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Peroxiredoxins: hidden players in the antioxidant
defence of human spermatozoa
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Abstract

Spermatozoon is a cell with a precious message to deliver: the paternal DNA. Its motility machinery must be
working perfectly and it should be able to acquire fertilizing ability in order to accomplish this mission. Infertility
touches 1 in 6 couples worldwide and in half of the cases the causes can be traced to men. A variety of conditions
such as infections of the male genital tract, varicocele, drugs, environmental factors, diseases, smoking, etc., are
associated with male infertility and a common feature among them is the oxidative stress in semen that occurs
when reactive oxygen species (ROS) are produced at high levels and/or when the antioxidant systems are
decreased in the seminal plasma and/or spermatozoa. ROS-dependent damage targets proteins, lipids, and DNA,
thus compromising sperm function and survival. Elevated ROS in spermatozoa are associated with DNA damage
and decreased motility. Paradoxically, ROS, at very low levels, regulate sperm activation for fertilization. Therefore,
the regulation of redox signaling in the male reproductive tract is essential for fertility. Peroxiredoxins (PRDXs) play
a central role in redox signaling being both antioxidant enzymes and modulators of ROS action and are essential
for pathological and physiological events. Recent studies from our lab emphasize the importance of PRDXs in the
protection of spermatozoa as infertile men have significant low levels of PRDXs in semen and with little enzymatic
activity available for ROS scavenging. The relationships between sperm DNA damage, motility and lipid peroxidation
and high levels of thiol-oxidized PRDXs suggest the enhanced susceptibility of spermatozoa to oxidative stress and
further support the importance of PRDXs in human sperm physiology. This review aims to characterize PRDXs,
hidden players of the sperm antioxidant system and highlight the central role of PRDXs isoforms in the protection
against oxidative stress to assure a proper function and DNA integrity of human spermatozoa.
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Résumé

Le spermatozoïde est une cellule qui porte un précieux message à délivrer : l’ADN paternel. La machinerie qui lui
permet de se mouvoir doit fonctionner parfaitement et il doit avoir acquis ses capacités fécondantes afin
d’accomplir sa mission. L’infertilité touche 1 couple sur 6 dans le monde, et dans la moitié des cas l’homme est en
cause. Différentes conditions, telles que les infections du tractus génital masculin, la varicocele, les médicaments, les
facteurs environnementaux, certaines maladies, la cigarette, etc., sont associées à l’infécondité masculine. Un trait
commun à ces conditions est le stress oxydant dû sperme qui survient quand les dérivés actifs de l’oxygène (DAO)
sont générés à des niveaux élevés et/ou quand les systèmes anti-oxydants sont diminués dans le plasma séminal
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et/ou dans les spermatozoïdes. Les dommages liés aux DAO touchent les protéines, les lipides, et l’ADN, ce qui
compromet la fonction et la survie des spermatozoïdes. Des taux élevés de DAO dans les spermatozoïdes sont
associés à une altération de l’ADN et à une diminution de leur mobilité. De façon paradoxale, les DAO à faibles
concentrations contrôlent l’activation des spermatozoïdes lors de la fécondation. Ainsi la régulation de la
signalisation redox dans le tractus génital masculin est essentielle pour la fécondité. Les peroxyrédoxines (PRDXs)
jouent un rôle central dans la signalisation redox en étant à la fois des enzymes anti-oxydants et des modulateurs
de l’action des DAO, se révélant ainsi essentielles aux processus pathologiques et physiologiques. Les travaux
récents de notre laboratoire soulignent l’importance des PRDXs dans la protection des spermatozoïdes ; en effet,
les hommes inféconds ont des taux significativement abaissés de PRDXs dans le sperme, avec une faible activité
enzymatique disponible pour l’élimination des DAO. Les relations entre l’altération de l’ADN des spermatozoïdes,
leur mobilité et la péroxydation des lipides, et les niveaux élevés de PRDX dont les résidus thiols sont oxydés
suggèrent une forte susceptibilité des spermatozoïdes au stress oxydant et soulignent l’importance des PRDXs dans
la physiologie des spermatozoïdes. Cette revue a pour objectifs de caractériser les PRDXs, acteurs cachés du système
anti-oxydant des spermatozoïdes, et de mettre en lumière le rôle des isoformes des PRDXs dans la protection
contre le stress oxydant pour assurer une fonction correcte et de préserver l’intégrité de l’ADN des spermatozoïdes
humains.

