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Abstract

functions may be therapeutically modified.
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Background: Consistent compositional shifts in the gut microbiota are observed in IBD and other chronic intestinal
disorders and may contribute to pathogenesis. The identities of microbial biomolecular mechanisms and metabolic
products responsible for disease phenotypes remain to be determined, as do the means by which such microbial

Results: The composition of the microbiota and metabolites in gut microbiome samples in 47 subjects were
determined. Samples were obtained by endoscopic mucosal lavage from the cecum and sigmoid colon regions,
and each sample was sequenced using the 16S rRNA gene V4 region (lllumina-HiSeq 2000 platform) and assessed
by UPLC mass spectroscopy. Spearman correlations were used to identify widespread, statistically significant
microbial-metabolite relationships. Metagenomes for identified microbial OTUs were imputed using PICRUSt, and
KEGG metabolic pathway modules for imputed genes were assigned using HUMANN. The resulting metabolic
pathway abundances were mostly concordant with metabolite data. Analysis of the metabolome-driven distribution
of OTU phylogeny and function revealed clusters of clades that were both metabolically and metagenomically

Conclusions: The results suggest that microbes are syntropic with mucosal metabolome composition and
therefore may be the source of and/or dependent upon gut epithelial metabolites. The consistent relationship
between inferred metagenomic function and assayed metabolites suggests that metagenomic composition is
predictive to a reasonable degree of microbial community metabolite pools. The finding that certain metabolites
strongly correlate with microbial community structure raises the possibility of targeting metabolites for monitoring
and/or therapeutically manipulating microbial community function in IBD and other chronic diseases.

Background

The intestinal mucosal surface is the site of a complex
orchestration of immunologic, metabolic and ecological
forces that drive microbial community structure. In most
cases, these forces balance the composition of the gut
microbiota with mucosal health, facilitating normal
nutrient absorption, local and systemic endocrinology,
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angiogenesis, epithelial barrier function, brain develop-
ment, liver function, immune development and gut
homeostasis [1-7]. However, the immunological and func-
tional state of the mucosa is influenced by the microbiota,
and it is therefore susceptible to detrimental interactions
with changes in luminal bacteria [8,9]. The microbial com-
position is typically well controlled; however, in certain
genetically and environmentally susceptible individuals,
control of microbial composition is compromised, leading
to (or resulting from) clinical manifestations in immune
and inflammatory diseases [10-13].
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The intestinal mucosal ecosystem harbors an assortment
of host factors, microbiota, and metabolites. The microbial
ecology in the context of this molecular milieu is an area
of intense study, but to this point it has mainly been
probed by the potential (versus expressed) functionality
represented by the microbial metagenome [14-18]. A cen-
tral goal and methodologic challenge in human-associated
microbial ecology is to identify dietary, metabolic, and
host and microbial factors that drive microbial community
structure. Recent work by Jansson and colleagues [19,20]
and our group [21] indicates that components of the mu-
cosal proteome correlate with certain microbial species
and reveals intriguing differences between the potential
and expressed biochemical pathways detected in microbial
communities in vivo [19]. In twin-pair studies, Crohn’s
disease-associated differences in fecal metabolites have
been detected in parallel with microbial compositional
and metagenomic differences in this compartment, and
represented biomarkers related to disease state, presum-
ably in part as products of the disease-associated changes
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in microbial metagenomic function [22-24]. Identification
of such relationships is fundamental for interventional
strategies to alter microbiota composition in the context
of dysbiosis, and have been highlights of recent landmark
studies of environment and diet in human fecal microbial
composition [11,16,25]. Indeed, direct analysis of meta-
bolic output by and interactions between microbial species
is a burgeoning investigative field, but challenging meth-
odologically, particularly in vivo [26,27].

