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Pelagic movements of pacific leatherback turtles
(dermochelys coriacea) highlight the role
of prey and ocean currents
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Abstract

Background: Leatherback turtles are renowned for their trans-oceanic migrations. However, despite numerous
movement studies, the precise drivers of movement patterns in leatherbacks remain elusive. Many previous studies
of leatherback turtles as well as other diving marine predators have analyzed surface movement patterns using only
surface covariates. Since turtles and other marine predators spend the vast majority of their time diving under
water, an analysis of movement patterns at depth should yield insight into what drives their movements.

Results: We analyzed the movement paths of 15 post-nesting adult female Pacific leatherback turtles, which were
caught and tagged on three nesting beaches in Mexico. The temporal length of the tracks ranged from 32 to
436 days, and the spatial distance covered ranged from 1,532 km to 13,097 km. We analyzed these tracks using a
movement model designed to yield inference on the parameters driving movement. Because the telemetry data
included diving depths, we extended an earlier version of the model that examined surface only movements, and
here analyze movements in 3-dimensions. We tested the effect of dynamic environmental covariates from a
coupled biophysical oceanographic model on patch choice in diving leatherback turtles, and compared the effects
of parameters measured at the surface and at depth. The covariates included distance to future patch, temperature,
salinity, meridional current velocity (current in the north–south direction), zonal current velocity (current in the
east–west direction), phytoplankton density, diatom density, micro-plankton density, and meso-zooplankton density.
We found significant, i.e. non-zero, correlation between movement and the parameters for oceanic covariates in 8
of the tracks. Of particular note, for one turtle we observed a lack of correlation between movements and a
modeled index of zooplankton at the surface, but a significant correlation between movements and zooplankton
at depth. Two of the turtles express a preference for patches at depth with elevated diatoms, and 2 turtles prefer
patches with higher mezozooplankton values at depth. In contrast, 4 turtles expressed a preference for elevated
zooplankton patches at the surface, but not at depth. We suggest that our understanding of a marine predator’s
response to the environment may change significantly depending upon the analytical frame of reference,
i.e. whether relationships are examined at the surface, at depth, or at different temporal resolutions. Lastly, we
tested the effects of accounting for ocean currents on the movement patterns and found that for 13 of the
15 turtles, the parameter governing distance to the next patch decreased.
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Conclusions: Our results suggest that relationships derived from the analysis of surface tracks may not entirely
explain movement patterns of this highly migratory species. Accounting for choices in the water column has
shown that for certain individual turtles, what appears to be favourable habitat at depth is quantitatively different
from that at the surface. This has implications for the analysis of the movements and diving behaviour of any top
marine predator. The leatherback turtle is a deep diving reptile, and it is important to understand the subsurface
variables that influence their movements if we are to precisely map the spatial dimensions of favorable leatherback
habitat. These results present a new view into the drivers of diving patterns in turtles, and in particular represent a
way of analyzing movements at depth that can be extended to other diving species.

Keywords: Movement, Bayesian, Habitat suitability, Water column, Diving, Leatherback turtles, Marine predator,
Dynamic covariates, Prey
Background
Despite analytical and technological advancements in
studying animal movements, our ability to statistically
quantify these interactions has lagged; this lapse is espe-
cially acute in marine systems characterized by dynamic
environments in which animal movements and habitat
selection occur in 3 dimensions. The lag in marine
systems has been due in part to the fact that many
covariates that are used in models of marine animal
movement come from remote sensing, e.g. sea surface
temperature, chlorophyll A, etc. It is becoming increasingly
apparent in marine systems that the processes happening
at depth may inform our understanding of the biology
more than those happening at the surface [1-7].
The application of state-space modeling methods to

animal movement data [8-10], has provided ecologists
with tools to enable a substantive advance in our
approach to inference on animal habitat use from move-
ment data. Because these analytical methods separate
the movement process from our observation of that
process [11], they yield inference on the animal’s move-
ment choices. Marine ecologists have taken advantage of
these techniques, yet it has been argued that for further
progress to be made, we must pay more attention to bio-
logically motivated process models [12]. That is, rather
than pay attention to how movement phenomena differ
in different landscapes [9], we may want to focus on
how animals make movement choices in response to
dynamic landscapes [12]. Here we bring this modeling
approach to bear on moving leatherback turtles from the
Eastern Pacific. To understand how individual turtles
respond to a dynamic seascape, we apply a hierarchical
Bayesian movement model [12,13] to movement tracks
of 15 post-nesting adult female turtles. Results from this
approach allow us to quantify how individuals are
responding to dynamic covariates through time and
through the water column.
Marine turtles have been the subject of numerous

satellite telemetry studies [14]. Godley et al. [14] describe
a general understanding of sea turtle movement types that
has emerged. Following other reviews of turtle movements
[15], Godley et al. [14] note that the use of satellite tagging
to follow turtle movements has led to an understanding of
4 distinct movement phenotypes. These include turtles
that feed in the neritic zone (Types A1-A3), and turtles
that are fully oceanic feeders (Type B), of which the
leatherback is the exemplar. Morrealle et al. [16] were the
first to publish on the dramatic movements of east Pacific
leatherback turtles, followed by Eckert and Sarti [17] for
leatherbacks that nest in Mexico. Morreale’s original work
from Costa Rica [16] has recently been augmented by a
movement study on the same population [18]. Finally,
recent studies have re-analyzed the data from these
pioneering studies as well as including new data from both
western and eastern Pacific populations [19-21].
Morreale et al. [16] noted that we had much to learn

