 0.41

Gender (n male/total) 3/7 4/5 6/6 4/4 1.0

Education (years) 1 15.4 (2.4) 15.0 (2.4) 16.1 (2.6) 14.0 (2.3) 0.62

Baseline visit to death
(weeks) 2

240.7 (98.7-256.8) 181.9 (108.4-289.0) 136.5 (80.9-278.3) 234.9 (189.1-257.1) 0.72

APOE ε4 (n positive/total) 4/7 1/5 5/6 1/3 0.18

ADAS-Cog (13 item)
baseline 2

20.0 (10.3-28.0) 22.0 (17.7-29.0) 33.3 (18.0-54.7) 30.3 (25.3-35.0) 0.041

Aβ1-42 (pg/mL) 2 134.0 (86.0-261.0) 249.0 (123.0-261.0) 138.0 (82.0-152.0) 171.0 (134.0-201.9) 0.59

T-Tau (pg/mL) 2 141.5 (60.0-274.0) 65.0 (55.0-89.0) 88.0 (37.0-154.0) 73.0 (56.0-103.6) 0.61

P-Tau181 (pg/mL) 2 51.0 (17.0-70.0) 22.0 (12.0-33.0) 28.0 (11.0-45.0) 21.0 (19.0-24.0) 0.32
1Mean (Standard Deviation); 2Median (Minimum-Maximum).
AGD: Argyrophilic grain disease; SVD-I: Small vessel disease (arteriolosclerosis and/or cerebral amyloid angiopathy) and one or more infarcts); HNC AD: High
neuropathologic change Alzheimer’s disease; HS: Hippocampal sclerosis; LNC AD: Low neuropathological change Alzheimer’s disease; MTL-TDP: TDP pathology
circumscribed to the medial temporal lobe.
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HCI is a summary measure that reflects how the pattern
and magnitude of cerebral hypometabolism in an indi-
vidual’s FDG-PET image corresponds to that in probable
AD patients. It was computed as previously described
[40]. In addition to this global single index and as our
primary FDG-PET measure, the relative cerebral metabolic
rate for glucose (CMRgl) from anatomically predefined
left and right occipital regions of interest (ROIs) was
also extracted with global counts as reference region.
Group comparisons were carried out also using a voxel-
wise two-sample independent t-test implemented in
SPM5 accounting for the whole brain PET counts
variations using proportional scaling.

Neuropathological procedures and diagnosis
The ADNI Neuropathology Core (ADNI-NPC) was funded
and established at Washington University in St. Louis
in September 2007; therefore no autopsies were performed
on deceased ADNI subjects prior to this time. Established
procedures for obtaining informed consent for autopsy
and the autopsy procedures has been previously de-
scribed [41]. Briefly, participating centers undertake their
own brain assessment and provide standard sets of fixed
tissue blocks/sections and frozen sections to the ADNI-
NPC or send the brain to the ADNI-NPC if the center
does not routinely perform neuropathological assessments.
Formalin-fixed paraffin embedded tissue blocks are
obtained from the left cerebrum for the following 16
areas: middle frontal gyrus, superior and middle temporal
gyri, inferior parietal lobe (angular gyrus), occipital
lobe to include the calcarine sulcus and peristriate cortex,
anterior cingulate gyrus at the level of the genu of the
corpus callosum, posterior cingulate gyrus and precuneus
at the level of the splenium, amygdala and entorhinal
cortex, hippocampus and parahippocampal gyrus at the
level of the lateral geniculate nucleus, striatum (caudate
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nucleus and putamen) at the level of the anterior commis-
sure, lentiform nucleus (globus pallidus and putamen),
thalamus and subthalamic nucleus, midbrain, pons, me-
dulla oblongata, cerebellum with dentate nucleus and
spinal cord when available.
Sections from the different blocks were stained using

