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Abstract

Background: Casein kinase 2 (CK2) is involved in various cellular events such as proliferation, apoptosis, and the
cell cycle. CK2 overexpression is associated with multiple human cancers and may therefore be a promising target
for cancer therapy. To identity novel classes of inhibitors for CK2, we screened a natural product library obtained
from National Cancer Institute.

Methods: The quantitative luminescent kinase assay ADP-Glo™ was used to screen CK2 inhibitors from the natural
product library. The same assay was used to determine cell-free dose-dependent response of CK2 inhibitors and
conduct a kinetic study. Docking was performed to predict the binding patterns of selected CK2 inhibitors. Western
blot analysis was used to evaluate Akt phosphorylation specific to CK2 and apoptosis effect. The cell viability assay
CellTiter-Glo® was used to evaluate the inhibition effects of CK2 inhibitors on cancer cells.

Results: We identified coumestrol as a novel reversible ATP competitive CK2 inhibitor with an IC50 value of 228 nM.
Coumestrol is a plant-derived compound that belongs to the class of phytoestrogens, natural compounds that
mimic the biological activity of estrogens. In our study, coumestrol showed high selectivity among 13 kinases. The
hydrogen bonds formed between coumestrol and the amino acids in the ATP binding site were first reviewed by a
molecular docking study that suggested a possible interaction of coumestrol with the hinge region of ATP site of
CK2. In addition, coumestrol inhibited cancer cell growth partially through down-regulation of CK2-specific Akt
phosphorylation. Finally, coumestrol exerted strong inhibition effects on the growth of three cancer cell lines.

Conclusion: Our study shows that coumestrol, a novel ATP competitive and cell permeable CK2 inhibitor with
submicromolar IC50, had inhibition effects on the growth of three cancer cell lines and may represent a promising
class of CK2 inhibitors.
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Background
CK2 (previously referred to as casein kinase II) is a serine/
threonine protein kinase composed of 2 catalytic subunits
(α and/or α’) and 2 regulatory subunits (β). The alpha
and/or alpha’ are linked through two beta subunits to
form a stable heterotetrameric structure. CK2 catalyzes
the phosphorylation of more than 300 substrates and is
itself an evolutionary conserved kinase in eukaryotic
cells. Most of the over 300 CK2 substrates have been
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reproduction in any medium, provided the or
found to be transcriptional factors (60), effectors of DNA/
RNA structure (50) or signalling proteins (more than 80),
and a limited number are metabolic enzymes [1]. As such,
CK2 plays a critical role on multiple cellular processes,
including cell survival [2], apoptosis [3], RNA synthesis
[4] and cell transformation [5]. Moreover, CK2 is used by
over 40 viruses [1] to phosphorylate the proteins that are
essential to their life cycle, including Human Immunodefi-
ciency Virus [6,7], Hepatitis B and C Viruses [8,9], and
Human Cytomegalovirus [10].
In addition to its role in viral diseases, CK2 has been

reported to be involved in a wide range of neurodegen-
erative disorders, inflammatory processes, diseases of the
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vascular system, skeletal muscle, and bone, as well as
various types of cancer [11], including adenocarcinoma
of the colon [12-14], kidney [15], prostate [16,17] and
breast [18,19]. The level of CK2 overexpression in colo-
rectal carcinomas was found to range from 38% to 781%
when compared to the corresponding non-neoplastic colo-
rectal mucosa in 20 patients [20]. The average kinase CK2
activity from 21 different renal clear cell carcinomas sam-
ples was 610 U/mg compared to 318 U/mg U/mg in the
corresponding ipsilateral control tissues [15]. In breast
cancer, CK2 levels in seven samples showed CK2 activity
increased more than 10-fold compared to control [21].
Therefore, regulating CK2 activity may be a promising
therapeutic intervention for cancer [22].
In this study, we screened a natural compound library

from the National Cancer Institute (NCI) for potential CK2
inhibitors via a cell-free kinase assay. Through this effort,
coumestrol was identified as a novel CK2 inhibitor and was
further evaluated for its dose-dependent inhibition effect
on CK2 kinase activity in a cell-free manner and in three
cancer cell lines.