Mots clés: Dérivés actifs de l’oxygène, Stress oxydant, Fonction des spermatozoïdes, Infécondité masculine
Introduction
Infertility is an important human health problem that af-
fects ~15% of couples worldwide and the underlying
cause in half of these cases can be traced to men [1]. Ex-
cessive levels in spermatozoa of reactive oxygen species
(ROS) such as superoxide O •−

2

� �
, hydrogen peroxide

(H2O2), nitric oxide (NO•), the hydroxyl radical (HO•)
and peroxynitrite (ONOO-), which are mostly produced
in the sperm mitochondria [2] or by combination among
them (NO• and O•−

2 produce ONOO-) and become in-
jurious by-products of cellular metabolism [3-5], are as-
sociated with infertility [6-9]. Normally in somatic cells,
elevated levels of ROS are prevented by the presence of
a complex enzymatic antioxidant system involving
superoxide dismutase (SOD) that removes O•−

2 and cata-
lase (CAT; restricted to peroxisomes), glutathione perox-
idases (GPXs) and peroxiredoxins (PRDXs) that remove
H2O2. GPXs and PRDXs are capable of removing perox-
ynitrite (formed by the combination of O•−

2 and NO•).
The oxidative stress, a condition resulting of an exces-
sive production of ROS and/or a decrease in the antioxi-
dant defense system [10,11], may cause serious cell
injury and even cell death [11,12]. In the case of the
spermatozoon, the oxidative stress targets all cell com-
ponents decreasing sperm motility and mitochondrial
activity [13,14].
The infertile population has been increasing over the

past few decades. However, treatment efficacy is poor
because the underlying causes are unknown in 40-50%
of cases [15]. Oxidative stress is a common feature of
factors such as environmental pollutants, chemicals,
drugs, smoke, toxins, radiation, and diseases related
to infertility [16-19]. In such conditions, vital cell
components, such as proteins, lipids, and DNA, are oxi-
dized compromising cell function and survival [11,12].
ROS-mediated damage to sperm is a significant contrib-
uting factor in 30-80% of infertile men [6-9,20]. The
antioxidant system present in semen [21,22] is then not
sufficient to protect sperm from ROS-dependent damage
such as peroxidation of membrane lipids [23], DNA
fragmentation and oxidation of bases [24,25], low mito-
chondrial membrane potential [26,27] and inactivation
of enzymes associated with motility [28,29].
In an era where the artificial reproductive techniques

(ARTs), particularly the intracytoplasmic sperm injection
(ICSI), are on rising, it is essential to use a safe sperm
sample where the DNA integrity is not compromised.
Significant sperm DNA oxidation is found in infertile
patients and this type of damage has been associated
with a wide range of reproductive outcomes from mis-
carriages to deliver of a live child [7,30,31]. It is worri-
some the fact that a spermatozoon with significant DNA
damage can be fertilize and even allow embryo develop-
ment [31-33]. Therefore, it become a priority to perform
more studies to gather information on the causes and
consequences of oxidative DNA damage to avoid trans-
mitting defects to the child through ARTs such as ICSI.

ROS and male fertility
The transition from anaerobic to aerobic life came with
a cost; the generation of ROS, active species that when
produced at high amount promote cell dysfunction or,
in extreme cases, cell death [11,12]. However, ROS are
beneficial molecules involved in cell signaling [34-37].
This is also true for spermatozoa; low levels of ROS are
needed to accomplish capacitation, a process that the
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spermatozoon must undergo in order to achieve fertiliz-
ing ability [38-40]. During capacitation, ROS trigger and
modulate protein phosphorylation events in a time
dependent fashion [41,42].
The presence of antioxidant enzymes is important to

maintain low levels of ROS to avoid oxidative damage in
spermatozoa [43-45]. Although it is evident that sperm
function is regulated by redox signaling, how ROS pro-
duction and action is modulated for sperm activation is
still elusive. Semenogelin and zinc, present in high con-
centration in the seminal plasma, have been suggested
as inhibitors of premature sperm capacitation [46,47].
When capacitation takes place, these inhibitors are re-
moved from the spermatozoa to allow a rise of ROS that
will trigger the phosphorylation events that ultimate will
allow the spermatozoon to achieve the capacitated state
[48-50]. However, it is not known how the spermato-
zoon controls the levels of ROS to avoid the production
of an excess of this reactive substances and thus promot-
ing toxicity. Intracellular modulators of ROS production
and action are currently unknown; however, a hidden
family of antioxidant enzymes called peroxiredoxins
(PRDXs) may play a fundamental role in the regulation
of ROS action in spermatozoa.