Here, we present our findings with an integrated
experimental and bioinformatic approach to identify inter-
relationships between microbial composition and metabol-
ism in the human gut (Figure 1). We utilized a top-down
strategy to identify metabolic correlates of microbes at
the intestinal mucosal surface in a cross-sectional co-
hort of normal human subjects. Metabolomic and 16S
rRNA gene sequencing data were produced from each
biospecimen by high-throughput mass spectroscopy and
the Illumina Hi-Seq platform, respectively. We further
defined the metabolic pathways associated with these
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microbial communities using metagenomic inference. We
characterized the relationship between these pathways and
measured metabolites, and we finally catalogued metabo-
lites with potential influence on microbial community
structure. Findings primarily analyzed in samples collected
from the cecum were validated using paired samples from
the sigmoid colon. This study represents one of the first
successful integrations of different microbiome compo-
nents in the adult colonic mucosa.

Methods

Sample collection and pre-processing

All enrolled subjects were consented under an approved
Institutional Review Board (IRB) protocol from Cedars
Sinai Medical Center prior to routine colonoscopy. All
subjects underwent bowel preparation with Miralax® prior
to colonoscopy. For each sample region, approximately
30ml of sterile water was endoscopically flushed onto the
mucosal surface and recollected via aspiration. Samples
were obtained from the cecum and sigmoid colon region
of each subject. Samples were kept on ice for the duration
of the pre-processing that immediately followed sample
collection. Samples were centrifuged at 4,000 x g for 10
minutes at 4°C. The supernatant was aliquoted into three
50-ml tubes with equal volumes and frozen at -80°C. The
pellets were resuspended in 2 ml of RNAprotect Bacteria
Reagent (Qiagen, Valencia, CA, USA), aliquoted into three
separate 15-ml conical tubes, centrifuged at 4,000 x g for
10 minutes at 4°C, separated from the supernatant and
frozen at —-80°C.

High-throughput 16S analysis

DNA was extracted from 93 samples using the PowerSoil
DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA,
USA), and a 30-second beat-beating step using a Mini-
Beadbeater-16 (BioSpec Products, Bartlesville, OK, USA).
High-throughput sequencing analysis of bacterial rRNA
genes was performed using extracted genomic DNA as
the templates. One hundred-microliter amplification reac-
tions were performed in an MJ Research PTC-200 thermal
cycler (Bio-Rad Inc., Hercules, CA, USA) and contained
50 mM Tris (pH 8.3), 500 pg/ml BSA, 2.5 mM MgCl,,
250 uM of each deoxynucleotide triphosphate (dNTP),
400 nM of each primer, 4 pl of DNA template, and 2.5
units JumpStart 7ag DNA polymerase (Sigma-Aldrich, St.
Louis, MO, USA). The PCR primers (F515/R806) targeted
a portion of the 16S rRNA gene containing the hypervari-
able V4 region, with the reverse primers including a 12-bp
barcode (Additional file 1) [28]. Thermal cycling parame-
ters were 94°C for 5 minutes; 35 cycles of 94°C for 20
seconds, 50°C for 20 seconds, and 72°C for 30 seconds,
and followed by 72°C for 5 minutes. PCR products were
purified using a MinElute 96 UF PCR Purification
Kit (Qiagen). DNA sequencing was performed using an
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[lumina HiSeq 2000 (Illumina, Inc., San Diego, CA, USA).
Clusters were created using template concentrations of 1.9
pM and PhiX at 65 K/mm?, which is recommended by the
manufacturer for samples with uneven distributions of A,
C, G and T. One hundred base-sequencing reads of the 5’
end of the amplicons and seven base barcode reads were
obtained using the sequencing primers listed in Additional
file 1. De-multiplexing, quality control, and operational
taxonomic unit (OTU) binning were performed using
quantitative insights into microbial ecology (QIIME) [29].
The total initial number of sequencing reads was
70,278,364. Low-quality sequences were removed using
the following parameters: Q20, minimum number of con-
secutive high-quality base calls = 100 bp, maximum num-
ber of N characters allowed = 0, maximum number of
consecutive low-quality base calls allowed before truncat-
ing a read = 3. Numbers of sequences removed using the
aforementioned quality control parameters were: barcode
errors (5,199,568), reads too short after quality truncation
(5,545,570), and too many Ns (38,358). Then, 59,494,868
remaining reads were then used to pick OTUs from the
GreenGenes reference database, which automatically bins
OTUs at 97% identity, so that the resulting data were
compatible with phylotypic investigation of communities
by reconstruction of unobserved states (PICRUSt) analysis:
1,536,002 reads were discarded during OTU picking due
to alignment failure. After OTU picking, 57,958,866 reads
remained.