Methods
Cell culture
HeLa, A549 and Jurkat cell lines were purchased from
American Type Culture Collection (Manassas, VA). Hela
cells were grown in Dulbecco’s modified Eagle’s medium;
A549 and Jurkat cells were cultured in RPMI 1640. Both
media were supplemented with 10% fetal bovine serum,
10 units/ml penicillin and 10 μg/ml streptomycin at 37°C
and 5% CO2.

Compound library
The Natural Products Set II (NCI, Bethesda, MD) was
used to screen novel CK2 inhibitors. This set of 120 com-
pounds was selected out of 140,000 compounds of the
Developmental Therapeutics Program Open Repository
Collection. Selection criteria for the compounds were
based on origin, purity (>90% by ELSD, major peaks show
correct mass ion), structural diversity and availability of
compound. Each of the two 96-well polypropylene micro-
titer plates contains 60 compounds with the outside rows
and columns of the plate left empty. Plates are stored at
−20°C dry. Each well was deposited in 0.20 μM of com-
pound plus 1 μl of glycerol; adding 19 μl of DMSO to
each well can produce 20 μl of a 10 mM solution of each
compound.

Cell viability assay
The CellTiter-Glo® luminescent cell viability assay (Promega,
Madison, WI) was used to evaluate the cytotoxicity of
coumestrol. Cancer cells were seeded in 96-well plates.
After 24 hours of attachment to the bottom of the plates,
cells were treated by a serial dilution of coumestrol for
72 hours. Then, 50 μl of the CellTiter-Glo reagent was
added directly into each well for a 10-minute incubation.
The plate was read by GloMax® 96 microplate luminometer
(Promega, Madison, WI) after incubation to monitor the
luminescence signal generated by the luciferase-catalyzed
reaction of luciferin and ATP. A dose–response curve was
then plotted as a function of coumestrol concentration used
for treatment and luminescence signal.

Kinase assay
The ADP-Glo™ kinase assay (Promega, Madison, WI) was
used to screen two plates of Natural Compound Set II for
their CK2 inhibition effects or for a kinase selectivity
study. The kinase assay was carried out in a 96-well plate
in a volume of 25 μl solvent containing 4 μl of 0.1 μg/l
Casein kinase 2 (Millipore, Bedford, MA), 5 μl of 1 mM
CK2 substrate peptide HRRRDDD-SDDD-NH2 (Millipore,
Bedford, MA), 1 μl of serially diluted coumestrol (Fisher
Scientific, Pittsburg, PA), and 15 μl of 10 μM ATP (Promega,
Madison, WI). Reactions in each well were started imme-
diately by adding ATP and kept going for half an hour
under 30°C in a M-36 microincubator (Taitec Co., Tokyo,
Japan). After the plate cooled for 5 minutes at room
temperature, 25 μl of ADP-Glo reagent was added into
each well to stop the reaction and consume the remaining
ADP within 40 minutes. At the end, 50 μl of kinase detec-
tion reagent was added into the well and incubated for
1 hour to produce a luminescence signal.

Molecular docking
A molecular docking study of screened compounds was
performed using Discovery Studio (Accelrys, San Diego,
CA). One of the crystal structures of CK2/CX-4945
(PDB ID: 3PE1) was chosen to prepare for the receptor
and the binding site because of the low resolution of
1.60 Å. Chain A of the crystal complex was defined as
the receptor and the site occupied by CX-4945 was de-
fined as the binding site. Sphere of the binding site was
added by the program simultaneously. The high through-
put virtual screening protocol LibDock was chosen to per-
form docking. Compounds to be docked were prepared
via the PrepareLigand protocol to give 3D coordinates and
confirmation. Number of Hotspots generated by LibDock
was set as 100 for each case while the remaining param-
eters were unchanged. After docking, binding poses of
compounds were assessed by LibDock Score and visual
inspection to identify the correct poses. CK2/ANP (PDB
ID: 3NSZ) was then superimposed with modeled com-
plexes. Protein CK2 in the CK2/ANP complex was de-
leted to leave the ANP overlayed with predicted poses.

