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Abstract

Background: Dengue, an infectious tropical disease, has recently emerged as one of the most important
mosquito-borne viral diseases in the world. We perform a retrospective analysis of the 2011 dengue fever epidemic in
Pakistan in order to assess the transmissibility of the disease. We obtain estimates of the basic reproduction number
R0 from epidemic data using different methodologies applied to different epidemic models in order to evaluate the
robustness of our estimate.

Results: We first estimate model parameters by fitting a deterministic ODE vector-host model for the transmission
dynamics of single-strain dengue to the epidemic data, using both a basic ordinary least squares (OLS) as well as a
generalized least squares (GLS) scheme. Moreover, we perform the same analysis for a direct-transmission ODE model,
thereby allowing us to compare our results across different models. In addition, we formulate a direct-transmission
stochastic model for the transmission dynamics of dengue and obtain parameter estimates for the stochastic model
using Markov chain Monte Carlo (MCMC) methods. In each of the cases we have considered, the estimate for the basic
reproduction number R0 is initially greater than unity leading to an epidemic outbreak. However, control measures
implemented several weeks after the initial outbreak successfully reduce R0 to less than unity, thus resulting in disease
elimination. Furthermore, it is observed that there is strong agreement in our estimates for the pre-control value of R0,
both across different methodologies as well across different models. However, there are also significant differences
between our estimates for the post-control value of the basic reproduction number across the two different models.

Conclusion: In conclusion, we have obtained robust estimates for the value of the basic reproduction number R0
associated with the 2011 dengue fever epidemic before the implementation of public health control measures.
Furthermore, we have shown that there is close agreement between our estimates for the post-control value of R0
across the different methodologies. Nevertheless, there are also significant differences between the estimates for the
post-control value of R0 across the two different models.
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Background
Global incidence of dengue has seen a striking increase
over the past few decades [1,2]. The infectious disease
is now endemic in more than a hundred tropical and
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subtropical countries worldwide [1-3]. With an estimated
50–100 million cases and nearly 10,000- 20,000 deaths
annually, dengue ranks second to Malaria amongst deadly
mosquito-borne diseases [1,2,4-6]. The disease is caused
by one of four virus serotypes (strains) of the genus
Flavivirus [2,3,7]. Most infected individuals suffer from
dengue fever, a severe flu-like illness characterized by
high fever, which is not usually a threat to mortality [2,8].
The symptoms of the disease last one to two weeks,
after an initial incubation period of about 4–7 days [9].
Some infected individuals however, develop dengue hem-
orrhagic fever (DHF) resulting in bleeding, low levels of
blood platelets and blood plasma leakage, or dengue shock
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syndrome (DSS) resulting in extremely low blood pres-
sures. The risk associated with DHF and DSS is consider-
ably higher, with mortality ranging from 5–15% [3,5,9,10].
There is evidence of dengue epidemics occurring in

North America, Asia and Africa in the late 18th century
[3]. Up until the middle of the 20th century however,
incidences of dengue fever have been rare [3]. Nonethe-
less, since the 1970’s, there has been a marked increase
in the number of dengue cases, as well as the frequency
and severity dengue epidemics, with the WHO claiming
a 30-fold increase in the incidence of dengue between
1960 and 2010 [2,3,8]. Factors such as population growth,
rapid urbanization and increase international travel are
often cited as having contributed to this dramatic increase
[8]. Dengue is currently endemic in nearly 110 countries
in Southeast Asia, the Americas, Africa and the Eastern
Mediterranean [2]. The WHO estimates that nearly 2.5
billion people are at risk of contracting the disease. Fur-
thermore, nearly 50–100 million cases and almost 20,000
deaths due to more severe forms of dengue fever are
reported globally every year, making dengue one of the
deadliest mosquito-transmitted diseases [1,2,4-6].
Dengue is transmitted to humans through mosquito

bites. Female mosquitos of the Aedas genus, primarily
Aedes aegypti, acquire the dengue virus through a blood
meal from infected humans [2,11]. The dengue virus has
an incubation period of about 7–10 days in the vector,
and is then spread to susceptible humans who are bit-
ten by the infected mosquito [9]. The virus also has an
incubation period of 4–7 days in the host [9]. While vec-
tors never recover from infection with the dengue virus,
the infection in hosts lasts only about one to two weeks
[2]. Hosts that recover from infection with one serotype
of the dengue virus gain life-long immunity from that
serotype but only temporary and partial immunity to
other serotypes [2,4,12-14]. This partial cross-immunity
is the cause of antibody-dependent enhancement (ADE)
in the setting of a secondary infection with a different
serotype of DENV (Dengue Virus). ADE is hypothesized
to be one factors leading to DHF and DSS, themore severe
form of dengue disease [4,12,13,15]. In this study however,
we will consider infection involving only a single serotype
of the dengue virus.
About 80% of individuals suffering from a primary infec-

tion with DENV are asymptomatic or display only a mild,
uncomplicated fever [2,8]. A much smaller proportion of
infected individuals suffer from dengue hemorrhagic fever
and dengue shock syndrome [3,5,9]. As mentioned previ-
ously however, risk of DHF and DSS is associated primar-
ily with secondary infection with a heterologous serotype
of DENV [4,12,13,15]. In general, the course of infection of
dengue can be divided into three separate phases: febrile,
critical and recovery. The febrile phase, which is rarely life
threatening, is marked by the sudden onset of high fever,

rash, headaches and muscle and joint pains, which lead to
the alternative name "breakbone fever" for dengue disease
[8]. While most individuals then progress to the recov-
ery phase, a small fraction of infected individuals instead
progress to the critical phase of the disease. This phase
lasts for one or two days and is marked by low blood
pressure, leakage of blood plasma from the capillaries and
decreased blood supply to organs. Severe cases of these
symptoms are associated with DHF and DSS and the mor-
tality in this phase of the disease is estimated to be as high
as 5–15% [3,5,8,9].
Over the past several years, a number of deterministic