Metabolomic analysis

Solid phase extraction (SPE)

Before cecum and sigmoid lavage aliquots were subjected
to metabolomic analysis, they were cleaned with SPE due
to the presence of a polymer presumably derived from
bowel preparation (bowel preparation often involves poly-
ethylene glycol). The SPE protocol was adopted, modified
and made compatible for the downstream mass spectrom-
etry (MS) analysis. MCX cartridges (Waters Corp. Milford,
MA, USA) were conditioned with methanol and phos-
phoric acid prior to use. Each sample was diluted 1:2 in
2% phosphoric acid and loaded on to the MCX cartridge.
Samples were incubated with the mix-mod polymer sor-
bent in the cartridges. The application of vacuum
throughout the procedure was kept to the minimum to
allow for ample sample/sorbent interaction. The sorbent
was then washed with 2% formic acid in water and 10 ml
of water. The metabolites were then eluted off the column
by subsequent washes with methanol and 5% ammonium
hydroxide, dried, and reconstituted in 2% acetonitrile in
water.

Mass spectrometry analysis
A 5-pl aliquot of extracted metabolites from each sample
was injected onto a reverse-phase 50 x 2.1 mm ACQUITY
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1.7-pm C18 column (Waters Corp.) using an ACQUITY
UPLC system (Waters Corp.) with a gradient mobile phase
consisting of 2% acetonitrile in water containing 0.1% for-
mic acid (A) and 2% water in acetonitrile containing 0.1%
formic acid (B). Each sample was resolved for 10 minutes
at a flow rate of 0.5 ml/minute. The gradient consisted of
100% A for 0.5 minutes, then a ramp of curve 6 to 100% B
from 0.5 minutes to 10 minutes. The column eluent was
introduced directly into the mass spectrometer by
electrospray. MS was performed on a Q-TOF Premier
(Waters Corp.) operating in either negative-ion (ESI-) or
positive-ion (ESI+) electrospray ionization mode with a
capillary voltage of 3,200 V, and a sampling cone voltage
of 20 V in negative mode and 35 V in positive mode. The
desolvation gas flow was set to 800 L/h and the
temperature was set to 350°C. The cone gas flow was 25
L/h, and the source temperature was 120°C. Accurate
mass was maintained by introduction of LockSpray inter-
face of sulfadimethoxine (311.0814 (M+H) + or 309.0658
9M-H)-) at a concentration of 250 pg/pl in 50% aqueous
acetonitrile and a rate of 150 ul/minute. Data were
acquired in centroid mode from 50 to 850 m/z in MS
scanning. Centroided and integrated MS data from the
UPLC-TOFMS were processed to generate a multivariate
data matrix using MarkerLynx (Waters Corp.). The data
were normalized to total protein and processed using an
array of statistical tools such as R, SIMCA P, and an in-
house statistical script. The statistically significant metabo-
lites were putatively identified using several online
databses such as HMDB, MMCD, KEGG, and Lipidmaps.

Bioinformatic analysis

Spearman inter-omic correlation analysis

All bioinformatic analysis of cleaned metabolomic and
metagenomic data was performed in R. Microbiome and
metabolome data from the same samples were merged by
subject and thresholded such that analytes measured
above background in fewer than 18% subjects were re-
moved from all analyses. The cutoff value of 18% was se-
lected such that similar numbers of observations were
eliminated from both the cecum and sigmoid compari-
sons, and significant inter-omic correlations were not
enriched for rare analytes. Inter-omic analysis involved
simple Spearman correlation of analyte abundance with cal-
culation of P-values using the R function cor.test. Spearman
correlation was used for inter-omic analysis because it
detects more complicated relationships that might
otherwise go undetected using other metrics, such as
Pearson correlation. Wherever mentioned, the R package
qvalue was used to generate g-values for each spearman
correlation. To quantify correlations with individual gen-
era, the following steps were taken. First, OTUs from the
correlation data (Additional file 2) were binned by genus
assignment. Then, all duplicate metabolic correlations
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were removed so that even if all OTUs from a genus cor-
related with a single metabolite it was quantified only as a
single interaction.