from the post-hoc analysis of movements in conjunction
with the oceanic environment. From a simple visuali-
zation of how turtle movements change in different
oceanic habitats, to a more complete understanding of
the interplay between physical forcing and biological
interactions, Luschi et al. [15] argued that the interaction
between biology and physical oceanography is where
much progress can be made. And indeed, many studies
have stressed the role of oceanography in turtle move-
ments [15,22-27]. Luschi et al. [15] note that currents
can play (at least) three different roles: 1) as large scale
advective forces; 2) as smaller scale features like mean-
ders and eddies; and 3) as features that aggregate prey
(sensu Olson et al. [28]). Both Girard et al. [29] and
Gaspar et al. [25] independently documented ways to
quantitatively separate the movements of the turtle from
the movements of the turtle as affected by surface cur-
rents. This separation is important in order to under-
stand how turtles may actively use currents in homing
[29], and to delineate true area-restricted search [25].
Though research has continued along this line
[18,20,21,30], much of this work has rested on overlay-
ing relocations, or behaviorally classified relocations on
top of environmental variables. In contrast, Eckert et al.



Table 1 Qualitative summary of the two models, surface
and water column, which compares the best set of inputs
within each model
Turtle Distance

to patch
Phyto

plankton
Diatoms Micro

zooplankton
Meso

zooplankton
Temp Salinity

1 x x x x x

3 x x x

3 x x x x

4 x x x

4 x

6 x x

6 x

7 x

7 x

8 x

8 x x x

10 x x

10 x x x

11 x x

11 x

13 x
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[31] combined modeling techniques from Jonsen et al.
[32] and from Morales et al. [9] to further our under-
standing of movement types in dynamic environments.
Despite this work, Godley et al. [14] stress that the inter-
play between the biology of the turtle, the biology of their
prey, and the physics of the ocean environment is still an
area of research need.
Here we address that need by applying a hierarchical

Bayesian movement model [12,13] that exploits choices
made by moving turtles to make inference on the suitabi-
lity of the dynamic landscape as perceived by the turtle.
We use this modeling approach to go from data (observed
locations of individual turtles, and calculated values of
covariates from a 4D oceanographic model) to estimates
of a hidden process, namely choices about habitat suitabi-
lity. Our estimates of the parameters that govern the
movement choices of leatherback turtles enable us to
quantitatively depict the organism-environment inter-
action. In addition the results enable further understand-
ing of how turtles change their response to disturbance
(e.g. El Niño/La Niña), regime shifts (e.g. Pacific Decadal
Oscillation), and climate change.
13 x

16 x x

22 x x

22 x

23 x

24 x x x

25 x

26 x x

For each turtle the first entry represents results from the surface model; the
second entry (if present) is for the water column model. A single entry per
turtle indicates a lack of depth data, and hence results are only for the surface
model. An ‘x’ in the cell indicates a positive linear response to the covariate.
Bold turtle IDs are tracks long enough to extend into the putative foraging
grounds south of 5 °S.
Results and discussion
The initial set of results from which all other results and
inference arise are the median posterior estimates of the
β parameters along with their 95% Bayesian Credible
Interval (BCI) for each turtle (Table 1). (We present
tabular results for the two surface models in Additional
file 3; results from the multi-state model are not pre-
sented.) To aid interpretation, recall the bounds within
which each of these parameters is proposed in the Gibbs
sampler (See Additional files 1, 2, and 3 for the code).
For the distance to patch parameter, we assumed the re-
sponse to be negative and linear. That is, patches farther
away from the animal are less favorable. For each of the
6 oceanographic inputs, we assumed there was an enve-
lope response; hence we estimate both a linear and
quadratic term for a total of 12 parameters. The linear
term is unconstrained, which the quadratic term is con-
strained to be negative. For example in: Xjk;t−1β ¼ x1;jk;t−1
β1 þ x2;jk;t−1β2 þ x22;jk;t−1β3 þ⋯þ xp;jk;t−1βp proposals for

β3 would be constrained such that − 50 < β ′ < 0., If the 95%
BCI for a linear parameter includes zero, we would infer
this covariate does not have a strong influence on the
turtle’s movement decisions (Table 1). For example, the
posterior estimate for the β parameter for turtle 10’s
response to diatoms is 3.55 (−2.28, 12.63) (median, and
95% BCI, respectively), and therefore it is likely that turtle
10’s movements were not influenced by diatoms.
The results from the two surface models build on

present understanding of how swimming leatherbacks
exploit their environment. Specifically, accounting for
currents changed the median estimates for distance to
patch for 13 turtles with most estimates becoming slightly
less negative (Additional file 4: Figures S3.1, S3.2). What
this may mean is that in the face of stronger currents,
turtles may choose closer patches and not expend as much
energy swimming to father patches. For 2 of the turtles
(10, 11) accounting for currents meant increasingly nega-
tive estimates for distance to patch. However these diffe-
rences in parameter estimates were very minor and the
median values fell within the original BCI for this para-
meter from the model that did not account for currents
(in Additional file 4: Figures S3.1, S3.2).
We applied the multiple state model to 6 turtles (3, 4,