mathematical models have been proposed to analyze the
transmission dynamics of dengue in urban communities
[5,11-17]. L. Esteva and C. Vargas [14] have investigated
the coexistence of two serotypes of dengue virus using a
deterministic ODE model. Moreover, Ferguson et al. [15]
have investigated the effects of ADE on the transmission
of multiple serotypes of dengue virus. In addition, Garba
et al. [11] have shown the existence of a backward bifur-
cation in a standard incidence ODE model for a single
strain of dengue virus. Garba et al. [12] have also explored
the effects of cross-immunity on the transmission dynam-
ics of two strains of dengue virus. Similarly, H. Wearing
and P. Rohani [13] have investigated the effects of both
ADE and cross immunity on multiple serotypes of dengue
virus. Finally, Chowell et al. [18] have estimated the basic
reproduction number for dengue using spatial epidemic
data.
In addition, over the past few decades, several stochastic

epidemic models for the spread of infectious diseases have
also been proposed and analyzed [19-27]. An important
qualitative difference between deterministic and stochas-
tic epidemic models in general is the asymptotic dynam-
ics [28]. Furthermore, stochastic models also allow for
the possibility of disease extinction in finite time and
therefore the expected time to disease extinction can be
calculated [19,28,29]. It is also observed that stochastic
models better capture the uncertainty and variability that
is inherent in real-life epidemics due to factors such as
the unpredictability of person-to-person contact [27,29].
L. J. S. Allen [28,29] has explored the utility of stochastic
epidemic models by comparing them with deterministic
models. Despite, the utility of stochastic models, however,
very little stochastic modeling has been performed for the
transmission dynamics of dengue virus (see [26] and the
references therein).
The purpose of this study is to estimate the transmis-

sibility of the dengue virus during the 2011 dengue fever
epidemic in Pakistan using epidemic data in the form
of the cumulative number of reported cases of dengue.
We will employ three different techniques, applied to
two different models and compare the results across both
the different statistical inference methodologies as well
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as the different models. The first approach, based on
the earlier work of Cintron-Arias et al. [30], will involve
fitting a deterministic epidemic model for the transmis-
sion of dengue to the epidemic data using an ordinary
least squares (OLS) scheme implemented using the built-
in optimization toolbox in MATLAB and applied in the
context of an appropriate statistical model. The second
method, also based on the recent work of Cintron-Arias et
al. [30], will use a generalized least squares (GLS) scheme
to fit the same deterministic model to the epidemic data.
Furthermore, both approaches will also be applied to
a different direct-transmission model for the transmis-
sion dynamics of dengue. Finally, the third approach will
involve the formulation of a direct transmission stochas-
tic epidemic model for dengue. We shall then use Markov
chain Monte Carlo techniques to obtain a probability
distribution for the model parameters.
A simple but effective measure of the transmissibility

of an infectious disease is given by the basic reproduc-
tion number R0, defined as the total number of secondary
infections produced by introducing a single infective in a
completely susceptible population [31]. For vector-borne
diseases such as malaria and dengue, R0 is the number
of secondary cases produced by a single infectious vec-
tor introduced in a completely susceptible host and vector
population. In general, for simple epidemic models, if R0
is greater than unity, an epidemic will occur while if R0
is less than unity, an outbreak will most likely not occur.
Thus, the value of R0 can be used to determine the inten-
sity of control measures that need to be implemented in
order to contain the epidemic.
The estimation of the basic reproductive number is

generally an indirect process because the model param-
eters that R0 depends on are difficult or impossible
to determine directly. The general methodology used

therefore, attempts to fit an epidemic model to available
epidemic data in order to estimate the model parame-
ters. These parameters are then used to estimate the basic
reproduction number R0. The current study is based on
this methodology.

Results
Applying the algorithm for the ordinary least squares
(OLS) methodology to the vector-host model (1.1) results
in a value of CHV = 8.1897 week−1 before the implemen-
tation of control measures and a value of CHV = 0.9523
week−1 after the implementation of control measures.
Thus, we obtain an estimate of R0 = 2.9871 before the
implementation of control measures and R0 = 0.3473
after the implementation of control measures. The best-
fit trajectory of model (1.1) calculated using the OLS
methodology, along with the epidemic data is displayed
in Figure 1. Similarly, implementing the algorithm for
the generalized least squares (GLS) methodology results
in a value of CHV = 8.0976 week−1 before the imple-
mentation of control measures and a value of CHV =
1.2374 week−1 after the implementation of control mea-
sures. Thus, when using the GLS scheme, we obtain
an estimate of R0 = 2.9535 before the implementa-
tion of control measures and R0 = 0.4513 after the
implementation of control measures. Figure 2 displays
the best-fit trajectory of model (1.1) calculated using the
GLS methodology. We observe that the GLS estimates
for R0 before the implementation of control measures
are in close agreement with the results obtained using
the OLS scheme. There is however, difference between
the estimates for R0 after the implementation of control
measures.
Application of the algorithm for the ordinary least

squares (OLS) methodology to the direct-transmission

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5 x 104

Time / Weeks

T
ot

al
 R

ec
ov

er
ed

 H
os

t P
op

ul
at

io
n

 

 

 

Figure 1 The best-fit trajectory of model (1.1) calculated using the OLS methodology, along with the epidemic data.
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Figure 2 The best-fit trajectory of model (1.1) calculated using the GLS methodology, along with the epidemic data.

model (3.1) results in a value of β = 3.0302 week−1

before the implementation of control measures and a
value of β = 0.6622 week−1 after the implementa-
tion of control measures. This corresponds to a value
of R0 = 3.0182 before the implementation of control
measures and R0 = 0.6596 after the implementation of
control measures. Figure 3 displays the best-fit trajectory
of the direct-transmissionmodel (3.1) calculated using the
OLS scheme. We observe that the pre-control value of
R0 is slightly larger (1.04%) than the corresponding value
obtained by applying the OLS scheme to the vector-host
model (1.1), which we feel is not a statistically signifi-
cant increase. However, the post-control value of R0 is
significantly higher (89.92%) than the corresponding value
obtained by applying the OLS scheme to the vector-host
model (1.1).

