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Abstract

Human Immunodeficiency Virus-1/AIDS and Schistosoma mansoni are widespread in sub-Saharan Africa and
co-infection occurs commonly. Since the early 1990s, it has been suggested that the two infections may interact
and potentiate the effects of each other within co-infected human hosts. Indeed, S. mansoni infection has been
suggested to be a risk factor for HIV transmission and progression in Africa. If so, it would follow that mass
deworming could have beneficial effects on HIV-1 transmission dynamics. The epidemiology of HIV in African
countries is changing, shifting from urban to rural areas where the prevalence of Schistosoma mansoni is high and
public health services are deficient. On the other side, the consequent pathogenesis of HIV-1/S. mansoni
co-infection remains unknown. Here we give an account of the epidemiology of HIV-1 and S. mansoni, discuss
co-infection and possible biological causal relationships between the two infections, and the potential impact of

praziquantel treatment on HIV-1 viral loads, CD4" counts and CD4"/CD8" ratio. Our review of the available literature
indicates that there is evidence to support the hypothesis that S. mansoni infections can influence the replication of
the HIV-1, cell-to-cell transmission, as well as increase HIV progression as measured by reduced CD4" T lymphocytes

and CD4" T lymphocyte counts.

counts. If so, then deworming of HIV positive individuals living in endemic areas may impact on HIV-1 viral loads
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Review

Introduction

Worldwide, HIV-1 infections remain a major public
health problem. In 2010, over 31 million adult indivi-
duals (>15 years) were living with the disease and new
cases of the disease were estimated to be at 2.7 million
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individuals [1]. The sub-Saharan African region con-
tinues to carry the largest proportion of the global dis-
ease burden [1]. In 2010, over 68% of global cases of
HIV were in sub-Saharan Africa [1]. In this region, an
estimated 1.9 million individuals were newly infected
with HIV during 2010, comprising about 70% of all new
cases of the disease worldwide [1]. However, in the East
African region, the HIV epidemic has started to decline
and has stabilized in some areas [2]. The national preva-
lence of HIV varies among countries in the region, from
3% in Rwanda, 5.8% in Tanzania, 6% in Kenya to 6-7%
in Uganda [2,3]. The risk factors for HIV transmission
in sub-Saharan Africa vary dramatically across sub-
populations with different demographic characteristics
[4,5]. The key risk factors for heterosexual transmission
of HIV in Africa are commercial sex (prostitution), high
population mobility, concurrent or multiple partners or
number of lifetime sexual partners, residential location
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(rural versus urban), history of active or passive sexually-
transmitted disease and lack of male circumcision [4,5].
Several epidemiological studies have reported vulnerable
groups such as female bar workers [6], female commercial
sex workers, long-distance truck drivers and their partners
[7]. Fishing communities remain at higher risk of acquir-
ing and transmitting HIV, and play a key role in the spread
of HIV and in the maintenance of the HIV infection levels
in the population [8,9].

Schistosomiasis is a chronic, water-borne helminth
disease, endemic in Africa for many centuries [10-12].
The current global estimate indicates that 779 million
people in 76 countries are at risk for schistosomiasis and
that 207 millions are infected [13]. Approximately 120
million people have schistosomiasis-related symptoms
and 20 million suffer from the chronic form of the dis-
ease [14]. In Africa, urogenital schistosomiasis, caused
by infection with Schistosoma haematobium, and intes-
tinal schistosomiasis caused by S. intercalatum and S.
mansoni, are highly endemic [13]. However, S. haemato-
bium and S. mansoni are the most widely distributed
causing the greatest burden of mortality. A recent meta-
analysis of existing data suggests that up to 280,000
deaths annually are related to schistosomiasis (both uro-
genital and intestinal) in sub-Saharan Africa [15,16]. The
disability-adjusted life years (DALYs) lost due to schisto-
somiasis are estimated at 4.5 million [16]. However, not
all authors agree with this estimate, some arguing that it is
an underestimation of the real impact of schistosomiasis
[15,17]. There is a real risk that, despite effort to control
schistosomiasis, the global prevalence of schistosomiasis
may still increase due to the effects of increasing numbers
of agricultural irrigation schemes, constructions of dams
and man-made lakes for hydroelectric power generation,
as well as civil wars, which contribute to increased human
population movements [13,18].