Peroxiredoxins, a new family of enzymes with more than
antioxidant activity
PRDXs are ancestral SH-dependent, selenium- and
heme-free peroxidases highly expressed in virtually all
living species [51-53]. They are acidic proteins of ~20-
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Figure 1 Re-activation of PRDXs. (1) PRDXs scavenge H2O2 and become
thioredoxin (TRX)-TRX reductase (TRD) system that uses NADPH as reducing
of H2O2 (hyperoxidation) radically inactivates the enzyme allowing H2O2 lev
signaling. This inactivation must be transient to avoid toxic effects by high
re-activate PRDXs using ATP (P = phosphate group) (5). (6) Finally, donors o
31 kDa with one or two Cys residues at the active site,
which are required for their activity [54]. In contrast to
GPXs, PRDXs do not require metals ions for their activ-
ity [55-57]. They can reduce both organic and inorganic
hydroperoxides [58], and peroxynitrite [59,60] by coup-
ling with the thioredoxins (TRX) TRX reductase (TRD)
system [53,61,62] (Figure 1). PRDXs are direct targets
for H2O2 due to their SH and thus are readily oxidized
in cells exposed to low H2O2 levels [63-66]. PRDXs react
with H2O2 as fast as GPXs [66,67]; but PRDXs are
known as the dominant peroxide-reducing enzymes in
somatic cells [67-69].
PRDXs are regulators of redox signaling [35,52,70,71].

The 2-Cys PRDXs are hyperoxidized to sulfinic acid and
inactivated by H2O2 in diverse eukaryotes from yeast to
mammals [35,37,52,70,72]. Hyperoxidized PRDXs are re-
activated by the sulfinic acid reductases sulfiredoxin
(SRX) and sestrins [72-75] (Figure 1). The present hy-
pothesis states that once PRDXs are hyperoxidized,
H2O2 concentration increases allowing the transmission
of the signal [53,62]. Then, PRDXs are re-activated by
SRX and sestrins [72-76] and scavenge H2O2.
PRDXs are involved in processes such as cell cycle

regulation, apoptosis, aging and cancer [77-79]. Animals
lacking the PRDX1 gene are tumor prone [80], and
their tissues contain elevated levels of damaged DNA
[81]. Additionally, cellular senescence is accelerated in
Prdx2−/− mouse embryonic fibroblasts [82]. Spermatozoa
from Prdx6−/− mice are susceptible to oxidative stress
[83]. PRDX4 is present in testis as two isoforms of 27
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Figure 2 Differential immunolocalization of PRDXs in human
spermatozoa. Spermatozoa were permeabilized or not with
methanol and incubated overnight with the specific antibody
against each PRDX and then with the corresponding biotin-labelled
anti-mouse or anti-rabbit antibody followed by streptavidin
conjugated to Alexa Fluor 555 [42]. The fluorescence obtained with
the second antibodies and the Alexa Fluor 555-conjugated
streptavidin alone was low and only at the level of the sperm head
and equatorial segment (data not shown).
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and 31 kDa [84]; the p27 form is found in the plasma
membrane, cytosol and acrosome of human spermato-
zoa, whereas p31 is found in the head fraction, particu-
larly in the acrosome (Figure 2, Table 1) [85]. The
differences in solubility after treatment with detergents
such as TritonX-100 (p27 isoform is soluble and p31 in-
soluble) [85] suggest differences in function; p31 is asso-
ciated with the formation of the acrosome in the rat [84]
and both isoforms are present in the perinucler theca of
human spermatozoa [85]. Although the specific role of
PRDX4 isoforms in these sperm structures is still un-
known, it is possible to speculate that p27 may partici-
pate in the regulation of ROS levels and p31 function as
a structural protein of the acrosome and perinuclear
theca. Noteworthy, PRDX4 appears to have a protective
role because mice lacking this isoform have testicular at-
rophy and increased sperm DNA damage [86].
The major role of PRDXs as H2O2 scavengers and sen-