In addition, pre-control estimates of R0 for the dengue
epidemic from the uncertainty analysis are shown in
Figure 4. The 95% confidence interval for the pre-control
value of R0 is given by (2.0293, 6.5310). The probability
that R0, before the implementation of control measures, is
greater than unity is more than 99.9%. Similarly, the sen-
sitivity analysis, shown in Figure 5, suggests that the most
significant (PRCC values above 0.5 or below −0.5) sensi-
tivity parameters to R0 are τH , σV and μV . This suggests
that these parameters need to be estimated with precision
in order to accurately capture the transmission dynamics
of dengue.
Furthermore, implementing the algorithm for the gener-

alized least squares methodology in the case of the direct-
transmission model (3.1) results in a value of β = 3.0920
week−1 before the implementation of control measures

Figure 3 The best-fit trajectory of model (3.1) calculated using the OLS methodology, along with the epidemic data.
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Figure 4 Uncertainty analysis of the basic reproduction number R0.

and a value of β = 0.5895 week−1 after the implemen-
tation of control measures. These values of the contact
rate result in an estimate of R0 = 3.0797 before the
implementation of control measures and R0 = 0.5872
after the implementation of control measures. The best-fit
trajectory of the direct-transmission model (3.1) calcu-
lated using the GLS scheme is displayed in Figure 6. We
observe that while these results are in close agreement
with the corresponding results obtained by applying the
OLS scheme to the direct-transmission SEIR model, the
estimated value of post-control R0 is again, significantly

larger (30.11%) than the corresponding value obtained by
applying the GLS scheme to the vector-host model. How-
ever, there is only a slight increase (4.27%) in the estimate
for the pre-control value of R0 across the different mod-
els, which we again feel is not a statistically significant
increase.
Finally, implementation of the MCMC algorithm to the

stochastic direct-transmission model (4.1) results in a
value of β = 3.0650 week−1 before the implementation of
control measures and a value of β = 0.6318 week−1 after
the implementation of control measures. These values of

Figure 5 Sensitivity Analysis of the Basic Reproduction Number R0.
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Figure 6 The best-fit trajectory of model (3.1) calculated using the GLS methodology, along with the epidemic data.

the contact rate correspond to values of R0 = 3.0528
before the implementation of control measures and R0 =
0.6293 after the implementation of control measures. The
probability distributions of the contact rate β , both before
and after the implementation of control measures are dis-
played in Figure 7 and Figure 8 respectively. Moreover, the
mean trajectory of the stochastic model (4.1) calculated
using Monte Carlo simulations involving the mean of
the posterior distribution is displayed in Figure 9. The
results of theMCMCmethodology are in close agreement
with the results obtained by applying the GLS and OLS
schemes to the deterministic direct-transmission model
(3.1). Furthermore, there is also close agreement in our
estimates for the pre-control value of R0 across both the
previous methodologies as well as the different models.
There is however, again, a significant difference between

the post-control value of R0, obtained using the MCMC
algorithm and the estimates of the post-control value of
R0, obtained by applying the OLS and GLS scheme to the
vector-host model (1.1).

Discussion
We have performed a retrospective analysis of the 2011
dengue fever epidemic in Pakistan and obtained esti-
mates of the basic reproduction number R0, from epi-
demic data using three different methods. R0, defined as
the total number of secondary infections produced by
introducing a single infective in a completely susceptible
population, is a simple but effective measure of the trans-
missibility of an infectious disease. In each case it was
observed that the value of R0 was initially well in excess
of unity, leading to the observed epidemic outbreak. Some

Figure 7 The distribution of the parameter β before the implementation of control measures.
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Figure 8 The distribution of the parameter β after the implementation of control measures.

weeks after the initial outbreak however, control mea-
sures were successfully implemented that reduced the
value of R0 to less than unity, thus resulting in disease
elimination.
Several methods have been proposed for the estima-

tion of R0, both for deterministic as well as for stochastic
models. These methods depend upon the mathematical
model of the disease as well the nature of the data. In
the case of deterministic compartmental models, least
squares fit to the data has been widely used to estimate the
model parameters [18,30,32]. For stochastic models likeli-
hood based techniques have been used by several authors
[33,34]. We consider two ODE based deterministic mod-
els and a Continuous Time Markov Chain (CTMC) based
stochastic model. Using least squares estimation for the

deterministic models and a Markov Chain Monte Carlo
based approach for the stochastic model, we compare the
value of R0 obtained using the different models. We note
that this is the first such study performed for the Dengue
Epidemic in Pakistan.
The first inference methodology involved fitting a deter-

ministic ODE model for the transmission dynamics of
single-strain dengue to the epidemic data using a basic
ordinary least squares (OLS) scheme in the context of a
statistical model which assumed longitudinally constant
variance for the epidemic data. An a priori more realistic
methodology was used to fit the deterministic ODEmodel
to obtain estimates of the model parameters using a gen-
eralized least squares (GLS) scheme which made use of
a statistical model that assumed that variances associated

Figure 9 The mean trajectory of the stochastic model (4.1), calculated using Monte Carlo simulations involving the mean of the posterior
distribution, plotted along with the epidemic data.
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with the observation process were directly proportional
to the measurement values. One of the questions we
tried to address was whether or not the variances were
strongly dependent on the observations. Finally, we for-
mulated a discrete-time, direct transmission, stochas-
tic model for the spread of dengue virus and used
Markov chainMonte Carlo (MCMC) methods to perform
Bayesian inference and estimate the basic reproduction
number.
We observe that the estimates for the basic repro-

duction number R0 before the implementation of con-
trol measures are in excellent agreement for the same
model across different methodologies. Similarly, across
different models there is a very slight but nonetheless
statistically insignificant difference in our estimates of
the pre-control basic reproduction number. We there-
fore conclude that our estimation of the pre-control value
of R0 is quite robust, both across different methodolo-
gies as well as across different models. This leads us
to believe that the noise does not depend significantly
on the data. Furthermore, agreement in our estimates
across models indicates that both the vector-host model
as well as the direct-transmission model can be used
to accurately capture the disease dynamics of actual
dengue epidemics before the implementation of control
measures.
While there is also close agreement in our estimates for

the basic reproduction number R0 after the implementa-
tion of control measures across different methodologies,
there is nonetheless significant difference between the
post-control estimates of R0 across the vector-host and
direct-transmission models. Specifically, R0 is estimated
to be significantly larger in value when using the direct-
transmission model as opposed to the vector-host model.
We conjecture that this might be due to the fact that
the direct-transmission model makes use of an approxi-
mation, which involves solving for the equilibrium value
of the vector force of infection. Thus, while the vec-
tor force of infection rises and peaks for the vector-host
model, before settling to its equilibrium value, it is in
effect equal to the smaller equilibrium value for the direct-
transmission model. Therefore, since the vector force of
infection for the direct transmission model is, in effect,
smaller for the time period after the implementation of
control measures, it results in a larger estimate of the basic
reproduction number in order to produce a ‘best-fit’ for
the observed epidemic data.