Apoptosis assay
Cells were harvested and stained using an annexin V-FITC
apoptosis detection kit according to the manufacturer’s
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protocol (R&D systems, Minneapolis, MN). Stained cells
were analyzed immediately by flow cytometry (FACScan;
Becton Dickinson, Franklin Lake, NJ). Early apoptotic cells
with exposed phosphatidylserine but intact cell membranes
bound to annexin V-FITC, but not to propidium iodide.
Cells in necrotic or late apoptotic stages were labeled with
both annexin V-FITC and propidium iodide.

RNA interference
Cells were seeded in a 6-well plate as 50,000 cells/well
with fresh media without antibiotics 24 h before trans-
fection, with a target of 30–50% confluency at the
time of transfection. CK2a siRNA (ON-TARGET plus
SMARTpool) and control siRNA were purchased from
Thermo Scientific (Waltham, MA, USA). Cells were
transfected with 50 nmol/l of siRNA using Lipofectamine
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RNAiMAX (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s protocol. Adequate inhibition of the
siRNA-mediated knockdown was confirmed by Western
blot. The pcDNA3.1-CK2a or control pcDNA3.1-LacZ
plasmid vectors were then transfected into the A549
cells (0.5 lg/ml in 24-well plate) using Lipofectamine 2000
transfection reagent (Invitrogen), following the manufac-
turer’s protocol. After siRNA transfection, the plates were
incubated for 72 hrs at 37°C before further analysis.

Western blot analysis
After treatment with indicated concentrations of coumestrol
or 48 hours, A549 cells were washed with PBS and
centrifuged. Cell pellets were lysed with M-PER Mammalian
Protein Extraction Reagent (Thermo Scientific) supplied
with Complete Protease Inhibitor Cocktails (Roche), and
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Table 1 Specificity spectrum of coumestrol

Protein kinase Kinase activity %

CK2 0

CK1 119

DYRK1a 64

HER2 98

MAP2K 139

MET 101

VEGFR 41

AKT2 164

GSK3b 60

SRC 166

PAK1 129

mTOR 110

JAK2 53

Remaining kinase activity was determined in the presence of 10 μM
coumestrol and 10 μM ATP and expressed as a percentage of the control without
inhibitor. CK2, Casein kinase 2; CK1, Casein kinase 1; DYRK, Dual-specificity
tyrosine-(Y)-phosphorylation regulated kinase; HER2, Human epidermal growth
factor receptor 2; MAP2K, Mitogen-activated protein kinase kinase; c-Met, c-Met
receptor tyrosine kinase; VEGFR3, Vascular endothelial growth factor receptor 3;
AKT, also known as protein kinase B (PKB); GSK, Glycogen synthase kinase; SRC,
src Gene encoded non-receptor tyrosine kinase; PAK1, p21 Protein (Cdc42/Rac)-
activated kinase 1; mTOR, Mammalian target of rapamycin; JAK, Janus kinase.
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protein concentration was measured with a colorimetric
BCA Protein Assay Kit (Pierce). Total protein samples
(50 μg) were separated on 4–20% precast polyacrylamide
gels (BioRad) and transferred to PVDF membranes. Mem-
branes were blocked with 5% nonfat milk in Tris Buffered
Saline-Tween (TBS-T) and incubated with primary anti-
bodies followed by HRP-conjugated secondary antibodies.
Immunoreactive proteins were visualized using SuperSignal
West Femto Chemiluminescent Substrate (Thermo Scien-
tific). Primary antibodies used were: rabbit anti-Akt1 (4685;
Cell Signaling), rabbit anti-PARP (9542; Cell Signaling),
rabbit anti-phospho-Akt1 (S129) (ab133458; Abcam) and
mouse anti-β-actin (A2228; Sigma).

Statistical analysis
Data are shown as mean values ± standard deviation (SD).
Student’s t-test was used to compare cell viability for dif-
ferent treatments. Statistical analysis was carried out using
SPSS (version 10.0, Chicago, IL). Significance was defined
as p < 0.05 with two-sided analysis. The half maximal in-
hibitory concentration (IC50) values was determined using
GraphPad Prism® log (inhibitor) vs. response (variable
slope) software (version 6.01, La Jolla, CA).