Microbial cluster generation

For heat map-based microbial clustering analysis, heat
maps were created of Spearman correlation matrices
(without g-value thresholding) using the heatmap.2 func-
tion from the gplots R package. Hierarchical clustering of
bacteria was based on the Euclidian distance metric and
the complete method of hierarchical clustering by metab-
olites (only those with >2 significant OTU correlations).
Dendrograms were then extracted from the output of that
function and cut using the base cut function. Cut height
was determined by the number of significant modules as
defined by prediction strength. We used k-means cluster-
ing to assess significance in the prediction strength calcu-
lations, which has been shown to be a robust strategy for
determining optimal cluster number for hierarchical clus-
ter modules [30]. While twenty modules were predicted
for the sigmoid data, only six were predicted for the cecal
data. To facilitate comparison between regions, we cut the
sigmoid dendrogram such that seven (no cut height
allowed six) clusters were generated. Prediction strength
was performed using the prediction.strength function from
the fpc R package [31]. To determine the similarity of mi-
crobial cluster composition, cluster assignment of shared
OTUs was examined. Significance of overlapping OTUs
between the cecal and sigmoid clusters was determined
using one-sided (greater) Fisher’s exact test.

Coinertia analysis

Coinertia analysis identifies successive axes of covariance
between two datasets involving the same test subjects.
Coinertia analysis was performed using the coinertia
function from the ade4 R package, applied to eigen-
values of the metabolome and microbiome [32]. The sig-
nificance of RV scores, which are indicative of global
similarity, was estimated using the RV.rtest function,
which performs a Monte Carlo-based estimation on the
sum of eigenvalues from a coinertia analysis.

Procrustes analysis

Procrustes analysis analyzes the congruence of two-
dimensional shapes produced from superimposition of
principal component analyses from two datasets. To
remain consistent, we performed Procrustes analysis on
the Euclidian distances of eigenvalues for both the
microbiome and metabolome using the Procrustes func-
tion in the vegan R package [33].

Metabolite module generation
We defined metabolic modules using soft-thresholded
Pearson correlation analysis in combination with a
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topological overlap distance metric and average hier-
archical clustering (R package: weighted correlation net-
work analysis (WGCNA)) [34]. Since our goal was to
only group metabolites that were highly correlated with
each other, we chose to use the more stringent Pearson
method for generating modules. Soft-thresholding pow-
ers were defined using the pickSoft Threshold function of
the WGCNA R package. For metabolic module gener-
ation, the data were first thresholded such that only me-
tabolites present in at least 18% of samples were
included for the module generation pipeline. There are
many approaches to such clustering [35-38]. WGCNA
uses a measure of shared metabolite neighbors based on
topological overlap as input of hierarchical clustering.
The height in the dendrogram is a measure of dissimilar-
ity based on the topological overlap matrix; modules are
defined as branches of a hierarchical cluster tree [34,39].
WGCNA was attractive for this study since it provides
module preservation statistics that allowed us to assess
the reproducibility of modules across different data sets;
provides a measure of intramodular connectivity that
can be used to define intramodular hub genera [40]; and
allows us to summarize each module by its module
eigenvalue. The resulting modules were then validated
using silhouette width and cophenetic distance metrics
and compared with two independent module generating
approaches: 1) average hierarchical clustering based only
on Pearson correlation dissimilarity (1 — Pearson coeffi-
cient), and 2) K means using unthresholded Pearson cor-
relation analysis. Both independent methods generated
strongly similar module composition and distribution.