In established endemic areas, S. mansoni affects indivi-
duals of all age groups, but the prevalence and infection
intensity is usually seen to peak among children under
15 years of age [19,20]. This age-pattern of infection
intensity has been reported to develop within 2 years
amongst immigrants newly exposed to infection on mi-
gration into S. mansoni endemic areas [21]. Although
age-specific behavioral patterns, with high water contact
and exposure to infection, often favour greater child-
hood infection intensities, the slow development of a
partial immunity in endemic area residents may contrib-
ute to the lower infection intensities observed in adults
[22,23]. However, high occupational exposure, associated
with fishing for example, can result in maintenance of
high intensities of infection into adulthood [24].

Human Immunodeficiency Virus-1 and S. mansoni
infections are co-endemic in Sub-Saharan Africa and co-
infection occurs in highly endemic areas (Figure 1)
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[25,26]. In the early 1990s, it was hypothesized that
helminth infections in sub-Saharan Africa were associated
with a high transmission of HIV [25,26] and a faster pro-
gression of HIV to AIDS [27-42]. In HIV co-infected indi-
viduals, helminth infections may cause general immune
activation and affect the pattern of cytokine secretions
[25-42]. Further effects observed in HIV-1 — helminth co-
infected individuals included the modulation of the im-
mune response against helminths [28,29,43], an impaired
schistosome egg excretion [27,31] and increased HIV-1
viral loads after chemotherapeutic deworming [32-42].
The immunological effects and morbidities associated
with helminth infections observed in HIV-1 positives indi-
viduals vary with the species of helminth involved. Some
effects are common to all helminths, others are specific to
particular helminth species such as schistosomes. Of the
schistosomes that infect man in sub-Saharan Africa, S.
haematobium, causing urogenital schistosomiasis, pre-
sents a distinct and potentially important specific risk fac-
tor for the acquisition of HIV-1/AIDS via urogenital tract
lesions, and this has been reviewed elsewhere [44-46]. In
contrast, S. mansoni, which is the focus of this review,
rarely causes genital lesions but may still act as a risk fac-
tor for HIV-1 transmission and progression of the disease
through within-host interactions with HIV-1. Thus, here
we review the evidence for biological causal effects of
HIV-1/AIDS and S. mansoni in human hosts. Specifically,
we focus on immunological interactions (bi-directional
effects in causing morbidities), the efficacy of anti-
schistosome chemotherapy, and its effect on HIV-1 related
parameters (such as HIV-1 viral loads and CD4" lympho-
cytes) in HIV-1- S. mansoni co-infected individuals.

Methodology

Data for this review were collected by searches in NCBI
PubMed, EMBASE, Global Health and from the refer-
ences of published manuscripts, relevant articles and
doctoral theses. For computerized databases, the search
strategy included only permutations of key terms, which
were relevant to the study. Initially, all searches began
with the text string “schistosom*” and specified keywords
in permutations related to co-infection, including “HIV”,
“HIV/AIDS”, “Viral loads”, “co-infection”, “deworming”,
“treatment”, “intestinal schistosomiasis”, “Schistosoma man-
soni”, “Schistosoma haematobium”, “urinary schistosomia-
sis”, “soil-transmitted helminths” and “filarial”. In addition,
we reviewed the past and current available publications on
WHO, UNAIDS and UNICEF websites, which were rele-

vant to our review.

Characteristics of the immune response to helminth
infections

Most of the human parasitic nematodes and trematodes
that occur in sub-Saharan Africa have complex multi-
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stage lifecycles involving one or two host species and a
complex immune modulation response in their hosts
[46-50]. The available evidence indicates that the im-
mune responses of various hosts (both natural infections
and experimental models) to helminth infection are
similar, being commonly characterized by type 2 T-
helper lymphocytes with production of significant quan-
tities of interleukin-4, IL-5, IL-9, IL-10 and IL-13
[46-50]. The increased level of Th, interleukins are ac-
companied by an increased production of immuno-
globulin E (IgE), eosinophils and mast cells responses
[47,48]. In early helminth infections, the infectious larval
stages induce the production of either Th; or Th, cyto-
kines response from T-lymphocytes and other immune
cells [49]. In S. mansoni infections, the cercaria infective
stage stimulates Th; immune responses during the early
phase of the infection in mouse models. In chronic human
and experimental infections, Schistosoma mansoni, like all
helminth infections, induces a predominantly Th, immune
response, characterized by interleukin-4, IL-5, IL-9, IL-10
and IL-13, antibody (IgE and IgG4), eosinophils and mast
cells. However, these responses are tightly regulated to pro-
duce a modified Th, immune environment. The down-
regulatory mechanisms involved not only down-regulate
Th,, but also the Th; mediated responses that have been
observed, in both mice [47,48] and humans [49,50] when
exposed to heavy, primary, schistosome infections.