Conclusion
In conclusion, we have attempted to assess the transmis-
sibility of the dengue virus during the 2011 dengue fever
epidemic in Pakistan by estimating the basic reproduc-
tion number R0 both before and after the implementation
of public health control measures. Our estimates for the

pre-control value of R0 are in close agreement both across
different methodologies and the different models. Fur-
thermore, the post-control estimates are also in close
agreement across the different methodologies. There is
however, a significant increase in the estimates of the post-
control value of R0 obtained using the direct-transmission
model compared to estimates obtained using the vector-
host model.

Methods
Methods andmaterials for statistical inference using the
vector-host model
The vector-host epidemicModel
The model is a deterministic vector-host ODE model that
assumes a homogeneous mixing of the host (human) and
vector (mosquito) populations. The total human popula-
tion at time t, denoted by N(t), is divided into four mutu-
ally exclusive classes comprising of susceptible humans
SH(t), exposed humans EH(t), infected humans IH(t) and
recovered humans RH(t). It is assumed that individuals
who recover from infection with a particular serotype of
Dengue gain lifelong immunity to it [2]. Similarly, the
total vector population at time t is denoted by NV (t)
and is divided into three mutually exclusive classes com-
prising susceptible of susceptible vectors SV (t), exposed
vectors EV (t) and infected vectors IV (t). It is assumed
that vectors (mosquitoes) infected with a particular
serotype of Dengue never recover [2]. We also modify
the original model of Garba et al. [11] by assuming that
exposed humans and exposed vectors do not transmit the
disease.
The model assumes that the susceptible human pop-

ulation SH(t) has a constant recruitment rate �H and
natural death rate μ. Susceptible individuals are infected
with Dengue virus (due to contact with infected vectors)
at a rate λH and thus enter the exposed class EH . The
exposed population EH(t) is depleted at the natural death
rate μ. Additionally, exposed individuals develop symp-
toms and move into the infected class IH at a rate σH .
The infected population IH(t) is depleted via the natural
death rate μ, the disease-induced death rate δH and the
recovery rate of infected individuals τH . Finally, the recov-
ered population RH(t) decreases due to the natural death
rate μ.
Similarly, the susceptible vector population SV (t) has a

constant recruitment rate�V and a natural death rateμV .
Susceptible vectors are infected with Dengue virus (due to
effective contact with infected humans) at a rate λV and
thus move to the exposed vector class EV . The exposed
vector class EV (t) is depleted at the natural death rate μV .
In addition exposed vectors develop symptoms and move
to the infected vector class IV at a rate σV . Infected vec-
tors, in addition to the natural death rate μ die at a disease
induced death rate δV .
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Mathematically, the model is a follows

dSH
dt

= �H − λHSH − μS

dEH
dt

= λHS − (σH + μ)EH
dIH
dt

= σHEH − (τH + μ + δH)IH
dRH
dt

= τHIH − μRH

dSV
dt

= �V − λVSV − μVSV
dEV
dt

= λVSV − (σV + μV )EV
dIV
dt

= σVEV − (μV + δV )IV

where,

λH = CHV
IV
NH

λV = CHV
IH
NH

(1.1)

A description of the variables and parameters of the
model (1.1) is given in Table 1.
Garba et al. [11] have calculated the basic reproduction

number R0 for their original model. Although, we have
made a slight modification to the original model, the basic
reproduction number for our model is not significantly
different. Hence, for the model (1.1), R0 is given by

R0 =
√
C2
HV�VμσHσV

�HμV k1k2k3k4
(1.2)

where

k1 = σH + μH k2 = τH + μH + δH

k3 = σV + μV and k4 = μV + δV

Table 1 Description of the variables of the vector-host
model (1.1)

Variable Description

NH(t) Total host population

SH(t) Population of susceptible hosts

EH(t) Population of exposed hosts

IH(t) Population of infected hosts

RH(t) Population of recovered hosts

NV (t) Total vector population

SV (t) Population of susceptible vectors

EV (t) Population of exposed vectors

IV (t) Population of infected vectors

Representative trajectories of the model (1.1) for differ-
ent values of R0 are given in Figure 10 and Figure 11. As
expected, a value of R0 greater than unity leads to an epi-
demic while a value of R0 less than unity leads to swift
disease elimination.

Data sources
The epidemic data used in this study was collected by
the Punjab Disaster Management Authority (PDMA) dur-
ing the 2011 Dengue Epidemic in Punjab, Pakistan. The
data, displayed in Figure 12, represents the cumulative
number of dengue fever cases reported over a 32-week
period extending from the 1st of August 2011, to the 20th
of February 2012. The data was collected from a number
of public and private hospitals in the major metropoli-
tan centers of Punjab, including Lahore, Faisalabad and
Multan. Patients were classified as infected with dengue
virus based on the results of laboratory tests for the
dengue specific antibodies Immunoglobulin G (IgG) and
ImmunoglobulinM (IgM). As per the Government of Pak-
istan’s directives, the laboratory test was available at a
subsidized rate in all major hospitals in the capital city
of Lahore. It is therefore unlikely that poverty played a
serious role in under-reporting of dengue fever cases.
Prior to August 2011, there were three reported cases

of dengue fever, all occurring several months before the
actual epidemic. This leads us to conclude that these were
isolated incidents and were not directly related to the
epidemic itself. Furthermore, nearly 87% of all dengue
infections were caused by a single serotype (DEN2) of
the dengue virus. This justifies our use of a single-strain
epidemic model as opposed to dengue models that incor-
porate the effects of cross-immunity and ADE.