hematoxylin and eosin and a modified Bielschowsky
silver impregnation; immunohistochemistry (IHC) was
performed using antibodies to ubiquitin (Dako, Carpinteria,
CA), phosphorylated tau (PHF1, a gift from Dr. P. Davies,
Albert Einstein College of Medicine, Yeshiva University,
NY), Aβ (10D5, Eli Lilley, Indianapolis, IN), phosphorylated
α-synuclein (Wako, Richmond, VA), and phosphorylated
TDP-43 (Cosmo Bio, Carlsbad, CA) using methods previ-
ously described [41]. The neuropathological diagnosis for
each case was determined in accordance with previously
described criteria [7,42] for the pathological diagnosis of
AD using the diagnostic nomenclature of the National
Alzheimer’s Coordinating Center for diagnostic neuropath-
ology [43] (DAT refers to the clinical diagnosis, whereas
AD refers to the neuropathological diagnosis in this manu-
script). Notably, this allows for a single primary neuro-
pathological diagnosis and any other coincident secondary
neuropathological diagnoses in addition to the primary
neuropathological diagnosis [43]. In addition, Braak neuro-
fibrillary tangle (NFT) staging [44], Consortium to Establish
a Registry for AD (CERAD) scores [45], semiquantitative
ratings for neuritic and diffuse plaques, Lewy body disease
stage and the probability of DLB [46] were recorded. The
Cairns et al. [47] and Mackenzie et al. [6] criteria and the
National Institute on Aging-Alzheimer’s Association guide-
line [48] were applied for the diagnosis of frontotemporal
lobar degeneration (FTLD) and AD, respectively. Due to
the small number of cases and the heterogeneity of diagno-
ses, we grouped HS, AGD and MTL-TDP deposition under
the category MTL pathologies. In addition, five cases had a
pathological diagnosis of SVD-I.

Statistical analysis
For the comparison of the four diagnostic groups listed
in Table 1 Kruskall-Wallis test was applied to non-
normally distributed variables and ANOVA was applied
for those with a normal distribution. For further ana-
lyses, a Box-Cox transformation was applied to non-
normally distributed variables and parametric tests were
applied. To analyze association between two quantitative
variables, Pearson correlation coefficient was used. Braak
stages were dichotomized into a low (I/II) and high (V/
VI) group. A logistic regression model was applied for
multivariable analyses in case of a binary dependent vari-
able (DLB positivity, e.g.) or a linear regression in case
of quantitative dependent variables. Cutoffs for classifi-
cation models were selected to maximized sensitivity
and specificity. All statistical tests were two-sided. Most of
our analyses were specified a priori based on previous
findings (occipital hypometabolism in DLB and differences
in hippocampal volume) and were not corrected for mul-
tiple comparisons. For multiple comparison adjust-
ment of tests not based on an a priori hypothesis,
the Holmes correction was used for non-imaging
(i.e. for the cognitive tests) or non voxel-based im-
aging data. Statistical significance was set at the p < 0.05
level. For secondary voxel-wise analysis, uncorrected
p = 0.005 was used.

Results
Brain donation status in ADNI and ADNI autopsy rates
Information about the participation in the brain donation
program is available on a total of 1119 ADNI subjects
(who were recruited in ADNI-1, ADNI-GO and ADNI-2):
653 subjects have made a decision to donate their
brains at death, 5 are reviewing the information and 461
have not made a decision. Of the 653 who have made a
decision, 139 (21.1%) are not participating in the autopsy
program. The main reason not to take part in this brain
donation program was the unwillingness of the subjects in
59 cases, followed by the lack of logistics in the study site
in 31 cases, the participation of the patient in another
autopsy program in 15 cases, the inconvenience and
burden for the family in 9 cases and religious reasons
in another 9 cases. Of the 514 cases who agreed to
participate, 327 signed the provisional consent, 61 are
reviewing the form and for 126 subjects the form will
be completed at time of autopsy. Finally, 285 of the 461
subjects who have not made a decision have been given
information about the program and 176 have not been
approached. Up to the data download time on 17 August,
2013 there were 61 known deceased ADNI subjects,
although deaths that occurred in subjects lost to follow-up
is not always known. We compared the ADNI 1 subjects
who died and came to autopsy to those who died with an
autopsy and those that remain alive (or were lost to
follow-up and no information about death is available).
Dead patients who died without autopsy or remained alive
were less cognitively impaired that those that came to
autopsy (Additional file 1: Table S2).