Immunological interactions of Human Immunodeficiency-
1 and Schistosoma mansoni

Potential immunological interactions

The major hallmark of HIV-1 infections includes the de-
struction or depletion of the total body of helper CD4"

T-lymphocytes, both naive (CD45RA*) and memory
cells (CD4RO"), and a subsequent loss of immune com-
petence [26,51]. Studies have indicated that destruction
of the CD4" cell pool increases susceptibility of the host
to other infectious diseases [26]. Earlier studies demon-
strated a correlation of maintaining the Thl (CD8"-
T-lymphocytes) immune profile and slow progression of
the HIV-1 infections [52-56]. During this phase, uncon-
trolled replication of the HIV-1 infections leads to acti-
vations of the CD8" T-lymphocytes (those expressing
CD38, CD45RO and HLA-DR) [57-60] and increased
concentration of cytokines such as IFN-a, TNF-y and
IL-1P [52,57-60]. A switch of the immune response from
Th1l (CD8" T-lymphocytes) to Th2 (CD4" T-lymphocytes)
with subsequent production of its associated cytokines are
related to fast progression of the disease and chronic acti-
vation of the immune responses [52,55]. The proliferations
of the Th2-CD4" is also associated with the proliferations
of other related CD4" regulatory subsets such as CD4*
CD25" (CD4" T,y which have been shown to express
Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)
that exerts an inhibitory effect on T cell proliferation by
secreting immunosuppressive cytokines such as TGF-p
and IL-10 [60-65]. The TFG-B plays a pivotal role in CD4*
T-cell regulation by inhibiting its proliferation and acquisi-
tion of the effectors function by the naive T-cells [66].
Increased CTLA- 4 expression correlates with markers of
HIV disease progression and the up-regulation of the
CTLA- 4 also increases CCR5 expression on the surfaces
of CD4" T-lymphocytes which enhance the susceptibility
of these cells to HIV-1 infections and cell to cell HIV
transmission [67]. Studies have indicated that destruction
of the CD4" cell pool by HIV-1 infection increases
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susceptibility of the host to other infectious diseases [26].
These immune characteristics of HIV-1 and S. mansoni
infections clearly give rise to the potential for a number of
immunological one-way and two-way modulating
interactions between them in co-infected populations.

The CD4" T-helper lymphocytes responses are central
to the development of immunopathology in S. mansoni
infections [68]. The chronic phase, which is characte-
rized by the production of soluble egg antigens (SEA),
the inflammatory cytokines response to SEA are signifi-
cantly reduced and the Th2 response is characterized by
up-regulation of IL-10 and TGF- which down-regulates
the production and effectors functions of the Thl re-
sponse [69,70]. The release of these cytokines leads to
the productions of the IgG4, suppressed parasites-
specific T cell proliferation, reduced level of Th2 and
Thl cytokines [71]. At this stage only few S. mansoni
infected individuals develop severe hepatosplenic disease
characterized with development of granulomas [71-74].
The resulting T- dependent granulomas protect host tis-
sues from egg-produced antigens [75]. The granulomas
around the trapped eggs are composed of collagen fibers
and inflammatory cells of Th, origins, including eosino-
phils, macrophages and CD4" T-cells [74]. In addition,
the mechanisms responsible for granuloma formation
are also involved in the process of S. mansoni eggs ex-
cretion [76]. In fact, individuals with chronic S. mansoni
pathologies express high level of Thl and Th17 responses
which lead to inflammation and fibrosis around the depos-
ited schistosomes eggs in tissues [71].

Effects of HIV-1 on Schistosoma mansoni

The destruction of helper CD4" T-lymphocytes by the
HIV-1 virus in co-infected individuals could affect
granuloma formation, and alter egg excretion efficiency.
Studies on immuno-suppression animal models have
demonstrated that the excretion of S. mansoni eggs is
immune dependent, and that T-cells, specifically the
anti-egg Th, responses [77] are necessary for the trans-
position and excretion of eggs from the host blood
stream into the intestinal lumen [78,79] as well as the
development of granuloma [80,81]. In Kenya, Karanja
et al. [82] demonstrated that HIV infected individuals
had a reduced eggs excretion of S. mansoni, correlated
with decreased CD4" T lymphocytes counts [82]. Similar
observations on the reduced eggs excretion were
reported in HIV-1 positive individuals co-infected with
S. mansoni and S. haematobium in Ethiopia, Zambia
and Congo [25,82,83]. In rural Zimbabwe, although the
study was limited by low infection intensities of
S. mansoni, no association was demonstrated between
the HIV-1 status or CD4" T lymphocytes counts and the
eggs excretion efficiency [27]. Based on these observa-
tions on the CD4" T-lymphocytes response during S.
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mansoni infection in multiple animal models and human
studies, could lead to greater numbers of eggs retained
in the host’s affected body organs. If this hypothesis is
correct, then HIV-1 positive individuals co-infected with
S. mansoni might have altered morbidity (i.e. less fibrous
material formation at the granuloma area, or inability to
contain the egg released antigens) than individuals
infected with S. mansoni alone. This could have a signifi-
cant bearing on the parasitological diagnosis of the in-
fection, which is dependent on detection of excreted
parasite eggs [30].