7, 8, 10, and 22). The structure of this model included a
migratory and foraging state, where all locations south
of 5°S were considered to be foraging locations [18]. In
all cases there was no support for a model that included
multiple states, i.e. the BCI for the β parameter for states
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covered 0 (results not shown). This means there was no
significant difference in the choices made by the animals
in these two states, i.e. they chose patches similarly
regardless of location.
Similar to the comparison of the two surface models,

when we explore patch choice at depth, we see turtles mak-
ing different choices about suitability at depth (Table 1,
Figure 1). For example, 2 of the turtles express a preference
for patches at depth with elevated diatoms (Table 1,
Figure 2), and 2 turtles prefer patches with higher mezozoo-
plankton values at depth (Table 1, Figure 2). In contrast, 4
turtles expressed a preference for elevated zooplankton
patches at the surface, but not at depth (Table 1, Figure 2).
We plotted the functional response of habitat suitabi-

lity h across a range of mesozooplankton density
(ROMS_zz2) values at the surface and at depth, i.e. in
the water column, for several turtles that had significant
responses to these covariates. From the results (Figure 3,
Figure 4), it was clear that both parameter magnitude
and confidence around the estimate were important. For
example, turtle 1 and turtle 4 had similar magnitude
estimates for the β parameter for zooplankton (Figure 3),
yet the confidence around that estimate yielded a broader
estimate of h for turtle 1 (Figure 3a). Turtle 4 responded
to higher levels of mesozooplankton, but with broader
confidence limits (Figure 3b). For the results at depth, tur-
tle 4 no longer responded to mesozooplankton (turtles 1
Figure 1 Schematic depicting patch choice throughout the
water column. In the surface only model, we assumed the turtle
made a choice to visit one patch out of many available patches. We
extend that simply by extruding the choice set down through the
water column by taking the x,y location of the animal at the surface
and matching it to the daily depth of interest (red dot; see text for
more details). Now the assumption is the animal makes a choice of
one place from patches (green circles) throughout the whole water
column (i.e. x,y,z), as opposed to simply at x,y.
and 26 lacked depth information) (Table 1, Figure 2). In
contrast turtles 3 and 8 responded to zooplankton at the
surface and at depth (Figure 2, Figure 4). Turtle 8 had a
higher median estimate for the β parameter for mesozoo-
plankton, but with much broader confidence intervals
around the estimate. The functional response for turtle 3
was much narrower than it was for turtle 8 (Figure 2).
This means that turtle 3 was preferentially selecting
patches at lower levels of mesozooplankton than turtle 8
(Figure 4).
Lastly, results from the sensitivity analysis indicated

that as the buffered radius out from the turtle increases,
the confidence intervals around h decrease, though
increasing radius above 100 km has little effect on the
response (Additional file 5: Figure S2.1).
In this analysis, we have quantified the response of

moving turtles to dynamic oceanographic covariates in
both 2 and 3 dimensions. This combination informs us
about the biology of leatherback turtles, but it also
represents a new way to analyse the movement patterns
of diving pelagic organisms. One critical finding from
the union of the movement model with the ROMS-
CoSiNE model is how individual turtles are preferentially
selecting patches with elevated meso-zooplankton abun-
dance. While it is axiomatic that predators will choose
patches with higher prey abundance, this has been diffi-
cult to quantify in modeling studies. Here we quantify
this relationship across individuals, at the surface, at
depth, and in different ocean conditions thereby provid-
ing the first quantitative link between movement choices
and prey (Table 1, Figure 3). A second critical finding is
how our understanding of habitat suitability changes
when we look at the surface expression of choice versus
the at-depth expression of choice. This is important not
only for our understanding of the ecology of leather-
backs, but also for conservation applications. For
example, were we to map suitability across a broader
spatial extent, the view of this would necessarily change
were we to use results from only the surface instead of
at depth (Table 1).
The holy grail of many movement studies as well as

many habitat modeling studies is to quantitatively link
distribution, movement, and abundance of predators to
the distribution and abundance of their prey. Because of
sampling difficulties, this goal is rarely reached. In the
marine realm this linkage is made more difficult by the
complexities of the underlying physical template and the
scale mismatch between animal movements and cova-
riates – relationships long studied in terrestrial ecology
[33-35]. In lieu of testing relationships with prey
researchers typically use physical proxies [28,36] to
analyse movements in relation to covariates [18,20,30,37].
Our results build upon these efforts by incorporating a
dynamic environment and the biology of a moving turtle
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Figure 2 Posterior estimates of each the β coefficients governing h for individual turtles from the water column model. Quantitative
results for each parameter include the median estimate (50%) and the 95% Bayesian Credible Interval (BCI), and are shown with a dot and a line
respectively. The covariates were scaled prior to analysis, so the parameters can be compared directly.