Neuropathological findings
The primary neuropathological diagnosis was AD for 19
cases and DLB for 3; all 22 cases met diagnostic criteria for
AD, including 12 who were clinically diagnosed with mild
cognitive impairment (MCI) due to AD (Table 1). However,
only 4 cases had a single AD neuropathological diag-
nosis, whereas all other cases had two or more
neuropathological diagnoses, with AD and DLB being
the most common comorbidities (10 cases). Other co-
incident diagnoses included: small vessel disease with
infarcts (SVD-I), argyrophilic grain disease (AGD),



Toledo et al. Acta Neuropathologica Communications 2013, 1:65 Page 5 of 13
http://www.actaneurocomms.org/content/1/1/65
MTL-TDP and hippocampal sclerosis (HS). In addition, 5
cases had coincident SVD-I. The TDP pathology was
confined to amygdala, entorhinal cortex and dentate gyrus
in all AD+DLB+MTL-TDP cases. In the AD+MTL path-
ology group TDP pathology was confined to amygdala, en-
torhinal cortex and dentate gyrus in two cases, one case
had a low degree of TDP pathology in CA 1 region
and the last case had a low degree of TDP pathology
in CA1 and neocortical regions. For the purpose of this
study subjects were grouped into AD and AD+DLB (irre-
spective of which one was the primary diagnosis). These
groups were further stratified based on the absence or
presence of additional comorbidities affecting the
MTL as summarized in Table 1. All cases except one
AD+DLB case (without any cerebral amyloid angiopathy)
had mild or moderate cerebral amyloid angiopathy. Four
cases in the AD group had severe atherosclerosis
whereas other cases had none or mild atherosclerosis.
A detailed neuropathological description of all 22 cases
can be found in Additional file 1: Table S3 and ‘heatmaps’
that summarize the neuropathological findings in the dif-
ferent groups are displayed in Figure 1. The only clinical
difference between groups was a greater cognitive im-
pairment as measured by the ADAS-Cog in the AD +
DLB and AD + DLB +MTL-TDP groups compared to
the AD and AD +MTL-TDP groups (Table 1).

Clinical findings
At baseline, there were one cognitively normal subject
(CN), eleven MCI and ten DAT patients. At the last visit
prior to death, the CN subject had converted to MCI
and eight MCI subjects had converted to DAT. All 18
subjects who died with a dementia diagnosis were diag-
nosed as DAT probable and the 3 stable MCI and the
single CN subject who converted to MCI were diag-
nosed as MCI due to DAT. One amnestic MCI patient
was noted to have depression which required drug treat-
ment and three patients had parkinsonian signs (their
neuropathological diagnoses were AD + DLB, AD +
DLB +MTL-TDP and AD +MTL-TDP). Finally, the
patient with AD + SVD-I + AGD +MTL-TDP + HS had
significant behavioral impairments.
Whereas most of the subjects in the four groups were

demented in their last visits before death, the degree
of impairment varied between the groups at the baseline
visit. Therefore, we compared neuropsychological per-
formance at the last neuropsychological evaluation before
death (median time between last visit and time of death
49.6 weeks, interquartile range 30.1-102.7 weeks) (Table 2).
Higher Braak stages were associated with worse memory
sum score (t = −3.04, padjusted = 0.026) (Figure 2a) and
coincident DLB (t = −3.06, padjusted = 0.024) was associated
with worse executive function (Figure 2b). No associations
were found for SVD-I and/or MTL-TDP. Finally, we
developed a mismatch score subtracting the executive sum-
mary score from the memory summary score. Therefore,
subjects with a positive score would show predominant
dysexecutive profile, whereas subjects with negative values
have more severe memory impairment. The presence
of coincident DLB was associated with a higher score
(t = 3.7, p = 0.0015) and a mismatch cutoff score of
0.38 was associated with a sensitivity of 80.0% and a
specificity of 83.3% to detect the presence of coinci-
dent DLB pathology (Figure 2c). When we analyzed
the baseline visit the difference using the same cutoff
and the cutoff retained its specificity but the sensitiv-
ity dropped (Sensitivity 70.0% and Specificity 83.3%)
(Figure 2d).
There were no differences in the Neuropsychiatric

