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Abstract

Magnetic resonance-guided focused ultrasound surgery (MRgFUS) allows for precise thermal ablation of target
tissues. While this emerging modality is increasingly used for the treatment of various types of extracranial soft
tissue tumors, it has only recently been acknowledged as a modality for noninvasive neurosurgery. MRgFUS has
been particularly successful for functional neurosurgery, whereas its clinical application for tumor neurosurgery has
been delayed for various technical and procedural reasons. Here, we report the case of a 63-year-old patient
presenting with a centrally located recurrent glioblastoma who was included in our ongoing clinical phase | study
aimed at evaluating the feasibility and safety of transcranial MRgFUS for brain tumor ablation. Applying 25
high-power sonications under MR imaging guidance, partial tumor ablation could be achieved without provoking
neurological deficits or other adverse effects in the patient. This proves, for the first time, the feasibility of using
transcranial MR-guided focused ultrasound to safely ablate substantial volumes of brain tumor tissue.

Keywords: Focused ultrasound, Thermal ablation, Transcranial, MRgFUS, HIFU, Brain tumor

Introduction

High-intensity focused ultrasound (HIFU) can penetrate
soft tissue to produce physiological effects at the target
while sparing healthy tissue. Integration with magnetic
resonance (MR) imaging for closed-loop intervention
guidance, i.e., MR-based intra-interventional targeting,
continuous temperature monitoring and lesion creation,
and finally, lesion assessment, makes HIFU, or in this
context, transcranial MR-imaging-guided focused ultra-
sound (tcMRgFUS), an ideal modality for noninvasive
brain interventions [1]. It does not involve ionizing radi-
ation, is not limited by trajectory restrictions, and is not
preclusive for later MRI diagnostics and treatment op-
tions. Several clinical phase I trials have demonstrated
the feasibility and safety of using tcMRgFUS to treat a
variety of functional brain disorders, such as chronic
neuropathic pain [2], essential tremor [3,4], or tremor-
dominant Parkinson's disease [5] through thermal ablation
of thalamic and subthalamic targets with submilimeter
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precision [6]. Accordingly, the InSightec Neuro system used
in these trials received CE marking for functional neurosur-
gery by the end of 2012. While the noninvasive treatment
of brain tumors has been the driving vision for the
advancement of HIFU technology for decades [7,8], earlier
clinical studies in this field lacked proper image guidance
[5], required a craniotomy to create an acoustic window
through the skull bone [9], or had limited success due to
the technical limitations of the FUS systems available [10].
Here, we report the successful application of noninvasive
tcMRgFUS for partial brain tumor ablation in a patient
suffering from a centrally located malignant glioma.

Case report

A 63-year-old patient presented in our clinic with tumor
recurrence in the left thalamic and subthalamic region 5
years after first surgery for a posteromedial temporal
lobe glioblastoma (GBM) (Figures 1 and 2A-C). Surgical
resection was excluded as a treatment option due to the
location of the recurrent tumor within eloquent brain
areas and in consideration of previous radiotherapy and
numerous cycles of various chemotherapeutic agents.
On neurological examination, the patient was fully
orientated with a Glasgow Coma Scale of 15. He showed
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Figure 1 Coronal MR sequences of the tumor as depicted on
the operator workstation. Console (left image). Blue marked areas
correspond to completed sonication volumes; the area within the
green frame illustrates the consecutively planed treatment target.
Thermometric mapping (right image) shows a rapid drop of
temperature within the tissue target after sonication.

a right-sided facio-brachio-crural 3/5 hemiparesis
(medical research council scale) [11] and a slight eso-
phoria and ptosis of the right eye without additional
cranial nerve disorders. MR angiography did not reveal
pronounced vascularization within the tumor region that
would imply an intolerable risk of bleeding during tumor
ablation. After giving informed written consent, he was
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included in our ongoing clinical phase 1 study on the
feasibility and safety of tcMRgFUS for the treatment of
brain tumors [12].