sors [10,35,37] is emphasized by their wide sub-cellular
distribution (cytosol, nucleus, mitochondria, endoplas-
mic reticulum and plasma membrane [53,62,95-99]. Our
results show that the same situation occurs in human
spermatozoa (Figure 2 and Table 1) [85]. PRDXs are dif-
ferentially distributed in all subcellular compartments of
human spermatozoa; remarkably, at least two members
of the family are present in each compartment (Table 1)
[85]. This striking finding highlights the importance of
PRDXs in sperm as major protectors against oxidative
stress damage in spermatozoa and potentially key players
on the regulation of the local action of ROS to sustain
sperm function.
It is worth to mention that PRDX6 is highly abundant

and the only member of the family present in all the
subcellular compartments of human spermatozoa and to
react with H2O2 at levels that promotes sperm capacita-
tion [85], indicating that PRDX6 might be major player
in the regulation of sperm activation.
Traditionally, it is considered that CAT and GPXs are

the major if not the unique antioxidant enzymes to pro-
tect spermatozoa. This statement was supported by
measuring the enzymatic activity by using either H2O2

(for CAT) or organic hydroperoxides in a reaction with
GSH and coupled with glutathione reductase/NAPDPH
system to re-cycle the GSSG to GSH (for GPXs). Then,
the decay of absorbance due to H2O2 or NADPH con-
sumption is considered as a measurement of CAT or
GPX activities, respectively. Because active PRDXs are
present in human spermatozoa [43,85], caution must be
taken when these assays are use to determine antioxi-
dant enzymatic activities in these cells. PRDXs can ac-
count for the enzymatic activity obtained using these
assays as they can use H2O2 or organic hydroperoxides,
NADPH and GSH for their activity. The use of
inhibitors such as carmustine (inhibitor of glutathione
reductase (GRD)) and diethylmaleate (binds to GSH
making it non-accessible for GPX/GRD system) are use-
ful to determined specifically PRDX activity [100].



Table 1 Distribution of the known antioxidant enzymes in subcellular compartment of human spermatozoa

Plasma membrane Cytosol Acrosome Nucleus Equatorial segment Midpiece Flagellum

PRDX2 PRDX4 (p27) PRDX2 PRDX1 PRDX1 PRDX2 PRDX1

PRDX4 (p27) PRDX6 PRDX4 (p27, p31) PRDX2 PRDX5 PRDX3 PRDX2

PRDX5 Cu/ZnSOD PRDX5 PRDX3 PRDX6 PRDX5 PRDX3

PRDX6 TRX1 PRDX6 PRDX4 (p27, p31) TRX1 PRDX6 PRDX6

TRD1 SPTRX1 PRDX5 MnSOD SPTRX1

TGR SPRTX2 PRDX6 GPX4 (inactive) SPTRX2

TGR GPX4 (inactive?) TRX2 TRX-like 2

SPRTX1 SPTRX1 TGR

SPTRX2 SPTRX2

TRX1 TRD2

TGR TGR

References for enzymes listed above: PRDXs [85] and Figure 2, Cu/ZnSOD and MnSOD [87], GPX4 [88,89], SPTRX1 [90-92], SPTRX2 [90,91,93], TRX2 and TRX-like-2
[91,94], TRD1, TRD2 and TGR [90,91].
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Based on our findings and on what was explained
above, it can be concluded that PRDXs are the first line
of defence against H2O2 and other ROS (hydroperoxides,
peroxynitrite) for human spermatozoa because their
H2O2 scavenging capacity [101] (Table 2) does not seem
to involve CAT (peroxisomes that contain the enzyme
are eliminated from germ cells during spermatogenesis
[102], and sodium azide (catalase inhibitor) did not re-
duce that H2O2 scavenging capacity (Table 2) or in-
creased the level of sperm lipid peroxidation (Figure 3)).
Glutathione peroxidase 2, 3 and 5 are not found in hu-

man spermatozoa, testes or seminal plasma [104,105] and
GPX4 is part of the mitochondrial sheath and it is enzymat-
ically inactive in mature spermatozoa [88,89,106]. The role
of GPX1 in human sperm is controversial because GPX1
activity was measured using cumene hydroperoxide and
NADPH [107], substrates also used by PRDXs. In any case,
the participation of GPXs in the antioxidant protection of
human spermatozoa might be limited since treatment with
diethylmaleate or with carmustine, do not increase the level
of lipid peroxidation (Figure 3). Therefore, at least for hu-
man spermatozoa, oxidative stress and the associated dam-
age is handled by PRDXs isoforms.