Using this approach on individual metabolites, the
cecum metabolites (soft-thresholding power = 22, mini-
mum module size = 10 metabolites) organized into 20
modules with 121 un-clustered metabolites, while the
sigmoid metabolites (soft-thresholding power = 32, mini-
mum module size = 10 metabolites) organized into 15
modules with 170 un-clustered metabolites. For each
dataset, the abundance values of the un-clustered analytes
were combined with module eigenvalues to facilitate
downstream analyses.

Putative metabolite identity determination

An in-house script called StandAlone Bioldentifier was
used to putatively identify ions based on their biological
relevance via incorporation of four major small molecule
databases: KEGG, HMDB, LipidMaps, and BioCyc. This
metabolomic tool has the unique ability to distinguish
mammalian metabolites from those of bacterial and plant
origin providing an extra degree of confidence in the ions’
putative IDs. This user-friendly script allows one to choose
from several positive and negative adducts at a user-
predefined mass tolerance. For our UPLC/MS setup we
chose H+ and Na+ adducts for the ESI+ mode and H- and
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Cl- for the ESI- mode at a predefined mass window of 20
ppm.

Quantifying metabolite overlap between the cecum and
sigmoid

An R script was written that stringently identified identical
metabolites measured in two datasets based on two pa-
rameters. The two parameters were defined such that two
metabolites must: 1) have a mass difference <0.005 m/z,
and 2) have a difference in retention time that was <0.04
minutes (2.4 seconds).

Metagenomic imputation

PICRUSt is a well documented tool designed to impute
metagenomic information based on 16S input data
(http://picrust.github.com/picrust/). To use the tool to im-
pute metagenomes of microbial OTUs, we created a syn-
thetic OTU table such that each OTU was represented by
a single count in a single column. The synthetic table was
then input into the PICRUSt pipeline using the terminal
interface of a QIIME virtual machine running the Ubuntu
operating system. The resulting metagenomic data was in-
put into the HMP unified metabolic analysis network
(HUMAnNN) pipeline [41] using the same computational
platform to sort individual genes into Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways representing
varying proportions of each generated metagenome.

Defining community structure of metabolite-associated
microbes

Abundance data for groups of bacteria that significantly
correlated with common metabolites were extracted from
the thresholded OTU table (that is, only including bacteria
present in at least six samples) and formatted for SparCC,
a new tool developed for metagenomic data that simultan-
eously removes compositional effects while calculating
correlation matrices for given OTU tables [42]. For each
group of bacteria tested, 1,000 permutations of randomly
selected bacteria without replacement (from the same
thresholded OTU table) were applied to the same analytic
pipeline. For each correlation matrix produced, the aver-
age positive and average negative correlation was calcu-
lated and compared with the cumulative averages from
the permuted datasets. Significance values were the calcu-
lated ratios of permuted correlation matrices with stronger
positive or negative correlations than the correlation
matrix of interest. Technically identical analysis was
performed for correlations >0.2 or <-0.2 to supplement
the analyses. Total branch lengths were calculated in R
using the compute.brlen function from the ape R package.