Inventory Questionnaire (NPI-Q) total score based on
the different neuropathological characteristics (Figure 2e,
Table 2). Conversely, there was a strong association
between the presence of hallucinations (item of the
NPIQ-Q) and a coincident DLB (p = 0.0002); all four
subjects who presented hallucinations in their last
visit had a DLB (Sensitivity of 40% and specificity of
100%).
CSF Biomarker findings
CSF Aβ1-42, t-tau and p-tau181 measurements were avail-
able for 15 of the 22 deceased ADNI patients (Additional
file 1: Table S3). As seen in Figure 3a all subjects had
NIA-AA criteria A score of 2 or 3 using the recent
NIA-AA criteria (For one subject Thal phase could
not be estimated) [48]. Three subjects had CSF Aβ1-42
values equal or above 240 pg/mL (two of these subjects
had a Braak stage I and the last one had a Braak stage II),
whereas the remaining patients had values below
202 pg/mL. Both t-tau (r = 0.59, p = 0.0195) (Figure 3b)
and p-tau181 (r = 0.70, p = 0.0035) (Figure 3c) correlated
with Braak stage. Neither the presence of coincident
DLB nor the presence of coincident MTL pathologies
showed an association with CSF biomarker levels. 13
subjects had CSF α-synuclein measurements, but no
differences were found for the α-synuclein p-tau181
mismatch (t = −1.31, p = 0.22) (Figure 3d) and α-synuclein
(t = −1.59, p = 0.16) (Figure 3e) based on the presence or
absence of DLB.
Neuroimaging findings
Due to the small number of autopsied patients with amyl-
oid neuroimaging PET scans, neither Pittsburgh B com-
pound (PiB) PET nor AV45 PET scans were analyzed. On
the other hand, 11 patients (Additional file 1: Table S3), 6
without DLB and 5 with comorbid DLB, had FDG-PET oc-
cipital lobe measures and 15 subjects had HCI measures
available from FDG-PET performed at the baseline visit.



Table 2 Association between neuropathological findings and neuropsychological and neuropsychiatric measures

Braak stage (I/II vs. V/VI) Comorbid DLB Comorbid MTL pathologies Comorbid SVD-I

Memory sum score t = −3.01 t = 0.29 t = −1.64 t = 0.80

p = 0.0070 p = 0.7795 p = 0.1198 p = 0.449

Executive function sum score r = −0.34 t = 2.70 t = −0.76 t = 1.15

p = 0.1326 p = 0.01423 p = 0.4553 p = 0.2922

NPI-Q r = −0.33 t = 0.65 t = 0.70 t = −0.76

p = 0.1632 p = 0.5239 p = 0.4928 p = 0.4553

P-values are adjusted for multiple comparisons.
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Consistent with previous reports [21,25,27], DLB patients
showed a significant right (t = −3.27, p = 0.0097) (Figure 4a)
and left (t = −4.47, p = 0.0016) (Figure 4b) occipital lobe
hypometabolism. After adjusting for ADAS-Cog score
only the left occipital hypometabolism was significantly
lower in the cases with DLB (right occipital metabol-
ism: t = −2.21, p = 0.058; left occipital metabolism: t = −2.32,
p = 0.041) and differences also remained significant after
adjusting for time to death (right occipital metabolism:
Figure 1 Heatmaps summarizing the semiquantitative neuropatholog
neurofibrillary tangles (NFT), Lewy bodies (LB) and neuronal citoplasm
neuropathologic diagnostic groups (from top to bottom: AD, AD +M
DLB +MTL pathology).
t = −3.78, p = 0.0054; left occipital metabolism: t = −4.67,
p = 0.0016). The same cutoff value of 1.48 showed a sensi-
tivity of 80% and a specificity of 100% to classify patients
with DLB based on either the left or right occipital re-
gions. Interestingly the AD-DLB case that was classified as
AD had the lowest burden of LBs that were circumscribed
to the amygdala, entorhinal cortex and midbrain, whereas
all the other cases were diffuse neocortical cases. In
addition, the presence of DLB (t = 2.54, p = 0.026), but not
ical grading (from left to right: diffuse amyloid plaques,
atic TDP-immunoreactive inclusions (NCI)) for the different