Peroxiredoxins and male infertility
Human spermatozoa are highly sensitive to ROS [9,14,108].
This particularity is due to high content of polyunsaturated
Table 2 Sperm H2O2 scavenging capacity is not
prevented by sodium azide, inhibitor of catalase

Units/108 spermatozoa

Sperm extract 2.2 ± 0.4

Sperm extract + 50 μM NaN3 2.6 ± 0.3

One unit of H2O2 scavenging capacity is defined as the quantity of
spermatozoa capable of decreasing the amount of H2O2 present in solution by
50%. Results obtained from 3 healthy donors.
fatty acids in the plasma membrane, target for extensive
oxidation, little cytoplasm and thus low capacity for antioxi-
dant protection by cytoplasmic enzymes (e.g. Cu-Zn SOD)
and limited DNA repair mechanisms [22,109-111]. These
deficiencies can be worsen if the PRDX system is altered by
oxidative stress; because PRDXs are easily oxidized even at
low ROS concentration, the presence of an oxidative stress
in human spermatozoa will alter the capacity of these en-
zymes to scavenge excessive amounts of ROS. The neces-
sity for active PRDXs is supported by the data from infertile
Figure 3 Lipid peroxidation is not increased in human
spermatozoa treated with 5 mM diethylmaleate (DEM; binds to
GSH making it non-accessible for the GPX-GRD system), 50 μM
carmustine (inactivates glutathione reductase and diaphorase
activity) or 50 μM NaN3 (inhibitor of catalase). Lipid peroxidation
was measured by spectrofluorometry according to Aitken et al.
(1993) [103]. Spermatozoa from 4 different healthy donors were
used in this experiment. The presence of none of the inhibitors used
increased the level of lipid peroxidation in human spermatozoa
(results were analyzed by ANOVA; p < 0.05).
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men that have significant lower amounts of PRDXs in both
seminal plasma and spermatozoa compared to healthy do-
nors [43]. PRDX6, but not PRDX1, is present in low
amounts in seminal plasma of infertile men with clinical
varicocele. The total quantity of PRDX1 and PRDX6, but
not for PRDX4 and PRDX5, is lower in spermatozoa from
varicocele patients (prior to surgery) than in idiopathic in-
fertile men or healthy donors [43]. In terms of PRDXs ex-
pression in spermatozoa, the population of infertile men is
heterogeneous; sperm PRDX6 was low in 67% and 39%
varicocele and idiopathic infertile patients, respectively,
whereas sperm PRDX1 was only low in 42% of varicocele
patients [43]. Noteworthy, thiol-oxidized PRDX1, PRDX5
and PRDX6 levels were higher in spermatozoa from idio-
pathic infertile men than from donors [43]. Due to the
lower amount of total PRDX1 and PRDX6 and the high
thiol oxidation of these PRDXs, very little (less than 20%)
protection due to PRDXs remains and this is associated
with impaired sperm motility and poor DNA quality [43].
Interestingly, sperm levels of high molecular mass