The tcMRgFUS procedure was performed using a
mid-frequency ExAblate Neuro® system (InSightec Ltd.,
Haifa, Israel) operating at 650 kHz that was interfaced
to a clinical 3 T MR system (GE Healthcare, Little
Chalfont, Buckinghamshire, UK). The patient received
local anesthesia for the positioning of a stereotactic frame
(Integra LifeSciences Corporation, Plainsboro Township,
NJ, USA) and prophylactic administration of paracetamol
and ondansetron to prevent pain or nausea. No additional
medication was applied during the intervention. The pa-
tient was awake and responsive during the whole interven-
tion. Repeated neurological assessments before, during,
and after the intervention revealed stable neurological
conditions and no treatment-related adverse neurological
symptoms. Towards the end of the 5-h intervention that
included more than 4 h table time in supine position in
the MR scanner, the patient was tired and exhausted. He
recovered quickly after the end of the intervention when
he was released from the frame. For post-operative follow-

Figure 2 Pre- (A, B, C) and post-interventional (D, E, F) MR findings. Axial, coronal, and sagittal contrast-enhanced T1-weighted, fat-saturated
3D VIBE sequence (TR=6.2 ms; TE =2.38 ms; flip angle = 12°; acquisition matrix = 320 x 320 pixels, section thickness = 0.9 mm) depicts a contrast-
enhanced tumor with a progressive necrotic center in the post-interventional follow-up after 5 days.
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up, the patient spent 1 night in the hospital and left on his
own wish the following day in good condition.

The tcMRgFUS intervention process has been described
in detail elsewhere [2]. In short, T2- and T1-weighted
(T1W) anatomical MR images were acquired to register
the FUS system coordinate space into the MR coordinate
space. To clearly visualize the anatomical features of the
tumor, pre-operatively acquired T1 weighted, contrast-
enhanced (T1W +C) MR images were also registered.
Furthermore, a pre-operatively acquired high-resolution
CT data set of the patient head was registered to the MR
images for subsequent acoustic modeling and correction
of skull-induced acoustic distortions by the FUS system
software. Thermal tissue ablation was achieved by trans-
mitting pulses of focused ultrasound (sonications) of 10—
25 s duration and 150-950 Watt acoustic power into the
targeted tumor tissue where acoustic attenuation con-
verted acoustic energy into heat. Since a substantial part of
the transmitted acoustic energy is absorbed in the patient
skull, cooling periods of several minutes are required
between sonications to prevent adverse thermal lesions
in the skull bone, the adjacent tissue, and the meninges.
Sonication target coordinates and sonication parameters,
such as pulse duration and acoustic power, were individu-
ally prescribed in the FUS system user interface after care-
ful evaluation of pre- and intraoperative MR images and
thermal results of previously conducted sonications.
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A total of 25 sonications were applied with increasing
acoustic energy up to 19,950 ] per sonication. Intra-
interventional MR thermometry allowed to classify 17 of
the applied 25 sonications as coagulative according to
achieved peak temperature above 55°C with a maximum
peak temperature of 65°C and calculated thermal dose above
240 CEM 43°C (cumulative equivalent minutes at 43°C)
(Figure 1). According to the purpose of the clinical study,
the treatment was terminated when intra-operative real-
time MR thermometry and calculated thermal dose maps
predicted successful ablation of substantial tumor vol-
umes, thereby having established the clinical feasibility of
the procedure.

Post-interventional assessment included neurological ex-
aminations and MR imaging immediately, as well as on
days 1, 5, and 21 after the procedure (Figures 2, 3, 4 and 5).
MR images acquired immediately after the intervention re-
vealed multiple isolated lesions in the sonicated tumor tis-
sue that were particularly well visible as bright zones in
diffusion weighted images (DWI) (Figure 4). At this time,
no distinctive lesions could be identified in T2W, whereas
on T1W images, faint hypointense spots within the soni-
cated areas were newly detected. MRI on day one post-
sonication was acquired without contrast enhancement and
did not reveal signs of collective intracranial hemorrhage
on susceptibility weighted images or perifocal edema at the
sites of ablated tissue. On day 5 post-op, T1W + C MRI

Figure 3 Pre- (AA-AC) and post-interventional (AD-AF) MR findings. Axial diffusion weighted single-shot echoplanar imaging (A, D) (TR = 4,900
ms; TE = 130 ms; flip angle = 90% acquisition matrix = 192 x 192 pixels, section thickness =5 mm; spacing between slices: 6.5 mm; diffusion gradient
approximately 0 and 1,000 cm?/s), corresponding ADC map (B, E), and axial flow-compensated 3D gradient-echo image (C, F) (TR=49 ms; TE=40 ms;
flip angle = 15°% acquisition matrix = 224 x 256 pixels, section thickness = 2.0 mm) illustrate a discrete intratumoral diffusion restriction in contrast to the
notable intratumoral susceptibility in the post-interventional follow-up after 5 days.
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Figure 4 DWI image 30 min after intervention revealed
significant damage to the sonicated tumor tissue. A total of 25
sonications were applied with up to 19,550 J, 17 sonications reached
ablative temperatures >55°C with a maximum of 65°C.