Schick et al. Movement Ecology 2013, 1:11 Page 5 of 14
http://www.movementecologyjournal.com/content/1/1/11
into the modeling effort. Instead of visualizing relocations
in relation to physical and biological covariates, we can
now quantify how the animal responded to them. For
example, in two previous papers on the movement of
eastern Pacific leatherbacks, movements were characte-
rized as a) being in a migratory corridor [16,18], followed
by b) a pelagic foraging ground [18]. We have refined and
expanded that view by quantifying the types of patches
that Pacific leatherbacks actually exploit – namely closer
patches with elevated levels of diatoms and zooplankton.
While there is still one more link in the food chain
between meso-zooplankton and Pacific leatherbacks, this
effort is the closest link yet documented.
While we were able to establish a modeling framework

for examining how covariates at depth influence move-
ment of turtles, there are several limitations to our
approach. Notably, we cannot know accurately how well
the ROMS covariates mimic what is experienced by the
animal. It is possible that the model insufficiently repre-
sents the sampled environment. Validation of ROMS is
well beyond the scope of this paper, but as tagging tech-
nology increases in sophistication, in situ information
from the tag can be used to validate predictions from
the ROMS model. There are also potential issues with
the co-variation in some of the ROMS variables, i.e.
diatoms are correlated with zooplankton (Additional file 6).
One possible way to address this would be variable
reduction with a principal components analysis. Next,
we do not account for error in the sampled variables.
Foster et al. [38] have shown that failure to account for
error in variables can lead to bias in parameter estimates
and false confidence in the uncertainty of the estimates.
While their approach was slightly different from ours,
i.e. our biological and physical covariates come from the
same source, this is an important issue that should be
addressed in future applications. Also, as noted in the
methods, the resolution of the depth data from the tag is
very limited. An interesting test of this would be to first
apply the model to a more finely resolved track and then
coarsen it to the depth-bin data used here and compare
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Figure 3 Habitat suitability in relation to mesozooplankton
(ROMS_zz2) at the surface for three different turtles (a, 4; b, 26; c, 1).
Thick black line represents the median response, dashed lines
represent the uncertainty in the parameter estimate. See text for
details on the computation of habitat suitability.

a

b

Figure 4 Habitat suitability in relation to mesozooplankton
density (ROMS_zz2) at depth for two different turtles (a, 3; and
b, 8). Thick black line represents the median response, dashed lines
represent the uncertainty in the parameter estimate. See text for details
on the computation of habitat suitability. The effect of uncertainty on
our understanding is striking, with parameter estimates being narrow
for turtle 3, but broad for turtle 8. Turtle 8 had the highest median
parameter value, as well as the highest uncertainty around parameter
estimates. Note the change in the y axis.
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the results. Finally, we do not include formal model
selection herein. This is in part because this represents
an initial approach to analyse movement data in con-
junction with covariates at depth, but also, because of
the high dimensionality of the data, a procedure such as
RJMCMC would be computationally extremely demanding.
Though we have developed the Gibbs Sampler in R (See
Additional file 1), we are working on recasting it
within BUGS to incorporate recent model selection tools
like the LASSO [39] and Elastic Net [40]. See Rockova
et al. [41] for a recent review of these methods in a
Bayesian model selection framework. Because of the
myriad of limitations to the analysis, we caution that
inference at this point is more descriptive rather than
causal. Model complexity itself is a limitation, which
makes it difficult to run and test many scenarios quickly.
As we address these limitations, our understanding of
what drives the biology should increase.
One interesting result was the overall lack of quantita-

tive relationship between temperature and patch choice
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(Table 1, Figure 3, in Additional file 4: Figure S3.1, S3.2).
Based on the previous tagging study of Pacific leather-
backs [18,21], we expected to see turtles occupying
specific thermal niches. It is possible that this is a data
limitation. As compared to Shillinger et al. [18,21], we
had fewer tracks to analyze and both the diving and
relocation data were at a lower spatial and temporal
resolution. More importantly, we had fewer tracks that
extended into the putative foraging grounds, and it is
possible that the animals make more specific choices
about suitable patches when foraging, then when migrat-
ing. While we did not see support for a model that
included states, it is possible that with more data such
distinctions could emerge.
Another interesting result was the relatively weak

influence of the currents. While we did document an
effect of currents on the distance to patch parameter
(Additional file 4: Figures S3.1, S3.2), these effects were
very small. These small differences are likely due to the
large differences in mean velocity of the turtles (0.37 m/s)
as compared to the mean velocity of the currents,
e.g. -0.01 m/s for the N-S current. That is, in comparison
to the speed of the turtle, the speed of the current at the
surface is relatively minor – hence the lack of a strong
effect. For the two turtles for whom the distance to patch
parameter became more negative, i.e. they chose farther
patches, both of these animals appeared to enter and then
also exit the putative foraging grounds. Though we did
not find support for a multi-state model, it does appear
visually that these animals are experiencing different
current regimes before, during, and after the time spent in
the foraging ground. Further work with a pared down
model including just the distance to patch covariate may
offer insight.
Earlier biologging technology placed limits on the