complexes of hyperoxidized PRDX6 were higher in both
infertile men groups than in donors and the PRDX6
thiol oxidation ratio correlated with levels of lipid perox-
idation in spermatozoa [43]. From these studies it is evi-
dent that thiol oxidation of PRDXs is associated with
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consequence, the spermatozoon is not protected against the H2O2-depend
impairment of sperm function. It is possible that, due to
an inability to reduce PRDXs, the levels of ROS rise at
toxic levels in the spermatozoon and thus promoting in-
fertility (Figure 4). The potential scenario of failing re-
activation of PRDXs is very much plausible in the
spermatozoon; the availability of glutathione is minimal
in this cell since the level of GSH in human spermatozoa
is ~0.3 mM compared to the 10 mM concentration that
can be found in somatic cells [3,112]. Since GSH is ne-
cessary to reduced PRDX6 [113], due to this limitation
the reduction of PRDX6 is jeopardized if there is a
strong oxidative stress in the spermatozoon and GSH is
depleted. The 2-Cys PRDXs can be re-activated by the
TRX/TRD system; however, this system is limited by the
amount of NADPH present in the cell. In cases of oxida-
tive stress, glucose 6-phosphate dehydrogenase, gener-
ator of NADPH, is inactivated and thus the amount of
NADPH is rapidly depleted and in consequence this re-
ducing equivalent is no longer available [114]. Recently,
it was reported that aging mice lacking SPTRX1 and
SPTRX2 are subfertile [115]. This findings support the
need for an intact TRX system to assure fertility. In hu-
man spermatozoa, SPTRX1 and SPTRX2 as well as TRX
like 2 have been described and their localization is sum-
marized in Table 1. The presence of TRD1 and TRD2
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(enzymes that reduce the oxidized TRXs including
SPTRXs) has been demonstrated by immunoblotting
[90], but the exact localization in the sperm cell is still
unknown. These studies confirm that a TRX/TRD
system is in place in human spermatozoa and more
research must be done to better characterize the inter-
action of PRDXs with this system in the different subcel-
lular compartments of the ejaculated spermatozoon.
Another thioredoxins reductase called thioredoxin gluta-
thione reductase (TGR) has been found in human
spermatozoa and may be also contributing to the reduc-
tion of TRXs [91].The hyperoxidized 2Cys PRDXs can
be re-activated by SRX or sestrin with energy consump-
tion [72-75]. Immunohistochemistry studies revealed a
moderate staining for SRX (in Sertoli, Leydig and germ
cells) and strong staining (mostly in Sertoli and Leydig
cells) and moderate for germ cells for sestrin-2 [116];
however, the presence of these enzymes is yet to be con-
firmed in mature spermatozoa.
Based on what was discussed above, the data presented

stress the importance of PRDXs in antioxidant protection
of the spermatozoon and offer a possible cause for impaired
sperm function in infertile patients. Moreover, the different
amounts of PRDXs and their thiol oxidation status in
spermatozoa among infertile men may serve the basis for
the development of new diagnostic tools.

Antioxidant therapy
Knowing that the oxidative stress plays a major role in the
pathophysiology of male infertility [7,20,117], the antioxi-
dant therapy seems to be the logical strategy to treat those
patients. Limited controlled studies, with low number of
subjects support the use of antioxidants to treat infertility
[118,119]. Although in some causes fertility has been im-
proved, in some cases the use of these compounds may
harm rather than to help the spermatozoon; for instance
the administration of a combination of antioxidants to in-
fertile patients promote a decrease in the DNA compaction
and thus exposing the DNA to further damage [120]. There
is no doubt that the administration of antioxidant may help
infertile patients to achieve fatherhood, but it is essential to
know more about the redox signaling is regulated in human
spermatozoa to avoid the interference of these compounds
on sperm physiology. It is needed a deeper study of what
ROS and their levels, and what antioxidant enzymes are im-
paired in cases of male infertility to design a more ‘directed’
or ‘customized’ antioxidant therapy. The use of ‘antioxidant
cocktails’ that is not always beneficial for infertile patients
support this re-thinking on how ROS must be controlled in
infertile patients.

Conclusions
The human spermatozoon is extremely sensitive to high
levels of ROS. In order to keep in line these active
molecules, it should be a very tuned PRDX and TRX/
TRD systems working together in regulating the levels
of ROS to avoid impairment of sperm function. Their
wide distribution in every compartment of the sperm
and the association of low levels and inactivation of
them and low sperm quality makes PRDXs a major
players in the antioxidant protection and the modulation
of ROS action in human spermatozoa.
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SRX: Sulfiredoxin; SS: Disulfide; TBARS: Tiobarbituric acid reactive substances;
TRD: Thioredoxin reductase; TRX: Thioredoxin; TGR: Thioredoxin glutathione
reductase; SPTRX: Sperm specific thioredoxin.
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