TL pathology, AD + DLB, AD + DLB +MTL pathology and



Figure 2 Clinical correlates. a) Memory and b) Executive summary composites in subjects stratified by Braak stage and presence of coincident
DLB and SVD-I. c) Last and d) Baseline visit executive-memory mismatch based on the absence or presence of coincident DLB and/or SVD-I.
e) NPI-Q total score based on neuropatholgically defined groups.
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higher Braak stage (t = 0.78, p = 0.44), was associated with
higher hypometabolic convergence index (HCI) values
(Figure 4c). This association remained significant when the
presence of a DLB diagnosis was further adjusted for
Braak stage (t = 2.47, p = 0.031), the ADAS-Cog score
at the time of scan (t = 2.32, p = 0.041) or time to
death (t = 2.71, p = 0.020). Finally, we conducted a sec-
ondary voxel-wise group comparison covarying out
ADAS-Cog score for disease severity and found sev-
eral hypometabolic areas with coincident DLB as
shown in Figure 5 and listed in the Additional file 1:
Table S5
We studied two MRI areas selected a priori using

the MRI gray matter (GM) volume adjusting for total
intracranial volume (ICV): the occipital lobe, based on
previous fluorodeoxyglucose (FDG)-PET findings, and the
hippocampal volume, based on previous MRI findings.
Neither left (t = 1.2, p = 0.24) or right (t = 1.48, p = 0.16)
hippocampal volume, nor left (t = −0.09, p = 0.93) or right
(t = 0.003, p = 1.0) occipital GM volume showed differ-
ences in subjects with coincident DLB in the baseline MRI
(Figure 4d-g). Finally, we repeated the analysis of the
MRI occipital and occipital GM volumes using different
visits per subject based on a matched ADAS-Cog score
(Additional file 1: Figure S1) and again found no group
differences (Additional file 1: Table S4). In addition,
there no correlation was found between the occipital
GM volume and the occipital FDG CMRgl (left occipital
lobe: r = 0.27, p = 0.42; right occipital lobe: r = 0.23, p =
0.50) (Figure 4h).
Finally, we tested the association of MTL-TDP on hip-

pocampal volume. Because the neuropathologically



Figure 3 CSF biomarker correlates. a) Aβ1-42 levels based on a) NIA-AA criteria A score and Braak score. b)T-tau and c) P-tau181 levels based on
Braak stage. d) α-Synuclein-p-tau181 mismatch and e) α-Synuclein based on presence or absence of coincident DLB and SVD-I.
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studied hemisphere was the left one, we only examined
the association with the left hippocampal volume using
MRI scan acquired at the times with matched clinical se-
verity. In the analysis that include Braak stage and pres-
ence of MTL-TDP there was a significant association
between left hippocampal atrophy and MTL-TDP (t =−2.75,
p = 0.013) and a trend with Braak stage (t = −1.86, p =
0.080) (Figure 4i).
Prediction of DLB pathology in the ADNI cohort
A total of 76 DAT patients and 139 MCI ADNI-1 subjects
had occipital lobe hypometabolism measures and 39.5%
and 11.5% of them had occipital hypometabolism below
the 1.48 cutoff, respectively. Of the 193 ADNI-1 DAT
subjects a total of 30.1% had a predominantly executive
cognitive impairment which would be characteristic of
non-DAT pathology.

Discussion
We performed a multimodal biomarker analysis of
consecutive ADNI subjects who came to autopsy after
longitudinal follow-up to death. Most of the subjects
were late amnestic MCI and probable DAT at baseline
visit, without any atypical clinical presentation. In addition,
subjects with vascular disease or a Hachinski Ischemic
Score >4 were excluded from the ADNI study [29].
Despite this, only four out of 22 subjects had a
neuropathological diagnosis of pure AD (13.6%), while
DLB, MTL-TDP and infarcts were present in 45.5%, 40.9%
and 22.7% of the patients, respectively. A predominantly
executive dysfunction was associated with the presence



Figure 4 Neuroimaging correlates. a) Right and b) Left occipital lobe FDG PET CMRgI stratified by presence or absence of coincident DLB and
their relationship to ADAS-Cog measure, c) FDG-PET HCI stratified by presence or absence of coincident DLB and its relationship to ADAS-Cog
measure. d) Left and e) Right occipital GM volume stratified by presence or absence of coincident DLB. f) Left and g) Right hippocampal volume
stratified by neuropathologically defined groups. h) Occipital lobe GM volume and FDG PET CMRgI. i) Left hippocampal volume stratified by
Braak stage and coincident MTL pathology.