showed new, well circumscribed areas of nonenhancing
volumes at the location of sonicated tumor tissue. These
volumes exhibited high DWI signals as typically seen in
nonperfused, thermally coagulated tissue (Figures 3 and 4).
The total volume of these areas calculated by manual delin-
eation on T1W + C MRI was 0.7 cc corresponding to 10%
of the total enhancing tumor volume of 6.5 cc. Neurological
examination on day 5 post-op showed an improvement of
the patient's hemiparesis of the right arm (lifting above
shoulder level now possible) and a resolution of the ptosis
of the right eyelid. No new treatment-related neurological
deficits were observed. The follow-up MRI on day 21 dem-
onstrated unchanged areas of ablated tumor tissue and no

Figure 5 MRI findings on day 21 after sonication of the tumor.
Axial (TR = 766 ms; TE = 20 ms; acquisition matrix = 512 X 512 pixels,
section thickness = 5.0 mm) and coronal (TR = 500 ms; TE = 9 ms;
acquisition matrix = 512 x 512 pixels, section thickness = 5.0 mm)
contrast-enhanced T1-weighted sequences image demonstrating
stable findings after sonication of tumor tissue.
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signs of tumor progression (Figure 5). No neurological
deterioration was evident 8 weeks after the procedure.

Discussion

The case presented in this report is the first successful
noninvasive brain tumor thermal ablation performed
with MR imaging-guided HIFU. These preliminary re-
sults confirm the potential of tcMRgFUS for the nonin-
vasive treatment of patients suffering from malignant
brain tumors, especially in areas not amendable for
conventional neurosurgical interventions.

The first successful intervention was preceded by two
prematurely aborted attempts in another patient who is
included in our ongoing phase I study. Notably, the
settings found during these unsuccessful trials were
more complex. The patient had a catheter within a cystic
portion of the centrally located tumor, which had to be
excluded from the sonication pathway. Although the
evaluation of preliminary scans was encouraging, even-
tually, the intervention had to be terminated because of
unreliable MR thermometry data. We suspect that a
small ferromagnetic contamination at the catheter tip in-
duced local inhomogeneity that interfered with thermal
measurements. The second attempt in the same patient
was planed following a 10-month period after tumor
regrow was asserted. The catheter was removed prior to
the intervention. However, due to the clinical condition,
physically, the patient could not tolerate the motionless
position over the time required for the intervention.
Therefore, no ablative sonication was performed.

First attempts to evaluate the physical phenomenon of
HIFU for clinical use in neurosurgery in the 1950s [13]
were hindered by a lack of visual monitoring, thermometric
control, and inability to determine the exact focal point.
Today, it is possible to combine the delivery of ultrasonic
energy with MRI guidance, allowing thermometric moni-
toring and accurate targeting. MRgFUS has been approved
and is increasingly used to treat patients noninvasively for
uterine fibroids and bone metastasis [14,15]. Additional
applications are currently being evaluated in a number of
advanced clinical studies [16]. The first attempts to treat
brain tumors with image-controlled ablative HIFU were
completed in Israel in 2002 in a phase I/II study [9]. At that
time, a bony window had to be established through a small
craniotomy in order to allow penetration of ultrasonic
waves. It was an invasive procedure and the patient
required general anesthesia during sonication. However, the
ability to devitalize tumor tissue through ultrasonic thermal
coagulation was demonstrated, and the histological analysis
of the treated tumor showed coagulative necrosis with
sharp delineation between viable and thermally coagulated
tumor. As reported in 2010 by McDannold et al. [10], the
first clinical evaluation of noninvasive tctMRgFUS for ma-
lignant brain tumors proved the feasibility of focusing an
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ultrasound beam transcranially into the tumor mapping
heating with real-time MR temperature imaging. The
study was limited by the capacity of the device (Insightec,
ExAblate 3000) at that time. Despite reaching maximum
acoustic power of 800 W, the overall maximum focal
temperature within the tumor was only 51°C. Thus, no
thermal coagulation could be achieved, and no changes
resulting from treatment were evident in the tumor or sur-
rounding brain tissue, as seen in MRI acquired post-
tcMRgFUS. It has been demonstrated that temperatures of
55°C and above are needed to denature proteins perman-
ently and achieve tissue devitalization [17,18]. Current
transducer technology and refined software enable suffi-
cient noninvasive penetration of therapeutic HIFU through
intact skin and calvaria.