Results
Screening CK2 inhibitors from a natural compound library
Library screening showed that three compounds had
various levels of inhibitory effects on CK2 activity when
compared to control samples (DMSO) (Figure 1A). These
effects were evaluated in the presence of 10 μM ATP. The
three compounds were coumestrol (1-F4; 3,9-Dihydroxy-6-
benzofurano [3,2-c]chromenone), curcumin (1-D6; (1E,6E)-
1,7-Bis(4-hydroxy-3-methoxy phenyl)-1,6-heptadiene-3,
5-dione) and aristolochic acid I (1-F3; 8-methoxy-6-nitro
phenanthro[3,4-d] [1,3] dioxole-5-carboxylic acid (Figure 1B).
Although all curcumin and aristolochic acid 1 showed
more than 50% inhibition of kinase activity at 10 μM,
coumestrol completely inhibited CK2. Therefore, the in-
hibition effect of coumestrol was further elucidated by
kinase assay and a dose-dependent response of coumestrol
was plotted to yielded an IC50 of 228 nM against CK2
(Figure 1C).

Coumestrol selectively inhibits CK2 kinase activity
To further elucidate the specificity of coumestrol to CK2,
we tested a group of 13 kinases representing nine kinase
families. We found that coumestrol showed no inhibitory ef-
fects on eight kinases: CK1, HER2, MAP2K, MET, AKT2,
SRC, PAK1 and mTOR at 10 μM in the presence of 10 μM
ATP (Table 1). In contrast, coumestrol inhibited 100% of
the kinase activity of CK2, 36% of DYRK1a, 40% of GSK3b
and 47% of JAK2. Although coumestrol had a relatively
high inhibition of 59% against vascular endothelial growth
factor receptor 3 (VEGFR3), this inhibition might be
compromised because VEGFR3 is a proven drug target
[23]. Overall, our results suggest that coumestrol select-
ively inhibits kinase activity of CK2 in a cell-free manner.

Coumestrol reversibly inhibits CK2 kinase activity as an
ATP competitor
Having shown the affinity and selectivity of coumestrol
as a CK2 inhibitor, we next sought to determine the in-
hibition mode of coumestrol by using a kinetic study.
The resulting Linewear-Burk plots showed that coumestrol
is an ATP competitor (Figure 2A). A reversibility study was
then performed in which coumestrol was pre-incubated
with CK2 in a concentration of 100 μg/ml for one hour. A
CK2 kinase assay was then done with the final concentra-
tion of 100 μM coumestrol. Pre-incubation did not affect
the amount of kinase activity (Figure 2B), indicating that
coumestrol is a reversible inhibitor toward CK2.

Coumestrol forms hydrogen-bond interactions with the
hinge region of the ATP site of CK2
We next examined the binding pattern of coumestrol as
an ATP competitor via docking. For this experiment,
coumestrol and two other compounds identified from
screening—curcumin and aristolochic acid I—were docked
into the ATP site, although the inhibition modes of the
latter two were not determined. The results suggested that
coumestrol forms hydrogen-bond interaction with the
hinge region residue Val 116 (Figure 3A). In addition,
coumestrol formed another H-bond with Lys68 and a
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Figure 2 Kinetic analysis and reversibility assay of CK2 inhibition by coumestrol. A. Lineweaver-Burk plots of inhibition of CK2 by
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conserved water molecule inside the ATP binding site
(Figure 3A). Curcumin and aristolochic acid I were suc-
cessfully docked into the ATP site as well, suggesting they
might be ATP competitors (Figure 3B, 3C). Curcumin
established an H-bond with Glu 114 and aristolochic acid
I with Val 116. LibDockScores of the three inhibitors
correlated with their single concentration inhibition at
10 μM against CK2 (Figure 3D). The docking result for
coumestrol provides possible interaction patterns of the
compound with CK2. It also suggests that curcumin and
aristolochic acid I are potential CK2 inhibitors that regu-
late kinase activity through competition with ATP; how-
ever, proving the inhibition mode would require kinetic
studies.