Toledo et al. Acta Neuropathologica Communications 2013, 1:65 Page 9 of 13
http://www.actaneurocomms.org/content/1/1/65



Figure 5 Statistical cortical surface map for voxel-wise group
comparison between subjects with and without DLB covarying
out the effects of ADAS-Cog. Brain areas of significant
hypometabolism in DLB were shown with an uncorrected threshold
of p≤ 0.005.
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of DLB and hallucinations, as recorded in the NPI-Q.
CSF fluid Aβ1-42, t-tau and p-tau181 were associated with
the phosphorylated tau (neurofibrillary tangle) Braak stage
and the NIA-AA criteria A score, but not with other
pathologies. Baseline occipital hypometabolism accurately
predicted the presence of DLB pathology, whereas MRI
GM occipital atrophy did not. MTL-TDP and AGD were
associated with greater hippocampal atrophy.
Despite the neuropathological heterogeneity of the

patients, all the demented subjects had a DAT probable
clinical diagnosis and the MCI patients had and AD-like
profile; three subjects had parkinsonian signs, of those
two had DLB pathology and one did not. Therefore, an
overall classical DAT presentation does not rule out the
presence of coincident vascular disease or other neurode-
generative disease even in the presence of CSF and PET
amyloid imaging findings compatible with AD pathology.
This is not surprising because memory impairment is the
most common presenting clinical symptom of clinically
diagnosed DLB (cDLB) patients (with confirmed abnormal
dopamine transporter imaging) [49] and most of the DLB/
AD+DLB cases were diagnosed as DAT, showing a low
sensitivity of the clinical criteria, at least in this small
series [50]. One difference between our study and other
previous studies is that we did not include any patients
with a cDLB diagnosis and patients with coincident DLB
in our study had a typical DAT profile. Nevertheless, we
found two clinical markers that were highly predictive of
coincident pathologies: a predominant dysexecutive syn-
drome and the presence of hallucinations. A previous
neuropathological study found a high specificity of visual
hallucinations in DLB (with a prevalence of 1% early in the
course of AD), although prevalence of visual hallucinations
was low and therefore not was not a sensitive biomarker
[51]. In our study, we found that during the progression of
disease a prominence of dysexecutive impairment in the
presence of an amnestic profile is a marker for coincident
DLB. This is consistent with a previous study that described
a worse executive function in subjects with DLB and worse
memory in patients with AD, although no classification
performance was reported [52]. However, a predominantly
disexecutive syndrome might not be a specific biomarker
and other NDDs like frontotemporal lobar degeneration
could have a similar profile.
Currently, Aβ amyloid PET imaging and CSF Aβ1-42 are

the most widely accepted research biomarkers for AD
which have shown an important correlation with brain Aβ
amyloid deposition [20,26,53] and with each other [54].
Confirming the results of our previous study in which one
fourth of the patients had coincident pathologies [14],
mainly DLB, and studies for other groups [19], CSF
Aβ, t-tau and p-tau181 levels can reliably predict AD path-
ology even in the presence of other coincident pathologies
and subjects with Aβ levels above the published cutoff
[34] had a low burden of AD.
Three studies with FDG-PET and several neuropa-

thologically confirmed cases have previously reported
occipital FDG-PET hypometabolism independent of coin-
cident AD: Albin et al. included three DLB and three with
AD+DLB [25], Kantarci et al. included 2 AD and 3 DLB
(and a larger number of clinically diagnosed cases) [21]
and Minoshima et al. included 7 AD+DLB, 4 DLB and 10
AD (and a larger number of clinically diagnosed cases)
[27]. The last study reported a sensitivity of 90% and a
specificity of 80% for the diagnosis of DLB with or without
AD based on hypometabolism in the occipital cortex [27].
Kantarci et al. carried out a study mostly based on clinic-
ally diagnosed patients, and they described an area under
the curve (AUC) in the receiver operating characteristic
(ROC) of 0.84 for the FDG-PET with cDLB patients show-
ing an occipital hypometabolism independently of Aβ de-
position measured by PiB PET [21]. In our study, we found
an 80% sensitivity and a 100% specificity based on occipital
FDG-PET hypometabolism. All of our DLB subjects had
coincident AD and this did not affect the accuracy of the
classification. In addition, the only DLB case that was clas-
sified as non DLB by the occipital FDG-PET cutoff was
the only one that did not have diffuse neocortical LBs.
The percentage of predicted DLB pathology in the
ADNI-1 DAT subjects was similar to the one observed in
the autopsied subjects. Interestingly, it has been sug-
gested that occipital hypometabolism might be an pre-
clinical biomarker of DLB [55]. On the other hand,
functional neuroimaging approaches that measure striatal
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dopaminergic innervation and myocardial sympathetic
nerve integrity might be more specific to changes associ-
ated with LB pathology, specially the latter which cap-
tures postganglionic denervation which is present in PD
and DLB patients, but not in patients with other atypical
parkinsonisms [56]. However, doing these additional tests
would increase the, cost, time and inconvenience for pa-
tients, whereas FDG PET is also helpful for the differential
diagnosis in non-parkinsonian syndromes. Therefore a
FDG PET measure that specifically predicts coincident
DLB pathology would be preferable. The voxels that con-
tribute to HCI are located in temporal, occipital and par-
ietal cortices and it might be possible that the association
with HCI with the presence of DLB and not Braak
stage might reflect that this measure is also capturing
the posterior cortical metabolism characteristic of DLB.
Nevertheless, the AD group without DLB was less im-
paired at baseline and we did not analyze the FDG PET
scans that were matched for clinical severity.
Neither our study nor others have found occipital lobe