transmission of depth data from a diving animal [42].
Because of this, researchers have typically focused on
the displacements in x,y and either ignored diving
behavior or have done post-hoc analysis of the diving
data [30,37]. With the advent of higher resolution tags,
researchers can reconstruct more complex analyses [4].
In seals, for example, recent studies have documented
the importance of understanding at-depth behaviour
[2,3]. However, even with these tags, interfacing the dive
profile with the environment is difficult (though see
Bestley et al. [5] and McClintock et al. [6] for initial
attempts at using information at depth to inform state
estimation). Despite this difficulty, behavior at depth is
crucial for a broader understanding of leatherback
movements because leatherbacks are primarily diving
animals [24,42-45]. Our results suggest that the inter-
pretation of movement behavior at the surface is quite
different from what takes place at depth. The data ana-
lyzed here were limited as well, in that we did not have
the full diving record for each animal, and were forced
to analyze use of depth bins, as opposed to specific
depths. We surmise that with added resolution through
the water column, the differences in h that we observed
would be even greater.
For most of the turtles on which we analysed surface

and depth data, the significant covariates at the surface
are no longer significant at depth (Table 1). Of the 6
turtles that had significant responses to zooplankton at
the surface, only 2 also had a significant response at
depth (Table 1). Conversely, 3 turtles did not respond to
zooplankton at the surface, but did at depth (Table 1).
Though conservation decisions are often made based on
distribution on the surface of the ocean, i.e. establishing
a management area or MPA, we argue that from a
biological perspective the covariates that diving animals
respond to the surface may not be indicative of their
behavior at depth. Mapping out habitat volumes in x, y
and z space may offer a more robust picture of the envi-
ronments that leatherbacks prefer.
Careful reading of the differences in the surface and

depth models indicates the turtles appear to be respond-
ing to fewer variables at depth than at the surface
(Table 1). One possible explanation is that gradients in z
may be more important than the variable itself. For
example, the presence of the thermocline or halocline at
depth (Eckert [24]) might be a patterning variable for
jellyfish, and hence a feature that turtles respond to
rather than just temperature itself. In addition to the
change of a variable through the z dimension, it is also
possible that animals respond to an integration of values
through the water column [46]. Another possible expla-
nation is that pelagic foraging Eastern Pacific leather-
backs are in fact finding fewer prey items and foraging
less successfully [19]. Finally, the majority of tracks that
extend into the putative foraging region were during an
El Niño year (Figure 5), and it is probable that this was a
poor foraging year. It has been shown that El Niño
events result in lower reproduction in EP leatherbacks
[47-49], and it is therefore likely that a poorer prey
environment would result in a weaker correlation
between prey and movement choice as shown here.

Conclusions
We have fitted a model of animal movement to the
movement tracks of individual Pacific leatherback tur-
tles. Through this process we have integrated covariates
from a dynamic ocean model in an effort to quantify
how animals make choices about the suitability of habi-
tat patches. The results build upon other modeling
efforts in three important ways: 1) as opposed to move-
ment phenomena, e.g. step lengths and turning angles,
we exploit movement choices in the likelihood; 2) those
choices are conditioned upon the present location of an



Figure 5 Overview map of the tracks to which we applied the model. The tagging effort took place at three different beaches in Mexico.
Tracks are color coded by Oceanic Niño Index (ONI) episode status.
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individual, and suitability of a patch comprised of
dynamic covariates; and 3) we quantify how these pro-
cesses play out at depth. By quantifying these processes
we can begin to map out the types of environments
diving animals prefer, and we can use this as a basis for
further inference on overlaps in space and time between
turtles and fishing activity. In addition, we can concep-
tualize and map these overlaps in the water column,
which will provide important future baselines for the
protection of this critically endangered species.

Methods
Data summary - turtles
Twenty-six turtles were tagged at three different beaches
along the Pacific coast of Mexico (Table 2, Figure 5).
Broadly speaking after the nesting period, the turtles left
these nesting areas and headed out into the ocean along
a SW migration route. These migratory movements are
consistent with those of leatherbacks leaving nesting
beaches in Playa Grande, Costa Rica [16,18]. Most
turtles explore a wide-ranging pelagic area, while one
follows a coastal route, and one ranges directly almost to
New Zealand (Figure 5). (A full summary and descrip-
tion of the tagging effort, and some of these data can be
seen in Eckert and Sarti [17].) The tracks were irregu-
larly spaced in time and observed with error. To adjust
for this, we fit a state-space model to the data to provide
regular estimates of true location [32]. We then used
these daily estimates of location to estimate habitat suit-
ability for each animal.
Because the turtles were instrumented for movement
as well as basic diving information, we were able to
explore the relationship to environmental features both
at the surface and at depth (see Data Structures sec-
tion below). Of the 26 total tracks, we deemed 15 suf-
ficiently long for analysis, i.e. the tracks were longer
than 45 days. In addition, we removed one track from
the analysis (#18), as it appeared to have died during
its post-nesting migration. The mean dive depth for all
turtles was 34.09 m; mean maximum dive depth was
123.9 m.
Additional file 4: Figure S3.1 depicts the temporal

extent of the tracks in conjunction with the start/stop
times of the El Niño/La Niña events (beginning and
ending dates of each episode taken from the Oceanic
Niño Index (ONI) computed from ERSST.v3 anomalies;
see http://www.cpc.ncep.noaa.gov/products/analysis_moni-
toring/ensostuff/ensoyears.shtml). Of the 15 tracks, 4 were
in “normal” years, 8 were in El Niño years, and 3 were in
La Niña years (Figure 5, Additional file 4: Figure S3.1).