The potential for HIV to affect S. mansoni egg excre-
tion not only potentially affects parasitic diagnosis of in-
fection, but also co-infection studies, this makes the
detection of circulating schistosome antigens released by
in situ worms particularly important in detecting and, to
some extent quantifying, these infections. Circulating
Cathodic Antigens (CCA) and Circulating Anodic Anti-
gen (CAA) are S. mansoni related gut antigens which
are regurgitated by the adult and juveniles stages with
the by-products of host red blood cell digestion. CCA
can now be detected by antibody-based rapid diagnostic
tests in urine samples [42,84]. Such antigen-detection
tests have many advantages, including demonstration of
active infections of S. mansoni in the absence of detect-
able egg excretion, the effects of treatment and in term
of diagnosis it has high specificity [42,84]. When CAA/
CCA positivity has been employed as a diagnostic criter-
ion for S. mansoni infection after praziquantel treatment
in HIV-1 and S. mansoni co-infected individuals com-
pared with those with only S. mansoni infections. The
result showed a lower clearance rate of the adult worms
in treated HIV-1 positive individuals co-infected with S.
mansoni [41]. This observation was inconsistent with
the results of Karanja et al. [40], who identified equally
decreased levels of CCA following praziquantel therapy
in individuals who were HIV-1 positive and co-infected
with S. mansoni as compared to individuals with S. man-
soni infection only [41]. It was argued that the difference
in S. mansoni intensity of infection between the two
study populations and the dominance of S. haemato-
bium in the study of Kallestrup et al. [41] could have
contributed to the discordance between those studies’
results. The discrepancy observed between these studies
calls for further studies to elucidate efficacy of prazi-
quantel in HIV-1 infected individuals co-infected with S.
mansoni.

Granuloma formation in S. mansoni infection is a
CD4" dependent process and earlier studies have hypothe-
sized that the destruction of helper CD4" T-lymphocytes
(Thy) by HIV-1, coupled with the significant importance
of CD4" cells in the formation of granuloma, may lead
to a decreased ability of the Th, arm to produce pro-
inflammatory cytokines such as TNF-a, IL-6, IL-1, IL-13
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which are responsible for stimulating the inflammatory
cells responsible for fibrogenesis, and hence lead to se-
vere hepatic morbidity [78,85]. Immunological studies
have demonstrated that, T-cells from the peripheral
blood of HIV-1 positive individuals co-infected with S.
mansoni responded to egg antigens by producing less
IL-4 and IL-10 and a lower amount of IFN-y as com-
pared to those from individuals infected with S. mansoni
alone, indicating immune skewing from Th, to Th; [78].
Supportive evidence from animal models indicates that,
granuloma formation is severely restricted in immuno-
deficiency mouse models [80,81]. It is possible that
granuloma formation may help to contain hepatotoxins
(omega-1-ribonuclease and IPSE/alpha-1) that are released
from S. mansoni eggs trapped in the liver [86-88] which
may increase the risk of liver parenchyma damage and
cause severe necrosis [75,76,89].