Coumestrol inhibits CK2 kinase activity cell-free and
downstream Akt phosphorylation in A549 lung cancer cells
Since CK2 showed a dose-dependent response to coumestrol
inhibition cell-free, we examined the inhibition effects of
coumestrol on intact cancer cells. A549 lung cancer cells
were treated with either 5 μM or 10 μM coumestrol for
48 hours. Interestingly, Akt Ser129, which is phosphory-
lated by CK2, also showed significantly decreased phos-
phorylation in A549 cells (Figure 4A). However, total
CK2, total Akt and β-actin were comparable. Quantifi-
cation of expression of pAKT s129 compared to total
AKT using different doses of coumestrol in A549 cells
showed that coumestrol significantly decreased the ex-
pression of pAKT s129 (Figure 4B). Increased cleaved
poly ADP-ribose polymerase was also detected in cell
lysate treated with 10 uM of coumestrol (Figure 4A), in-
dicating increased caspase-dependent apoptosis of can-
cer cells after coumestrol treatment. A549 cancer cells
were also treated with CK2α siRNA to analyze induced
apoptosis. The percentage of apoptotic cells treated with
CK2α siRNA was significantly increased, demonstrating
a correlation between reduced cell viability and CK2
activity (Figure 4C).
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Figure 3 Predicted binding of coumestrol, curcumin and aristolochic acid I in the ATP binding site of CK2. The binding mode of
coumestrol (A), curcumin (B), and aristolochic acid 1 (C) in the active site of CK2 was predicted by docking. The three compounds (carbon atoms
colored in orange) and an ATP analog, phosphoaminophosphonic acid-adenylate ester (carbon atoms colored in yellow), were overlayed
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dotted lines. CK2 residues adjacent to coumestrol Glu114, Val116, Lys68, and a conserved water molecule, are shown in line representation along
with coumestrol (in A), curcumin (in B), or aristolochic acid 1 (in C) (red represents oxygen, blue represents nitrogen and white represents
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Coumestrol exerts inhibition effects on growth of
cancer cells
Finally, we compared the inhibition effects of coumestrol
on three cancer cell lines. A549, Jurkat and Hela cells were
treated with serially diluted coumestrol for 72 hours, and
cell viability was measured via the CellTiter-Glo lumines-
cent cell viability assay. From the dose response curve,
IC50 values were calculated in A549 (10.3 ±5.9 μM) Jurkat
(1.4 uM± 0.43), and Hela (12.2 ± 5.9 μM) cancer cells
(Figure 4D,E,F). The results indicate that coumestrol
shows strong inhibition effects towards Jurkat, A549 and
Hela cells.

Discussion
Historically, natural products are important starting ma-
terials in the lead discovery phase of the drug discovery
process and have been a major source for new chemical
entities [24]. More recently, combinatorial chemistry has
become an alternative choice. However, the number of
lead optimization candidates yielded by combinatorial
chemistry has been much less than expected [25]. The
underlying reason might be that chemical structures
obtained through combinatorial approaches lack essen-
tial lead-like properties [24]. Because of these problems,
and the fact that CK2 overexpression is associated with
multiple human cancers and may therefore be a promis-
ing target for cancer therapy, we decided to screen the
natural product library obtained from the NCI to iden-
tify novel CK2 inhibitors. For this purpose, we used a
cell-free kinase assay to screen the libraries. Coumestrol
was identified as a promising CK2 inhibitor. Kinetic as-
says in our study also showed that coumestrol is an ATP
competitive and reversible inhibitor toward CK2. The
results, combined with those from a kinetic study, led
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us to identify and validate coumestrol as a novel CK2
kinase inhibitor.
To the best of our knowledge, our study is the first to

show that coumestrol is a CK2 kinase inhibitor in both
cell-free assay and cancer cells. The cell-free IC50 value of
coumestrol (0.23 μM) on CK2 kinase activity is comparable
to that of several well established CK2 inhibitors, such as
2-Dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole
(DMAT) (0.15 μM), [5-oxo-5, 6-dihydroindolo-(1, 2-a)
quinazolin-7-yl] acetic acid (IQA) (0.39 μM), 4,5,6,7-
tetrabromo benzotriazole (TBB) (0.50 μM) [22] and 1, 3,
8-trihydroxyanthraquinone (emodin) (0.89 μM) [26].
We also showed that coumestrol triggered apoptosis in