Data summary – environmental variables
Many studies have investigated the environmental condi-
tions encountered by migrating marine turtles by spatio-
temporally intersecting the turtles’ tracks with time-series
maps of oceanographic parameters sensed remotely by
satellites [14]. Because such remotely sampled data are
limited to oceanic surface features, we sampled physical
and biological explanatory variables from ROMS-CoSiNE,
a 4-dimensional biophysical simulation of the Pacific

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml


Table 2 Summary Data for turtle movement tracks from three nesting beaches in Mexico

TrackID Year Beach Locations Distance (km) Included Reason

1 1993 Mexiquillo 52 2,448 Yes

2 1993 Mexiquillo 8 497 No locations

3 1997 Mexiquillo 298 9,425 Yes

4 1997 Mexiquillo 234 8,177 Yes

5 1997 Mexiquillo 1 426 No locations

6 1997 Mexiquillo 118 4,756 Yes

7 1997 Mexiquillo 266 9,001 Yes

8 1997 Mexiquillo 286 8,304 Yes

9 1997 Mexiquillo 46 329 No locations

10 1997 Mexiquillo 298 10,535 Yes

11 1997 Mexiquillo 436 13,097 Yes

12 1997 Mexiquillo 0 664 No locations

13 1999 Cauhitan 124 4,975 Yes

14 1999 Cauhitan 0 215 No locations

15 1999 Cauhitan 0 444 No locations

16 2000 Agua Blanca 53 3,178 Yes

17 2000 Cauhitan 21 1,892 No locations

18 2000 Cauhitan 279 12,244 No Turtle is dead

19 2000 Cauhitan 42 1,197 No locations

20 2000 Cauhitan 1 207 No locations

21 2000 Cauhitan 26 1,309 No locations

22 2000 Cauhitan 468 12,828 Yes

23 2001 Cauhitan 32 1,532 Yes

24 2001 Cauhitan 196 9,000 Yes

25 2001 Cauhitan 97 2,961 Yes

26 2003 Agua Blanca 79 4,022 Yes

Included are the number of post-nesting locations, and the cumulative distance for the entire track. Turtles excluded from the modeling analysis are noted, along
with the reason for exclusion. In the Reasons column, locations meant there were too few post-internesting locations.
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Ocean that couples the Carbon, Si(OH)4, Nitrogen Eco-
system model (CoSiNE; Figure S1.1) [50,51] to the
Regional Ocean Modeling System (ROMS) [52]. We used
four physical variables and four biological variables
from ROMS-CoSiNE: temperature, salinity, N-S current
velocity, E-W current velocity, phytoplankton density,
diatom density, micro-zooplankton density, and meso-
zooplankton density (Additional file 6: Table S1.1, Figure
S1.3). To ensure independence of the predictor variables,
we calculated correlation and covariance values in the
ROMS covariates and found limited correlation among
the variables (Additional file 6: Tables S1.2, S1.3). The
highest correlations and covariances were between the
diatom variables and the zooplankton variables, though
this is to be expected from the model structure (Additional
file 6: Figure S1.1). For further details on both the
ROMS-CoSiNE model and the extraction of covariates,
see Additional file 6.
Modeling summary
The principle behind our modeling approach was to
evaluate choices that the moving animal made in refe-
rence to choices the animal could have made. The
approach may be thought of as a resource selection
function embedded within a movement model. Because
we first fit a state-space model to the locations, an alter-
native way of viewing the model is as a discrete choice
model conditioned upon known locations. That is, the
animal makes choices about different patches in an
attempt to satisfy or maximize some criteria [53]. At a
given time t we observe an animal’s location, and we
determine the values of environmental covariates at
these same location. It is plausible that the animal chose
this location from among several locations that was
available to it, i.e. within some perceptual range. By
determining the values of covariates at those patches, we
then quantitatively assess what was unique about the
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visited patches. Unlike a simple resource selection func-
tion, we assume that the selection of future patches is
conditioned upon the animal’s present location. By mak-
ing the choices spatially and temporally conditional, we
make inference on the choices the animal makes as it
moves. Because we have depth information, we can also
explore the choice of a patch at depth from several
candidate patches throughout the water column. The
surface view corresponds to a pixel-based view, while
the depth view corresponds to a voxel-based view
(Figure 1). Figure 1 provides a conceptual model. The
blue line represents the track of a diving turtle. The red
dot is the patch (or voxel) the animal chose; the green
dots represent the candidate patches (voxels).
Following [12] we can express this mathematically as

follows. The event that an individual i at time t–1 moves
from location j to k at time t is given by:

zijk;t−1 ¼ I si;t−1 ¼ j; si;t ¼ k
� �

The indicator function I() is 1 when true, and 0 other-
wise, and si,t = k is the time specific location k of indivi-
dual i on the map, i.e. a two dimensional set of Cartesian
coordinates. The location k is chosen from the set of
potential choices ki,t = {1,…, Ki,t}. This set of potential
choices is determined spatially by buffering out from the
animal to a radius equal to the maximum daily distance
the animal travels. For the turtles in our study, this
maximum distance was recalculated to include the effect
a b