A community-based study in fishing communities in
northwest Tanzania, showed that there were no differ-
ences in the distribution of S. mansoni related morbidities,
as detected by ultrasonography, between HIV co-infected
individuals with S. mansoni and those with single infection
of S. mansoni [79]. This study though did not measure the
CD4" counts of the HIV-1" positive study participants co-
infected with S. mansoni. Similarly, in Kenya, there were
no significant differences in the distribution of ultrasound-
detectable pathology (hepatomegaly, splenomegaly, hep-
atic fibrosis, periportal fibrosis and gallbladder wall thick-
ness) in HIV-1 positive individuals co-infected with S.
mansoni as compared with HIV-1 negative individuals
infected with S. mansoni [43]. The study demonstrated
that hepatic fibrosis, in the absence of severe hepatosple-
nomegaly, was associated with a significant decrease in
CD4" T-lymphocytes in HIV-1 negative individuals
infected with S. mansoni, and that the decrease correlated
with increasing grade of liver fibrosis [43]. In HIV-1 posi-
tive individuals co-infected with S. mansoni, reduced CD4
" T-cells counts levels did not necessarily imply the devel-
opment of severe hepatic morbidities or altered patterns
of hepatic fibrosis due to the effects of hepatotoxins [43].
In addition, there was no difference in the level of measur-
able fibrosis and the level of liver parenchyma damage as
measured by the levels of circulating liver enzymes
(glutamic oxaloacetic transaminase and aspartate amino-
transferase) in individuals with HIV-1 co-infection as
compared with HIV-1 negative individuals infected with S.
mansoni [43]. Importantly, there were no significant corre-
lations between CD4" T cells count and circulating liver
enzyme levels in HIV-1 positive individuals co-infected
with S. mansoni or in HIV-1 negative individuals infected
with S. mansoni [43]. However, it is worth noting that
the passive transfer of specific anti-omega 1 antibody is
sufficient to completely prevent hepatocyte damage in
S. mansoni infected immunosuppressed mice that have

Page 5 of 11

severely impaired anti-egg granuloma [90]. Anti-omega
1 antibodies were not assayed in the human studies
[43]. The observation that hepatic fibrosis is associated
with reduced CD4" T-lymphocytes in HIV-1 positive
and negative individuals implies that S. mansoni asso-
ciated liver pathologies could speed up the progression
of HIV to AIDS through the depletion of CD4" T cells
in co-infected individuals [43]. It could also be specu-
lated that, the hyporesponsiveness of the T-cells due to
chronic activations of the immune system and differen-
tiations of the T,cg and released of TGF-B and IL-10
could in part explains the low CD4" counts observed in
HIV-1 positive and HIV-1 negative individuals infected
with S. mansoni. However, this observation calls for fur-
ther studies to confirm the observation.

Effects of Schistosoma mansoni on HIV-1
Schistosoma mansoni infections induce an immune
modulation, which shifts from T-helper 1 to predomin-
ant T-helper 2 cytokines [69,70,91]. The cytokines asso-
ciated with T-helper 2 lymphocytes down-regulate the
cytotoxic effects of T-cytotoxic (CD8") lymphocytes
which are essential for the initial control of viral replica-
tion [69,70,81,91]. In animal studies, mice co-infected
with S. mansoni and vaccinia virus expressing the HIV
envelope displayed a shift towards a Th, response which
down-regulated Th; cytokines production and impaired
the cytotoxic effects of CD8" on the virus [81,82]. In
addition, an increase in viral replication and the alter-
ation of T-cells subsets have been observed in Rhesus
Macaque monkeys co-infected with S. mansoni [92]. In
human studies, HIV-1 positive individuals co-infected
with S. mansoni in western Kenya demonstrated an al-
teration of the immune response to S. mansoni charac-
terized by a low level of IL-4 and IL-10 production [78].
In vitro studies on human peripheral blood mono-
nuclear cells from individuals infected with schistosom-
iasis have shown an increased susceptibility of these cells
to HIV-1 as compared to helminth free individuals [31].
The expression of the chemokine receptors CCR5 and
CXCR4 on the surfaces of CD4" T-lymphocytes, which
have been stimulated by Th, cytokines, make these cells
more susceptible to HIV-1 infection [31,32]. In fact,
these receptors serve as co-receptors for HIV-1 entry
into the cells [31,32]. In Kenya, individuals infected with
schistosomiasis expressed higher cell surface densities of
these receptors as compared to individuals cured of the
disease [31]. These observations imply that HIV-1 repli-
cation proceeds more rapidly in activated T cells, espe-
cially in those with Th, or Thy phenotypes [32].
Individuals co-infected with HIV-1 and S. mansoni may
have reduced ability to mount potent protective immune
responses against a number of viral infections. Similarly,
individuals co-infected with chronic Hepatitis C virus
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(HCV) and S. mansoni demonstrated a decreased HCV-
specific CD4" T cell proliferative response as compared
with individuals with HCV alone [33]. In Uganda, con-
comitant infections of S. mansoni and HIV-1 was
associated with decreased Gag-specific cytolytic (CD8")
responses, showing an alteration of the effectors func-
tions of HIV infection attributed to schistosomiasis
[34]. Moreover, the detection of Gag-specific positive
CD8" T cells in co-infected individuals shows that S.
mansoni may be responsible for the modulation of the
cellular immune response to HIV [34]. T-regulatory
cells are an important component of regulation of T cell
activation. It has been reported that an expansion in T-
regulatory cells (T-reg) occurs during the chronic phase
of HIV infection. There is some debate as to whether
the expansion of T-reg numbers is detrimental, due to
suppression of cellular mediated immunity, or benefi-
cial, due to limiting cellular activation, and therefore
co-receptor expression and targets for HIV-1 infection
[93]. Schistosoma mansoni infection was found to ex-
pand the proportion of circulating CD25hi CD4" cells, a
significant proportion of which are likely to be FoxP3
"ve T-reg cells, amongst sand-harvesters in Kisumu,
Kenya [94]. However, no significant difference in the
proportion of CD4"CD25hi cells was observed between
individuals who were sero-positive and negative for
HIV-1 [94]. As the role of T-regs in HIV infection is
clarified [52,53], further studies using a wider range of
T-reg markers such as FoxP3*ve and CD127lo [95,96]
will be required to determine whether this important
sub-type is affected by co-infection with S. mansoni.
Evidence suggests that the expression of the co-
receptors on activated CD4" T lymphocytes increases
the susceptibility of these cells to HIV infection in HIV-
uninfected populations, and may also speed up the pro-
gression of HIV to AIDS by increasing plasma viral
loads and decreasing CD4" T-lymphocytes in co-
infected individuals [31,32]. Increased HIV plasma viral
loads determine disease progression and risk for HIV
transmission in between partners [35]. However, most
cross-sectional and other observational studies have
failed to provide evidence that decreased CD4" T cells
and increased HIV-1 viral loads is associated with heavy
helminth infections [29,36,37]. Previous authors have
suggested that helminth infection intensity could in part
contribute to decreased CD4" T cell counts or speed up
the progression of HIV-1 to AIDS, meaning that HIV-1
positive individuals with higher S. mansoni infection in-
tensity could have reduced CD4" T cells counts and
higher HIV-1 viral loads. Similar findings on the other
helminth species have been reported [83]. There is how-
ever no evidence on the linear relationship between S.
mansoni infection intensity and HIV-1 viral loads in co-
infected individuals and this calls for further studies.
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Efficacy of praziquantel treatment of Schistosoma mansoni