Estimation schemes
In order to calculate R0, we require the values of several
parameters used in model (1.1). Furthermore, we require
knowledge of the initial conditions that will be used to
simulate trajectories of the model (1.1).
Estimates for several of the model parameters used in

model (1.1) can be obtained from existing studies on
Dengue Fever. Table 2 lists these parameters along with
reasonable estimates of their values.
The recruitment rate for the susceptible host population

depends on the demographics of the urban population
that is being considered. This study uses epidemic data
collected during the 2011 Dengue Epidemic in Punjab,
Pakistan. Therefore, in the absence of concrete estimates,
the host recruitment rate has been chosen so as to allow
for a realistic steady state host population.
The effective contact rateCHV , which is ameasure of the

rate at which contact between an infective and a suscepti-
ble individual occurs and the probability that such contact
will lead to an infection, is extremely difficult to determine
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Figure 10 Sample trajectories of model (1.1) with R0 > 1.

directly. Most previous studies have used assumed values
for the effective contact rate [11-13]. Thus, it is not pos-
sible to directly estimate the basic reproduction number.
Consequently, we will adopt an indirect approach, similar
to previous studies such as [30] and [18], by first finding
the value of the parameter CHV for which the model (1.1)
has the best agreement with the epidemic data, and then
using the resultant parameter values to estimate R0.
As mentioned before, for the purpose of simulating

model (1.1) we require knowledge of the initial con-
ditions. It is possible to consider the initial conditions
(SH(0),EH(0), IH(0),RH(0), SV (0),EV (0), IV (0)) as model
parameters along with the effective contact rate CHV
and estimate values for all parameters. Such a tech-
nique, however, produces slightly unreliable results. This
is explained by the fact that the available epidemic data
is restricted to the cumulative number of dengue cases
reported, while the optimization schemes that we will
employ produces estimates for eight variables. There are
thus too many degrees of freedom and the ‘best-fit’ may
result in unrealistic estimates for the initial conditions.

We will therefore use reasonable estimates for the initial
conditions and restrict ourselves to optimizing only the
effective contact rate CHV .
Table 3 displays the initial conditions that were therefore

chosen.
In the following sections we will employ different

methods to estimate the parameter ω = CHV by minimiz-
ing the difference between the predictions of model (1.1)
and the epidemic data.

Ordinary Least Squares Estimation
We will first attempt to estimate the effective contact rate
by fitting the best trajectory of model (1.1) to the epi-
demic data using an ordinary least squares (OLS) scheme,
implemented using the fminsearch function in the built-
in Optimization Toolbox in MATLAB. This will allow us
to estimate the parameter ω and thus calculate the basic
reproduction number R0.
In order to fit model trajectories with the observed

epidemic data, we will assume that all reported cases
recovered from the infection after a time lag of two weeks.
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Figure 11 Sample trajectories of model (1.1) with R0 < 1.
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Figure 12 The cumulative number of dengue cases during the 2011 dengue fever epidemic in Pakistan as reported by the Punjab
Disaster Management Authority (PDMA).

Thus, the epidemic data, after a lapse of two weeks, rep-
resents the total recovered host population. In addition,
in order to account for the effect of control measures that
were implemented during the actual epidemic, we have
assumed that the transmission rate CHV is a function of
time t. We will assume that the transmission rate was
constant up until the point when control measures were
implemented, whereupon it changed to a different con-
stant value. An alternative definition of the contact rate is
also given in [33]. Thus, mathematically,

CHV (t) =
{
CHV1 t < t∗

CHV2 t ≥ t∗
(2.1)

where t∗ is the time at which control measures were first
implemented. For the purpose of this study and in view of

Table 2 Description of the parameters of the vector-host
model (1.1)

Parameter Description Value Reference

�H Host recruitment rate 140 week−1 assumed

�V Vector recruitment rate 28000 week−1 [12]
1

μ
Host mortality 3494 weeks [12]

δH Host disease-induced
death rate

0.0035 week−1 [12]

1

μV
Vector mortality 2 weeks [12]

δV Vector disease-induced
death rate

negligible week−1 [11]

1

σH
Latency period for
exposed hosts

1 week [13]

1

τH
Recovery time for infected
hosts

1 week [12]

1

σV
Latency period for
exposed vectors

10

7
weeks [13]

CHV Effective contact rate Variable

no concrete information being available in this regard, we
have assumed that t∗ = 8 weeks.
For the purpose of this section we shall employ the nota-

tion and methodology developed in [30]. Essentially, we
will employ inverse problem methodology to obtain esti-
mates of ω = CHV by minimizing the difference between
the observed weekly cumulative number of recovered host
individuals and the model predictions using a ordinary
least squares (OLS) criterion. This will be done in the
context of an appropriate statistical model.
The ordinary least squares estimation methodology that

we will employ is based onmodel (1.1) as well as an appro-
priate statistical model for the observation process. Thus,
similar to [30], we assume that the model (1.1), together
with a ‘true’ value of the parameter ω, given by ω0, per-
fectly describes the transmission dynamics of the dengue
epidemic. Moreover, we assume that the N observations,
Yj, given by the epidemic data, are generated by a statis-
tical process. However, the N observations also contain
random deviations from the underlying statistical process.
Hence, following [30], it is assumed that

Yj = p(tj,ω0) + εj for j = 1, 2, 3, . . . ,N (2.2)

Table 3 Initial conditions used when applying the OLS
and GLSmethodology to the vector-host model (1.1)

Initial condition Value

SH(0) 1 million

EH(0) 15

IH(0) 3

RH(0) 0

SV (0) 0.1 million

EV (0) 60

IV (0) 20
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where p(tj,ω0) denotes where p(tj,ω0) denotes the total
number of infected individuals who recover in the time
span of week j when using the ‘true’ parameter ω0. Thus,
it is assumed that the observed epidemic data is a partic-
ular realization of the statistical model (2.2). Under the
framework of model (1.1) therefore,

p(tj,ω0) =
∫ tj

tj−1
τHIH(t,ω0) for j = 1, 2, 3, . . . ,N

(2.3)

where t0 denotes the time of start of the statistical process
and the time of each observation is given by and ordered
as t0 < t1 < t2 . . . . . < tN .
The error terms εj, are assumed to be independent,

identically distributed (i.i.d) random variables, each with
zero mean and finite variance. No further assumptions are
made regarding the distribution of εj. In particular, it is not
assumed that the distribution is normal. Thus, E[εj]= 0
and var(εj) = σ 2. Note that, the i.i.d assumption implies
that the variance for each error term εj is identical. We
therefore have