Figure 6 Schematic figure of our method for incorporating the effect
at time 1 and a candidate patch at time 2. Distance d is the Euclidean dista
current vector (vs,t), and the E-W current vector (us,t). Panel b depicts the ne
subtracted; distance d’ reflects the new distance between the turtle and th
of oceanic currents. Specifically we subtracted the N-S
and E-W component of the current from each x,y loca-
tion of a candidate patch (Figure 6). The observed move
Zijk,t − 1 by the individual is from location si,t − 1 = j
to si,t = k. This movement event from j to k has probabi-
lity distribution:

Pr Zijk;t
� � ¼ Multinom 1; θjk;t−1

� �
;

where θjk,t-1 is the length-Ki,t vector of probabilities. The
probability θ describes h, which is the relative habitat
suitability of the chosen patch:

θjk;t−1 ¼ hjk;t−1
∑k∈Ki;t hjk;t−1

The relative suitability h of location k is conditioned
upon individual i being in location j at time t − 1, and is
a function of covariates, logit(hjk,t − 1) = Xjk,t ‐ 1β. This par-
ameter is conceptually similar to the utility U para-
meter in discrete choice models [53]. The parameter h
must be positive, but does not have to saturate at 1. We
chose a logit to concentrate the effects in the mid-range.
Other functional forms could be used. The design matrix
describes the covariates of choice k relative to an indi-
vidual who is located at j at time t − 1, and β describes
the parameters for individual covariates, i.e.,

Xjk;t−1β ¼ x1;jk;t−1β1 þ x2;jk;t−1β2 þ⋯xþ xp;jk;t−1βp
of currents on distance between patches. Panel a depicts the turtle
nce separating the patches. The light grey lines depict the N-S surface
w position of the candidate patch after the currents have been
e patch after currents have been accounted for.
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where xjk,t-1 is a length p row vector of covariates, β is a
length p column vector. The model summary is as
follows:

pðβjzij;t ; xjk;tÞ∝
Yn

i¼1

YTi

t¼2

multinom zij;t j1; θjk;t‐1
� �

Np βj0;Vð Þ;

where z are the observed locations of the animal. For
the priors we use non-informative truncated multivariate
normal distributions for centered on zero with large
variance,V. This formulation takes us from the observed
data (locations, unique values of covariates) to inference
about a hidden process – the response of a moving
turtle to a dynamic environment.

Data structures
To fit this model to data (See Additional files 1, 2, and 3
for the R code), we need two data structures [13]. The
first was the movement track itself with the values for
the covariates of interest extracted at each location. This
was accomplished with the MGET toolbox [54] in Arc-
GIS®. The second data structure was a ragged array com-
prised of available patches and their environmental
input values surrounding each unique location in the
track. To build this we used a combination of custom
Python code and the MGET tool box. At each location,
we buffered out a fixed circular radius of 100 km (see
below), and within that area we sampled inputs at the
centroid of each cell. We extracted the unique values of
inputs from the ROMS-CoSiNE model for each of these
sampling areas, and built up the data structure for the
remainder of the track. We use ‘input’ to refer to specific
variables in the ROMS-CoSiNE model; following extrac-
tion of the inputs we will turn these into covariates. For
example, salinity is an input to the data structure; for
use in the model we create linear and quadratic covari-
ates from this input. The juxtaposition of these two data
structures can be visualized as a ribbon plot that high-
lights the values perceived and the values chosen by the
animal along its track (Figure S1.4) within the buffered
range. In addition to the inputs from the oceanographic
model, we calculated the distance to each patch from the
animal’s present location. To do this, we calculated the dis-
tance from an animal’s location at time t-1 to the location
of all patches available at time t. (For further details on the
extraction of ROMS-CoSiNE variables, consult Additional
file 6). The environmental covariates were standardized
using the scale function in R [55].
We chose the initial radius for the buffer around each

point by determining the maximum daily distance for all
turtles, which was 168 km. We then set the buffer dis-
tance to 200 km (radius = 100 km) to encompass this
maximum distance. While ROMS-CoSINE has a nom-
inal pixel dimensions of 13.8 × 13.8 km, we sampled at
approximately a 4 km resolution. This resolution was
chosen during the exploratory phase of the analysis
when we used remotely sensed sea surface temperature
images. For the surface only model runs, the average
number of candidate patches for each location within
this distance was 633. In the water column model, there
were 7 unique depth layers (6-12 m, 12-51 m, 51-78 m,
78-102 m, 102-150 m, 150-201 m, > 201 m). These
depth layers correspond to the bins in which the depth
of each dive of the turtle lies. Because of data transmis-
sion limitations in the ARGOS system, that means actual
depth of each dive is only known to occur in one of
these 7 depth layers. In each of these depth layers, we
extracted input values with the x,y locations that corre-
sponded to the x,y locations of the candidate patches at
the surface. Accordingly for the model runs that com-
pared selected patches through the water column the
average number of patches within this distance and
through the water column was 4,494. We also explored
the sensitivity of model results to our assumptions about
the perceptual distance in two ways. First, for one repre-
sentative turtle (#11), we ran the model with four
increasing buffer limits (50 km, 100 km, 150 km, and
200 km). The sensitivity of the results to buffer size was
quantitatively examined by using posterior estimates of
the β to plot normalized habitat suitability for each of
the environmental inputs. Exploring the sensitivity in
this way allowed us to determine how the definition of
“available” affects our inference on the turtle’s choices.