in HIV-1 co-infected individuals

In the last three decades, praziquantel has been the drug
of choice for treatment of schistosomiasis, especially in
sub-Saharan Africa, because of its high level of efficacy
against all schistosome species, its ease of administration
and lack of serious adverse effects [97]. A single dose of
40mg/kg body weight is reported to result into human
schistosomiasis cure rates that vary widely (60% - 90%)
between different studies, but which consistently result
in reductions of infection intensity of more than 95%
[23,98]. The efficacy of praziquantel depends to some
extend on its synergy with an intact immune response,
studies in immunodeficient animal models have demon-
strated reduced efficacy of praziquantel [98-101]. In
addition, praziquantel efficacy can be increased by pre-
immunization of mice with schistosome antigens, whereby
the generated parasite-specific antibodies increase prazi-
quantel efficacy [78,79]. Several studies have been carried
out in HIV-1 positive individuals to test whether or not
the efficacy of praziquantel has an immune dependent
component in human-S. mansoni infections, as this has
been reported in mice [40-42].

In western Kenya, a study was carried out involving
male car-washers (>18 years) in which 15 individuals were
co-infected with S. mansoni and HIV-1 and 32 individuals
had S. mansoni infection alone [40]. Majority of these indi-
viduals had heavy infections of S. mansoni. The results of
that study indicated that HIV-1 sero-positivity status did
not affect the efficacy of praziquantel. In the treated
groups (HIV-1 positive co-infected with S. mansoni versus
HIV-1 negative infected with S. mansoni), a single dose of
praziquantel resulted in a >93% reduction in S. mansoni
infection intensity regardless of HIV-1 serostatus and per-
centage of CD4" T- cell [40]. Similarly, a prospective
cohort study in Zambia which included individuals aged
10 — 55 years, in which 47 were co-infected with HIV-1
and S. haematobium and 335 HIV-1 negative indivi-
duals infected with S. haematobium demonstrated that
praziquantel treatment resulted in 99.81% reduction in
average infection intensity, despite a concurrent HIV-1
infection [42].

Effects of praziquantel treatment of S. mansoni on HIV-1
viral loads and CD4" T-lymphocytes levels in co-infected
individuals

The individual immunological interactions between these
two common pathogens suggest that increased expression
of Th, cytokines caused by S. mansoni, raising the possibly
that co-infection may increase HIV replication and cell-
to-cell transmission, as well as increase the rate of HIV
progression, as measured by reduced CD4" T lymphocyte
counts [102]. If so, then deworming of HIV positive indivi-
duals living in endemic areas may reduce the HIV-1 viral
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loads and increase both the CD4" T lymphocyte counts
immune responsiveness of the T-cells to both HIV-1 and
S. mansoni infections [103-107].