E
[
Yj

] = p(tj,ω0) and var(Yj) = σ 2 for j = 1, 2, 3, . . . ,N

For a set of observations {Yj}Nj=1, produced by the statis-
tical model (2.2), we define the statistical estimator ωOLS
as

ωOLS(Y ) = argmin
ω∈


j=N∑
j=1

[Yj − p(tj,ω)]2 . (2.4)

where 
 ⊂ R is defined as the physically and biologi-
cally feasible region for the parameter ω. In other words,
the statistical estimator is the solution of the following
equations

j=N∑
j=1

[Yj − p(tj,ω)]
∂

∂ω
p(tj,ω) = 0. (2.5)

It is clear that the statistical estimator ωOLS is a ran-
dom variable since each error term εj is a random variable.
Furthermore, the estimator attempts to minimize the dis-
tance between the observed weekly cumulative number of
recovered host individuals and the predictions of model
(1.1). A subsequent detailed description of how to obtain
the probability distribution associated with ωOLS is given
in [30]. Our goal in the current study will be to obtain the
mean of the probability distribution of ωOLS.

Uncertainty and sensitivity analysis ofR0
As mentioned previously, the basic reproduction num-
ber R0 for the deterministic model (1.1) is given by
(1.2) Thus, the value of R0 depends on the variables
CHV ,�H ,μ, σH , δH , τH ,�V , σV ,μV and δV . While deter-
ministic models implicitly assume that the model parame-
ters are not stochastic in nature, an element of uncertainty

is always associated with estimates of these parameters
due to factors such as natural variation, errors in mea-
surements and lack of measuring techniques. In general,
uncertainty analysis quantifies the degree of confidence
in the parameter estimates by producing 95% confidence
intervals (CI) which can be interpreted as intervals con-
taining 95% of future estimates when the same assump-
tions are made and the only noise source is observation
error. Additionally, sensitivity analysis identifies critical
model parameters and quantifies the impact of each input
parameter on the value of an output. In this section,
we shall perform uncertainty and sensitivity analysis of
the basic reproduction number R0. A detailed descrip-
tion of the history and methodology of uncertainty and
sensitivity analysis is given in [35].
We will use Latin hypercube sampling (LHS) [35] to

quantify the uncertainty in and sensitivity of R0 as a func-
tion of the 7model parameters (CHV ,μ, σH , δH , τH , σV ,μV
and δV ). It is assumed, following [33], that the recruit-
ment rates �V and �H are constants. This will enable us
to obtain CI for the value of R0 that we have estimated
in the last section. For the sensitivity analysis, the partial
rank correlation coefficient (PRCC) technique [35] will be
used to assess the impact of changes in parameter values
on the value of R0. PRCC, which uses rank transformation
of the data to reduce the effects of non-linearity, provides
a measure of monotonicity after the removal of the linear
effects of all but onemodel parameter. PRCC is therefore a
global sensitivity analysis technique. The assumed distri-
butions of the model parameters used in the two analyses
are mentioned in Table 4.

Generalized least squares estimation
The Ordinary Least Squares Estimation (OLS) scheme
we employed in the previous section assumed that the
variances associated with the epidemic observations were
longitudinally constant and not dependent on the values
of the observations. Thismay not be a realistic assumption
especially if the epidemic data is influenced by a source

Table 4 Assumed probability distributions for the
parameters of themodel (1.1) used in the sensitivity and
uncertainty analysis

Parameter Mean Variance (Dist)

μ
1

3494

1

105
(N )

σH 1.4 0.35 (G)
δH 0.0035 0.0005 (N )

τH 1 0.2 (G)
σV 1.4 0.2 (G)
μV 0.5 0.1 (N )

δV 0.01 0.001 (N )
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of non-constant systematic error such as under-reporting.
Indeed, under-reporting of dengue cases has been well
documented in previous studies such as [36] and [37].
If indeed the epidemic data that is being used in

the current study is influenced by under-reporting
then the assumption of constant variances associated
with the observations is not correct since observation
errors will now be proportional to the size of the mea-
surement. Hence, we must use a statistical model, which
assumes longitudinally non-constant and model depen-
dent variances for the epidemic observations. In this
section therefore, we will attempt to estimate the effective
contact rate by fitting the best trajectory of model (1.1) to
the epidemic data using a generalized least squares (GLS)
scheme. An excellent discussion on the use of the OLS
and GLS scheme and different statistical models depend-
ing on the assumptions regarding the error present in the
observation process is given in [38].
Once again we shall employ the notation and method-

ology developed in [30]. Apart from the assumptions of
the statistical model, as before, we will assume that all
reported cases recovered from the infection after a time
lag of two weeks and that therefore, the epidemic data,
after a lapse of two weeks, represents the total recovered
host population. Furthermore, we will again assume that
the effective contact rate CHV is a function of time. Thus,
mathematically, Eq. 2.1 where t∗ is the time at which con-
trol measures were first implemented. As before, we have
assumed that t∗ = 8 weeks.
Again, following [30], we will employ inverse problem

methodology to obtain estimates of ω = CHV by minimiz-
ing the difference between the observed weekly cumula-
tive number of recovered host individuals and the model
predictions using a generalized least squares (GLS) crite-
rion. This will be done in the context of a statistical model,
which assumes that the error in the observation process
is directly proportional to the values of the measurement.
Hence, it is assumed that

Yj = p(tj,ω0) + p(tj,ω0)εj for j = 1, 2, 3, . . . ,N (2.6)

where denotes where p(tj,ω0) denotes the total number of
infected individuals who recover in the time span of week
j using the ‘true’ parameter ω0. Thus, it is assumed that
the observed epidemic data is a particular realization of
the statistical model (4.1). Under the framework of model
(1.1) therefore,

p(tj,ω0) =
∫ tj

tj−1
τHIH(t,ω0) for j = 1, 2, 3, . . . ,N

(2.7)

where t0 denotes the time of start of the statistical process
and the time of each observation is given by and ordered
as t0 < t1 < t2 . . . . . < tN .