While there is ample evidence to show that tumor tissue
can be permanently destroyed using HIFU, one concern is
that tumor mass will indeed be reduced through coagula-
tion of tissue, but not completely eliminated—as aimed
for with conventional surgery. Although evidence from
HIFU therapy for uterine fibroids - which consist histolog-
ically of markedly firmer tissue than gliomas - shows that
12 months post-thermal ablation, tumor volume reduction
can reach over 50% [19], the long-term effects of thermal
ablation on the former glioma tumor mass are not known.
Even though the space-occupying and displacing effect of
gliomas is obviously of concern, neurological symptoms
are often caused to a greater extent by perifocal edema in
otherwise unaffected tissue (evidenced by the dramatic
improvement of symptoms frequently observed with
steroid therapy) and by nonresectable tumor infiltration
within brain parenchyma. In contemporary GBM treat-
ment, there is no question that timely cytoreductive
surgery is the key to achieving substantial tumor control,
though, ultimately, the infiltrative tumor margin zones are
only accessible therapeutically by radiation and chemo-
therapy [20]. Survival of GBM patients is therefore greatly
influenced by the location and the operability of the
tumor. Alternatives to conventional surgery for obtaining
immediate and safe tumor reduction and destruction are
much needed for a large number of patients.

The tcMRgFUS technology available today has several
shortcomings preventing its broad application in brain
tumor treatment. One main disadvantage is the current
treatment envelope determined by the 650 kHz ultra-
sound transducer system, which limits the range of abla-
tive power to centrally located brain areas. Therefore,
our phase I study restricts patient selection to cases with
centrally located malignant tumors unsuitable for sur-
gery and patients with larger tumors expanding into the
thalamic region, potentially requiring a hybrid approach
including conventional surgery for the outer part of the
tumor and tcMRgFUS for the central region. Various solu-
tions to widen the treatment envelope are currently being
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intensively evaluated, such as using lower ultrasound fre-
quencies, adding ultrasound enhancing microbubbles, or
rearranging transducer position and geometry [21]—which
presumably will extend the therapeutic potential of HIFU
for various CNS diseases in the near future. Another issue
is the attenuation of ultrasonic beam in bone (30-60 times
higher than in soft tissue) [10,22] which heats the skull
and overlying skin. Following sonication of 10-15 s, a 3—
5-min break must be taken to allow the bone and skin to
cool down. After 3 h of repeated sonication, our patient
reported a mild sensation of warmth inside the head
occurring several seconds after sonication and lasting for a
diffuse length of time. Despite the patient asking for con-
tinuation, we decided to cease the session at the point in
order to evaluate the effect on target tissue and surround-
ing brain parenchyma. The post-interventional MR scans
showed sharply demarcated lesions precisely within the
planed sonication location (Figures 1, 2, 3 and 4) in the
tumor without any other distinctive changes in the sur-
rounding tissue. The patient did not display any new
neurological deficits and was mobile directly following the
procedure. The total ablation volume of 0.7 cc achieved in
a 4-h treatment session corresponds to an average lesion
volume of 0.04 cc per sonication, which matches well
with the single point lesion sizes achieved in current
tcMRgFUS treatments for functional brain disorders.
While the total ablation volume is substantial, it is still
relatively small, i.e., 10% of the enhancing tumor volume,
and not sufficient for significant cytoreduction as is the
key for sustained tumor control. However, reduction of
displacing effects of the tumor mass resulted in improve-
ment of neurological condition and quality of life of the
patient throughout the 2-month follow-up period covered
in this report.

TcMRgFUS is a highly promising technology which has
the capacity to improve or replace present therapies and
enable future treatment modalities [23]. Beyond thermal
ablation, HIFU has notably been shown to allow safe,
nondestructive, and transient focal blood-brain barrier
disruption to facilitate drug delivery [24,25] and is being
evaluated as a tool to induce hyperthermia to enhance
the therapeutic effect of radiotherapy and chemotherapy
[26-28]. Transcranial noninvasive HIFU has also been used
to modulate cortex activity in a study with human volun-
teers [29] and to stimulate deep brain nuclei [30]. This
makes HIFU potentially capable of combining lower ultra-
sound intensities for tissue stimulation monitoring before
the application of higher intensities for ablation.

Conclusion

This report on successful brain tumor ablation demonstrates
the feasibility of noninvasive tcMRgFUS tumor surgery.
Further treatments in the context of our ongoing clinical
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phase I study will be needed to assess the safety and efficacy
of tctMRgFUS in patients with malignant brain tumors.

Consent

Written informed consent was obtained from the patient
for publication of this case report and any accompanying
images. A copy of the written consent is available for
review by the editor-in-chief of this journal.
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