Recent data from randomized control trials and observa-
tional studies have highlighted decreased HIV-1 viral loads,
decreased expression of co-receptors CCR5 and CXCR4 on
the surface of CD4" T lymphocytes and improved CD4" T
lymphocytes counts, following the treatment of various spe-
cies of helminths [31,103-106,108-111]. Praziquantel treat-
ment in S. mansoni infected Kenyan car washers resulted in
a drop of CCR5 and CXCR4 levels expressed on the CD4"
T lymphocytes in both HIV-1 infected and un-infected
individuals, suggesting that the treatment of individuals
infected with S. mansoni alone, or co-infected with HIV-1
and S. mansoni, could decrease the risk of HIV transmis-
sion to individuals with schistosomiasis, or intercellular
transmission in HIV-1 infected individuals [31]. In rural
Zimbabwe, praziquantel treatment of HIV-1 co-infected
individuals resulted in the decline of HIV-1 viral loads in
the group that received immediate treatment as compared
with those who received treatment three months later
[109]. In addition, despite an observed increase in HIV-1
viral loads after three months, the mean HIV-1 viral loads
in the early treatment group was lower than in the delayed
treatment group [109]. However, subsequent studies did
not observe any impact of anthelminthic treatment and de-
cline in HIV-1 viral loads, lower CD4" T lymphocytes or
faster progression to AIDS [37,39,110]. In Uganda, a signifi-
cant transient increase in HIV-1 viral loads and a decrease
in CD4" T lymphocytes were observed one month post-
praziquantel treatment in HIV-1- S. mansoni co-infected
individuals [37,111]. The mechanisms that might favour
increased viral loads and decreased CD4" T lymphocytes
remain unclear and open up a number of interpretations. It
is possible that the adult worm death following praziquantel
treatment provides an antigenic stimulation that increases
Th, activation and hence increases HIV-1 replication
[31,102,112,113]. Alternatively, anthelminthic treatment
may suppress the production of inflammatory and anti-
inflammatory cytokines that are maintained by chronic
helminth infections [113].

Increased levels of CD4" T lymphocytes in HIV-1 posi-
tive individuals co-infected with S. mansoni have been
reported after praziquantel treatment [109]. In rural Zim-
babwe, a randomized control trial reported increased CD4"
T lymphocyte counts in those receiving praziquantel treat-
ments, as compared to those treated three months later
[108]. However, this observation contrasted with other
similar studies that reported decreased CD4" T lymphocyte
counts after praziquantel treatment [36,37,39,110]. The lack
of consistency between these studies calls for further stud-
ies to clear the observed discrepancies.
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Effects of praziquantel treatment on hepatic morbidities in
co-infected individuals

The intestinal form of schistosomiasis mansoni is char-
acterized by abdominal pain, diarrhea, bloody stool,
nausea, fatigue and drowsiness. S. mansoni eggs that do
not penetrate the gut wall can pass via the portal vein to
be trapped in the liver tissues where they provoke vas-
cular, inflammatory and granulomatous changes [114].
In severe advanced cases, this can lead to hepatospleno-
megaly and portal hypertension, which can lead to de-
velopment of oesophageal varices, ascites and risk of
haematemesis [114]. Autopsy studies have associated
severe hepatosplenic disease and portal hypertension
with gross hepatic periportal fibrosis [115,116].

The impact of praziquantel treatment on S. mansoni is
not only evaluated in terms of reduction in the infection
intensity but also in terms of the reversibility of hepatos-
plenic morbidities after treatment [97,117-121]. Not all S.
mansoni associated hepatosplenic morbidities reverse after
treatment, mild or low grade periportal fibrosis can be seen
to reverse 12 months after treatment, but advanced peri-
portal fibrosis is considered to be irreversible and studies
have reported the progression of organomegaly (hepato-
megaly or splenomegaly to hepatosplenomegaly) after treat-
ment [121,122].

Based on the reduced anti-egg granulomatous response
and fibrosis [75,76,89] and the reduced efficacy of prazi-
quantel treatment, reported in immunosuppressed mice
[98-101], it is possible that human HIV-1 infection could
impact on co-infecting schistosome morbidity, including
regression or progression of hepatic morbidity after prazi-
quantel treatment. As yet, only one human ultrasound
study of HIV-1 and S. mansoni co-infection hepatic mor-
bidity has been reported [43]. To date, no single study has
evaluated the impact of praziquantel treatment on hepatic
and splenic morbidities in individuals co-infected with S.
mansoni and HIV-1. This calls for further studies on large
sample sizes to understand the liver and spleen morbid-
ities in individuals co-infected with HIV-1 and S. mansoni.