atrophy in cDLB or DLB [21,23]. In addition, we found no
differences in hippocampal volume based on the presence
of coincident DLB. Conversely, it has been reported that
cDLB patients have similar hippocampal volume as CN
subjects but lower hippocampal volume than DAT patients
with an high diagnostic accuracy [21] and that a semiquan-
titative visual rating of MTL MRI atrophy had a high
accuracy to classify AD against DLB and pathologically
diagnosed vascular cognitive impairment patients [24].
The definition of the DLB group might explain these
differences. For example, the study by Burton et al.
included cDLB diagnosis patients [24] and the multi-
modal study by Kantarci et al. was mostly comprised of
cDLB patients [21], therefore it can be expected that the
pattern of atrophy is different in DLB with a cDLB diagno-
sis compared to those AD+DLB with a DAT diagnosis. In
addition, the study by Kantarci et al. described a large
sample of neuropathologically diagnosed subjects in
whom only DLB subjects with high DLB probability
as defined by McKeith criteria [46] had similar hippo-
campal volume as CN subjects, whereas intermediate
and low probability DLB had similar hippocampal at-
rophy as AD subjects [22]. Therefore, hippocampal
volume might not be a good marker of coincident
DLB in a cohort of DAT subjects.
Late MCI ADNI 1 patients and DAT patients recruited

in ADNI represent amnestic, cognitively impaired, subjects
without any cognitive signs or symptoms suggestive of
non-AD pathologies and a low vascular risk profile [29].
Therefore, these patients with multiple coincident path-
ologies represent the typical patients recruited in AD clin-
ical trials. These multiple coincident pathologies have
important implications for clinical trials and the approach
for treating patients. Studies of the brains of patients
treated with Aβ immunotherapy have shown a decrease of
total Aβ burden and a decrease of neurite curvature ratio
and a [57-59] and an increase of amyloid deposition in
neocortical blood vessels that might decrease over time
[59], without any strong effect on tau [57] or α-synuclein
[60] clearance. Therefore, multimodal biomarker ap-
proaches that aim to detect the different coincident
pathologies (instead to categorizing patients into a
single diagnostic category), will be needed to select
homogenous populations for protein-specific targeted
clinical trials and to tailor the treatment for each
patient.

Conclusions
In summary, our study of longitudinally assessed partici-
pants in ADNI who had biomarker and postmortem
neuropathology found the clinical diagnosis of DAT and
MCI due to AD was supported by a pathologic diagnosis
of AD in all cases, although some cases had low burden
of AD neuropathologic changes. Although this is a small
sample, this observation is consistent with the concept
that the clinical spectrum of AD represents a continu-
ous process. A large proportion of the ADNI AD
cases had heterogeneous comorbidities. Whereas CSF AD
biomarkers might be able to predict AD pathology
additional biomarkers (neuropsychological profile and
FDG-PET) were useful to predict coincident DLB and
therefore the combination is useful to predict both
pathologies. Hippocampal volume was not a useful bio-
marker to predict coincident pathologies in this type of
patients. These data have implications for the development
of biomarkers which are specific for coincident pathologies
in addition to AD and are able to establish the diag-
nosis of the different pathologies present in the sub-
ject. Finally, the presence of frequent comorbidities
may help to explain variance in biomarker, structural
and functional imaging data and be of utility in
explaining altered responses to proposed therapeutic
interventions.
Additional file
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