cancer cells. Previous studies suggest that CK2 plays an
essential role in suppressing apoptosis. Overexpression
of CK2 in cancer cells protects cells from etoposide-
and diethylstilbestrol-induced apoptosis [27], resulting
in suppressed apoptosis mediated through tumor necrotic
factor-alpha (TNF-α), TRAIL and Fas L, and augments
apoptosis in cells sensitive to these ligands [28]. Treatment
of a variety of cancer cells with cell-permeable CK2 in-
hibitors such as TBB, IQA and DMAT has been shown
to induce activation of caspases and then apoptosis
[22,29,30]. In our study, coumestrol inhibited Akt/PKB
Ser129 phosphorylation in cancer cells. Akt/PKB is ac-
tivated by CK2 and ensures cell survival via activation
of anti-apoptotic pathways, including the NF-κB path-
way and suppression of caspase activities [31-33]. Thus,
coumestrol induces apoptosis in cancer cells at least
partially by inhibiting the Akt/PKB pathway by down
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regulation of CK2 kinase and then decreased phosphor-
ylation of Akt/PKB Ser129.
Coumestrol belongs to the class of phytoestrogens that

includes isoflavones and coumestans. It is the most preva-
lent derivative of coumestan [34], which can be found in
leguminous plants serving as food sources for humans.
Coumestrol intake in the Asian population is 10 times
greater than that of the non-Asian population [35]. The
half-lives of plasma genistein and daidzein, compounds
from the same family of coumestrol, were found to be
8.36 and 5.79 hr, respectively, in humans [36]. A phar-
macokinetic study of soy-derived phytoestrogens in rats
suggested that genestein has a half-life of 4.3 hr, daidzein
2.3 hr and coumestrol 5.5 hr, almost equal to 5.6 hr
observed for zearalenone [37].
A specific dietary supplement, selected vegetables (SV),

which contains coumestrol, was studied in tumor-bearing
mice and in stage IIIB and IV non-small cell lung cancer
patients [37]. The study found 53-74% inhibition of tumor
growth in mice, but more strikingly, patients in stage
IIIB and IV NSCLC who took SV daily for 2–46 months
had prolonged survival and attenuation of the normal
pattern of progression compared to patients not taking
SV [38].
Soy isoflavones, because they are estrogen-like com-

pounds, are thought to have potential side effects on pa-
tients with ER-positive breast cancer. The structure of
coumestrol is similar to that of estradiol, and coumestrol
reportedly can bind to two estrogen receptor subtypes (ERα
and ERβ) but with lower binding affinity than that of estra-
diol [39]. Despite the structural similarities, soy isoflavones
bind to ER differently than estrodiol does and are thought
to exhibit only beneficial effects of estrogen [40-43]. High
consumption of soy foods may reduce the risk of breast
cancer [44]. However, whether the use of coumestrol as a
cancer treatment may have side effects related to estrogen
receptors requires further study.
Coumestrol is a relatively small molecule (MW 268),

which provides room for physical/chemical activity modifi-
cations. Tumors that overexpress CK2 could be potentially
treated with coumestrol or coumestrol derivatives that have
better drug-like properties [15,21,45]. Coumestrol and its
derivatives can also potentially target several key signaling
pathways such as the Akt pathway, a particular example
being EGFR mutations [46,47]. Thus, coumestrol may rep-
resent a new class of targeted treatments for cancer.

Conclusions
In this study, we showed that coumestrol is a novel ATP
competitive and reversible CK2 inhibitor. Coumestrol not
only showed inhibition effects on CK2 (IC50 228 nM) cell-
free, but also showed the same effects on CK2 in vitro.
In addition, coumestrol inhibited the growth of three
cancer cell lines, indicating its cell-permeable property.
A molecular docking study suggested a possible inter-
action of coumestrol with the hinge region of ATP site of
CK2. Taken together, our findings indicate this compound
may represent a promising class of CK2 inhibitors.
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