Possible implications of HIV-1 and S. mansoni co-infection
on Mass Drug Administration

Based on the evidence above on the interactions be-
tween HIV-1 and S. mansoni in sub-Saharan Africa and
the fact that the two infections are highly prevalent, co-
infections with the two diseases in high risk groups such
as fishing communities are possibly high and their inter-
actions could be the cause of the severe morbidities
observed and high prevalence of HIV-1. Despite the po-
tential risks related to co-infection, little is known of the
interaction between these infections in high-risk com-
munities [70]. In the sub-Saharan Africa, the control of
schistosomiasis focuses mainly on the reduction of mor-
bidities and mainly targets groups at risk [97]. Control
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approaches often involve Mass Drug Administration
(MDA) of praziquantel to treat schistosomiasis, com-
bined with albendazole to treat nematode infections, to
schoolchildren or through child health clinics [97].
Occasionally, MDA is preceded by mass screening of
schistosomiasis before treatment for the purpose of
monitoring the impact of MDA on targeted infections
[97]. Evidence from clinical studies suggests that de-
worming of HIV-infected individuals reverses the im-
mune response to normal, leads to a decline in HIV-1
viral loads and the expression on the surface of CD4" T
lymphocytes of co-receptors responsible for cell to cell
transmission of HIV-1, and an increase in CD4" T
lymphocyte numbers [103-106,123-127]. Thus, identifi-
cation of individuals co-infected with HIV-1 and S.
mansoni at very early stages for early de-worming, even
if it only results in small reductions in viral load, may
have benefits in delaying the progression or decrease
the spread of the disease and importantly, may delay an
individual’s need to begin anti-retroviral treatment
(ARV) [126].

Despite the evidence that praziquantel has effects on
some of the HIV-1 outcome parameters, there are still a
number of issues that remain unsolved and will require
further studies to investigate the exact mechanism of
interaction between helminth and HIV-1 infections and
the impact of anthelminthic treatment. The majority of
the previous studies on this topic, were almost all cross-
sectional in design, and some had significant limitations,
including the interpretation of the results, the lack of
comparison groups, short follow-up periods and small
population sample sizes [91]. These limitations could in
part be the cause of discrepancies between results:
while some studies agree with the hypothesis that
anthelminthic treatment either with albendazole (for
gut nematodes), diethylcarbamazine (for filarial worms)
or praziquantel, have positive effects on HIV-1 para-
meters, other studies do not agree with this observation.
As yet, there is insufficient data to show clearly that
de-worming of HIV-1 co-infected individuals has a
beneficial effect on HIV-1 viral loads and CD4" lympho-
cytes. As suggested by other authors, longitudinal stud-
ies exploring the interactions of HIV-1 and S. mansoni
infections are warranted. These studies should focus on
understanding the effects of the intensity of S. mansoni
infection on HVI-1 viral loads and CD4" T lymphocytes
and on the development of hepatosplenic pathologies in
co-infected individuals. The assessment of the impact of
anthelminthic treatment on HIV-1 parameters should
be made a priority.

Conclusion
In Sub-Saharan Africa, HIV-1 and S. mansoni infections
are co-endemic and co-infection occurs in highly
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endemic areas. There is evidence to support the occur-
rence of interactions between the two infections in a sin-
gle co-infected human host. Furthermore, published
data supports the hypothesis that helminth infections
can influence important parameters of HIV infection
such as CD4" lymphocyte counts and HIV viral loads.
Thus, in areas of co-endemicity, it is important to inte-
grate control programmes for HIV-1 and schistosomiasis
to give an opportunity for early identification of co-
infected individuals and provide an opportunity for early
deworming to reduce the fast progression and transmis-
sion of HIV-1.

Lastly, the available evidence on the interactions of
HIV-1 and S. mansoni and the impact of praziquantel
treatment on CD4" lymphocytes and HIV-1 viral loads
remains inconclusive and does call for further field stud-
ies to resolve discrepancies. Large randomized controlled
trials with longer follow-up periods are required in order
to assess the interactions between S. mansoni and HIV-1
and the impact of deworming cycles on the HIV-1 pro-
gression in populations constantly exposed to S. mansoni
infection and at high risk of HIV infection.
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