The rest of the analysis is similar to the method outlined
in the previous section and follows easily.

Methods andmaterials for statistical inference using the
direct-transmission model
The direct transmission epidemicmodel
Several existing studies on the transmission dynamics
of dengue use a direct transmission SEIR model [13].
The direct transmission models can be obtained using
an approximation to vector-host models such as model
(1.1). First, it is assumed that the vector force of infec-
tion can be approximated by solving for the equilibrium
values of the vector population compartments. Further-
more, it is assumed that the susceptible vector popula-
tion is approximately a linear multiple of the total host
population. These two assumptions effectively result in
a rescaling of the host effective contact rate CHV of
model (1.1) into a direct transmission contact parame-
ter β . Using the aforementioned approximation, we for-
mulate a standard incidence, direct transmission SEIR
model. More details of the approximation are given in
[13].
Mathematically, the direct-transmission model is a

follows
dS(t)
dt

= −βS(t)I(t)
N(t)

− μS(t)

dE(t)
dt

= βS(t)I(t)
N(t)

− (σ + μ)E(t)

dI(t)
dt

= σE(t) − (τ + μ + δ)I(t)

dR(t)
dt

= τ I(t) − μR(t)

(3.1)

where

N(t) = S(t) + E(t) + I(t) + R(t)

A description of the variables and parameters of the
model (3.1) is given in Table 5 and Table 6 respectively.
For the direct transmission model (3.1), the basic repro-

duction number R0 is defined as the total number of
secondary infections produced by introducing a single
infected host in a completely susceptible population.

Table 5 Description of the variables of the
direct-transmissionmodel (3.1)

Variable Description

N(t) Total host population

S(t) Population of susceptible hosts

E(t) Population of exposed hosts

I(t) Population of infected hosts

R(t) Population of recovered hosts
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Table 6 Description of the parameters of the
direct-transmissionmodel (3.1)

Parameter Description
1

μ
Host mortality

δ Host disease-induced death rate
1

σ
Latency period for exposed hosts

1

τ
Recovery time for infected hosts

β Effective contact rate for the direct transmission model

Therefore, for model (3.1), the basic reproduction number
R0 is given by:

R0 = βσ

(τ + δ + μ)(σ + μ)

As discussed previously, the existing literature on
dengue fever provides excellent estimates of all the param-
eters of Model (3.1) with the exception of the contact rate
β . Hence, our aim will be to estimate the contact rate β

using statistical inference and thereby estimate the basic
reproduction number R0. The basic methodology used for
both the OLS and GLS schemes will be similar to the
process outlined in the previous sections.
In order to account for the effect of control measures

that were implemented during the actual epidemic, we
have assumed that the contact rate β(t) is a function of
time t. We will assume that the contact rate was constant
up until the point when control measures were imple-
mented, whereupon it changed to a different constant
value. Hence, mathematically,

β(t) =
{

β1 t < t∗

β2 t ≥ t∗
(3.2)

where t∗ is the time at which control measures were first
implemented. For the purpose of this study and in view
of no concrete information being available in this regard,
we have assumed that t∗ = 6 weeks. We observe that
β(t) is most likely not a continuous function of time t. An
alternative definition of the transmission rate β(t), as a
continuous function of time, is given in [33].

The stochastic model and Markov Chain Monte Carlo
(MCMC)
In this section we formulate a stochastic, direct-
transmission, discrete-time, (S)usceptible, (E)xposed,
(I)nfected and (R)ecovered/(R)emoved (SEIR) model for
the transmission dynamics of dengue virus. We then use
standard Markov chain Monte Carlo (MCMC) methods
to perform Bayesian Inference on the epidemic data to
obtain estimates of the basic reproduction number R0.
As mentioned in [13], a number of studies exist on the
transmission dynamics of dengue that assume direct-
transmission. Moreover, a simple approximation can be

used to reduce a vector-host model for dengue virus to
a direct transmission model (see [13] and the references
given therein for more details). The purpose of using a
direct-transmission model is to make stochastic inference
computationally tractable. For the purpose of this study,
we will broadly follow the procedure outlined in [33].

Stochastic model formulation
The stochastic SEIR model we will consider is a discrete-
time model that has been formulated and discussed pre-
viously in [25,33]. Let S(t),E(t), I(t) and R(t) denote the
susceptible host, exposed host, infected host and removed
or recovered host populations at time t respectively. As
is common, our model will assume homogenous mixing
of all individuals. Furthermore, consider a time interval
(t, t + h], where h denotes the length of time between
two observations of the epidemic. In this case therefore,
h is one week. Now, let B(t) denote the number of sus-
ceptible individuals who have contracted disease, C(t) the
number of exposed individuals who have become infected
and D(t) the number of infected individuals who die or
have recovered from the disease during this time inter-
val. For the sake of simplicity, and keeping in view the
low mortality rate associated with dengue fever, we will
assume that the disease-induced death rate is negligible.
Following [33], and in view of the fact that the dynam-
ics of dengue disease take place on a much smaller time
scale than the average human life expectancy, we will
assume that the total population N remains constant.
Thus, mathematically the stochastic model is given by

S(t + h) = S(t) − B(t)
E(t + h) = E(t) + B(t) − C(t)
I(t + h) = I(t) + C(t) − D(t)
S(t) + E(t) + I(t) + R(t) = N

(4.1)

where,

B(t) ∼ Bin(S(t), λ(t)), C(t) ∼ Bin(E(t), kσ ) and
B(t) ∼ Bin(I(t), kτ )

are random variables with binomial distributions. The
probability of success for these binomial random variables
is given by

λ(t) = 1 − exp
(

β(t)I(t)
N

h
)

kσ = 1 − exp (−σh)
kτ = 1 − exp(−τh)

(4.2)