Model application to data
We fit the model to location data for each individual.
The R code we wrote for the Gibbs Sampler and all
helper functions is given in Additional files 1, 2, and 3.
We initialized each chain with parameter values close to
0, and within a Gibbs sampling framework [56], we then
proposed and accepted/rejected values for these parame-
ters. We proposed from a truncated multivariate normal
distribution (see Additional file 3 for the function); we
chose a truncated normal to efficiently propose param-
eter values for which we assumed a positive or negative
relationship. We assumed a functional form for the re-
sponse of the animals to the oceanographic inputs,
namely an envelope shaped response that assumes there
are some intermediate values of each input the animal
prefers. Accordingly we had both a linear and quadratic
β term to estimate for each of the oceanographic inputs.
These are the covariates used in the model. Further,
using the truncated multivariate normal, we could
propose positive values for the linear terms, and negative
values for the quadratic terms. We accepted these pro-
posed values using a Metropolis step. We derived and
used an empirical covariance matrix for this multivariate
distribution. Starting with a default covariance matrix
(on-diagonal values = 10), we then calculated and
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employed the empirical covariance matrix after 1,000,
and 100,000 steps through the Gibbs sampler. We used
uninformative flat priors centered on 0 with large vari-
ance, and ran the Gibbs sampler for 250,000 steps, sav-
ing the thinned last 150,000 values. Convergence of each
chain was assessed visually, and using diagnostic criteria
from the superdiag package [57]. Judging by the Geweke
metric [58], convergence was reached for each of the
variables (Additional file 7).
With these thinned chains, we derived posterior esti-

mates of the β values that govern habitat suitability, h.
We calculated a global h for any given covariate by hold-
ing all other covariates fixed at their median value, and
calculating the inverse logit of [13]. We plotted h over
the range of each individual covariate to visualize how
the turtle makes choices for ranges of a given covariate
conditioned upon all the remaining covariates. Because
this analysis is Bayesian, we integrated over the estimates
of each parameter to visually depict how uncertainty in
the parameter estimates affects our understanding of the
hidden process h.
We fit four different models to the individual move-

ment tracks. The first model, hereafter the “surface”
model, was the baseline model to infer how animals
make choices in relation to habitat suitability comprised
of 7 environmental inputs. The second model, hereafter
the “surface with currents” model, accounted for the role
of ocean currents on locations of the individual turtles.
We did this by altering how the distance to patch covari-
ate was calculated. In the surface model the distance be-
tween an animal’s location at time t-1 to all possible
locations at t was calculated using straight Euclidean dis-
tance. In the second, or “surface with currents” model
we assumed the same location at t-1, but now subtracted
the N-S and E-W current vectors to each of the possible
locations at t (Figure 6). Note that we only used surface
currents in this correction, i.e. we ignored currents at
depth. We assume that the location of the turtle, as
reported by the satellite, accounts for the many factors
influencing turtle movement – including currents. This
allowed us to calculate the distance a turtle would have
to swim from its location to a patch unaffected by
currents. (Note that Figure 6 is exaggerated for display
purposes; the actual distances and displacements are
quite small in relation to the turtle’s movements.) The
third model, hereafter the “multiple state” model in-
cluded the effect of currents and an a priori estimate of
behavioral states comprised of migratory and foraging
states. The geographic split between these two areas was
initialized at 5˚ S [18]. The tracks from only six turtles
extended into the putative foraging grounds. The fourth
and final model, hereafter the “water column with
currents” model, differed from the surface model by
accounting for patch choices made through the water
column, i.e. instead of constraining future locations to
those in the x,y plane, we incorporated depth informa-
tion from the tag to infer patches chosen throughout the
water column (Figure 1). To fit this model to data, we
first specified a “full” model with all covariates included.
We then determined the covariates that were significant,
i.e. non-zero estimates for the β parameters, and then
re-fitted a “final” smaller model.
In summary, outputs from the model allow us to

quantitatively determine the preferred range of covariate
values for individual turtles, accounting for location, dis-
tance to patch, both at surface and throughout the water
column. This latter perspective (depth) is particularly
important to include, because of the oceanic, deep diving
nature of the leatherback and because quantifying the
linkage because water column covariates and leatherback
movements has not been achieved.

Availability of Supporting Data
The data used in this analysis will be available shortly on
OBIS-SEAMAP (http://seamap.env.duke.edu/).
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file 4.
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Additional file 4: Graphical results from additional models
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