Here, β(t),
1
σ

and
1
τ
are the time dependent transmis-

sion rate, themean latency period and themean infectious
period respectively. Thus, in model (4.1) the transitions
from one compartment to another are formulated as
an exponentially distributed stochastic movements. The
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probability that each individual will stay in a specific com-
partment for a time period h is given by exp(�h), where�

is the compartment specific movement rate. The binomial
distributions in (4.2) are then obtained by summing over
the individual Bernoulli trials for every individual in the
compartment. It is assumed that each trial is independent
and identical for every member of the compartment.
Similar to the previous section, we will assume that the

contact rate β(t) is a function of time t. Thus, mathe-
matically, Eq. (3.2) where t∗ is the time at which control
measures were first implemented. As before, we have
assumed that t∗ = 8 weeks.
The stochastic model (4.1) makes use of the parame-

ters β(t), σ and τ . Of these parameters, estimates of σ and
τ can be obtained from existing studies on dengue virus
and have been given previously. Therefore, our aim will
be to estimate the parameter β(t) using the epidemic data
and estimates of initial population sizes. For this purpose,
we define the parameter vector, which we will attempt to
estimate, as � = β(t). Moreover, we define

B = {B(t)}t=τ∗
t=0

C = {C(t)}t=τ∗
t=0

D = {D(t)}t=τ∗
t=0

(4.3)

where τ ∗ denotes the time at which observations of the
epidemic have finished.
Thus, based on the available epidemic data, we have

complete knowledge of bothC andD but no knowledge of
B. This lack of knowledge will be a major cause of uncer-
tainty in our analysis. Nevertheless, we will attempt to
estimate R0 for both the time period before control mea-
sures are implemented and the time period after control
measures are implemented using our knowledge of both
C and D.

Inferencemethodology
Based on the definitions given in (4.1) and (4.2), we
observe that B(t),C(t) and D(t) are conditionally inde-
pendent random variables. Thus, the likelihood function
for the data set {B,C,D} is given by

L(B,C,D|�) =
t=τ∗∏
t=0

f1(B(t)|.)f2(C(t)|.)f3(D(t)|.) (4.4)

where f1, f2 and f3 are the binomial transition probabili-
ties given in (4.1) and (4.2), conditioned on � and all the
epidemic data represented by B, C and D up until time
t. Therefore, the maximum likelihood estimator for the
parameter vector �, and by extension for β(t) and R0 can
be obtained by maximizing the expression in (4.4).
According to model (4.1), the time series for

S(t),E(t), I(t) and R(t) can be obtained using B(t),C(t)
and D(t). Unfortunately as mentioned previously, B(t) is
unknown since the process of infection is not observed.

Hence, we must also impute the values of B(t). These
values can then be used to construct the time series for
S(t) and E(t).
Since, the likelihood function for B,C andD, denoted as

L(B,C,D|�), is given by (4.4), we can use Bayes’ Theorem
to obtain, up to a constant, the required posterior dis-
tribution that we wish to sample from. This is given
by

L(�,B|C,D) ∝ L(B,C,D|�)π(�) (4.5)

where π(�) is the prior distribution. Thus, our MCMC
algorithm will sample from the conditional probability
distributions π(�|B,C,D) and π(B|�,C,D) to produce
samples from the required distribution π(�,B|C,D). In
short, our general algorithm will proceed as follows

• Initialize the set B using any appropriate initial vector.
• Since, C and D are known, construct the time series

for S(t),E(t), I(t) and R(t).
• Initialize the parameter vector �.
• Update B using the conditional distribution

π(B|�,C,D).
• Reconstruct the new time series for S(t),E(t), I(t)

and R(t).
• Update � using the conditional distribution

π(�|B,C,D).
• Repeat steps 4 − 6 until the Markov chain has

converged and subsequently, the required samples
have been obtained.

To sample from π(B|�,C,D) one can use the condi-
tional binomial distribution for B, making sure that the
choice is consistent with the final size and length of the
epidemic. This is however computationally very ineffi-
cient as most of the draws would be rejected due to the
consistency condition. To avoid this issue we condition
the proposal on the observed extinction time, following
the method described in [33] for computationally efficient
sampling. π(�|B,C,D) is updated using a random walk
proposal.

Inference from the observed dengue data
An important question that arises at this point pertains
to the meaning and significance of the basic reproduction

Table 7 Posterior mean of the contact rate and basic
reproduction number for the Stochastic
direct-transmissionmodel (4.1)

Parameter Posterior mean

β1 3.0650 week−1

β2 0.6318 week−1

R0 before control measures 3.0528

R0 after control measures 0.6293



Khan et al. Infectious Diseases of Poverty 2014, 3:12 Page 16 of 17
http://www.idpjournal.com/content/3/1/12

number R0 for the stochastic SEIR model. As mentioned
previously and as discussed in detail in [31], the basic
reproduction number R0 for the deterministic SEIRmodel
is essentially a threshold quantity which determines the
possibility of an outbreak of the disease. Thus, for the
deterministic SEIR model, if R0 is less than unity there is
no epidemic while if R0 is greater than unity there will be
a disease epidemic.
Unfortunately, the threshold dynamics of the stochas-

tic SEIR model are not the same. It can be proven that in
contrast to the deterministic model, the stochastic SEIR
model predicts disease extinction regardless of the value
of R0. This results in difficulty regarding the interpreta-
tion of R0 as a threshold quantity. Therefore, it is tempting
to ask the question: what is the importance of R0 in the
stochastic SEIR model? An answer to this question may
be conjectured (but not proven) by referring to [39]. It is
proven in [39] that for the stochastic SI model, on average
no epidemic will occur if R0 < 1, while for R0 > 1 there
is a finite probability that an endemic quasi-equilibrium
will develop. We conjecture that this result also holds true
for the stochastic SEIR model and that it can therefore
be used to explain the significance of R0 as a threshold
quantity for the stochastic SEIR model.
Using the MCMC algorithm discussed in the previ-

ous section, we estimate the transmission rate β(t) and
hence the basic reproduction number R0, both for the
time period before control measures are implemented and
the time period after the control measures are imple-
mented. We have taken t∗ = 8 weeks and the initial
population sizes to be the same as in the case of infer-
ence from the deterministicmodel using the GLS andOLS
schemes. Furthermore, we have taken an uniform prior
distribution for the parameter vector �. We observe that
the results of the MCMC algorithm, displayed in Table 7,
are in close agreement with the corresponding results
obtained from application of the OLS and GLS schemes to
the direct-transmission deterministic model.
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