Results
To measure the composition, function and interdepend-
ence of the colonic microbiome and metabolome, a serial
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cross-sectional study was performed on human subjects
undergoing screening colonic endoscopy: 93 mucosal
water-lavage samples from the sigmoid and cecum regions
of 47 subjects between the ages of 20 and 83 years (mean
61, SD 14.2) (Table 1). For this pilot study, we included
forty-two healthy subjects and five subjects with clinically
quiescent Crohn’s disease. We opted to collect mucosal
rather than fecal samples, due to the distinct composition
and intimate relationship of the mucin-associated micro-
biota with the colonic epithelium [11,18,43]; lavage sam-
pling permitted efficient recovery of extracellular
biosynthetic products present at the mucosal surface [44].
Bacteria were separated from supernatants via centrifuga-
tion and the two sample components were analyzed separ-
ately for 16S microbiome and metabolome composition
[21,44]. However, contaminating polymer, presumably
polyethylene glycol from bowel preparation, from meta-
bolic aliquots was removed using SPE (Methods). Cell-free
supernatants were analyzed for metabolic content via
UPLC-MS with concomitant in silico filtering and
thresholding (Methods). Cell pellets were analyzed for
microbial abundance and composition using the Illumina-
HiSeq 2000 platform in combination with the QIIME soft-
ware suite. Microbial OTUs were rarified to 30,000 reads
per sample to reduce noise in downstream analyses.
Phylotypic analysis revealed the relative abundance of
2,473 cecum and 2,595 sigmoid GreenGenes reference
database-picked OTUs binned at 97% sequence similarity,
and thresholded on detection in at least two samples. The
represented microbial phylotypic compositions were simi-
lar to previously reported colonic mucosal samples and
did not indicate significant phylum-level compositional
differences between the two colonic regions (Figure 2)
[43]. However, biogeographic differences are common in
mucosal samples at lower levels of taxonomy [11,45].
Metabolome analysis revealed 649 and 576 metabolite
peaks detected in the cecum and sigmoid colon, respect-
ively. Stringent comparison of conserved metabolite
masses and retention times between the cecum and sig-
moid datasets revealed 342 metabolites present in both
the cecum and sigmoid datasets. Furthermore, using puta-
tive metabolic IDs from mass, many putative metabolites
observed were located at the terminus of metabolic path-
ways, suggesting enrichment for end products. However,
many metabolites had more than one possible putative ID,

Table 1 Samples and subjects used for analysis

Men Women Total
Subjects Healthy, number 28 14 42
Crohn's Disease, number 0 5 5

Average age, years 624 58.7 60.9
Samples Cecum samples, number 27 19 46
Sigmoid samples, number 28 19 47
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making precise quantification of end products difficult.
However, previous studies have suggested the colonic
microbiota contributes to a large representation of meta-
bolic end products [46,47]. Given the large number of me-
tabolites observed, we did not attempt to biochemically
validate molecular identities. Instead, we investigated if
any inter-omic syntropy could be detected using computa-
tional approaches.

Overview of the measured mucosal microbiome and
metabolome

To determine whether any inter-omic syntropy existed,
we first generated two-dimensional principal component
distribution plots (PC1 and PC2), with either red
(microbiome) or green (metabolome) spots representing
each study participant in each data set, and then measured
their inter-omic relatedness using Procrustes analysis
(Figure 3). Procrustes analysis superimposes and scales
principal component plots and allows quantification of
non-random congruence between two different measure-
ments from a single group of subjects. To simplify com-
parisons, Euclidean distances were used in calculating
principal components of the microbiome and metabolome
constituents. We then performed inter-omic Procrustes
analysis on the microbiome and metabolome. Inter-omic
Procrustes on cecal samples revealed a strong similarity
(Figure 3C: Monte Carlo P <0.007), while the sigmoid
microbiome and metabolome were less similar, though
still significant (Figure 3F: Monte Carlo P <0.045). These
findings are consistent with recent studies involving the
fecal compartment [19,25]. To further confirm this, we
also performed coinertia analysis [32]. The coinertia RV
coefficient is a number between 0 and 1; higher numbers
are indicative of more global similarity between two
datasets (and for which significance values can be deter-
mined). Graphical representation of inter-omic coinertia
analysis is shown in Additional file 3. The RV scores and
Monte Carlo P-values were 0.67 and 0.01 for the cecum
data, and 0.6 and 0.07 for the sigmoid data, respectively.
Excluding subjects <50 years old or subjects with inflam-
matory bowel disease (IBD) did not increase significance
of the inter-omic comparisons using Procrustes or co-
inertia analysis, suggesting that age and disease status were
not strong drivers of the inter-omic relationship in this co-
hort (data not shown). Thus, both Procrustes and
coinertia metrics indicated that the inter-omic relationship
was stronger in the cecum than in the sigmoid. In
addition, microbes with the strongest inter-omic covari-
ance, as predicted by the coinertia analysis, are shown in
Figure 3G and H. This analysis suggested OTUs from the
Firmicutes and Proteobacteria clades were particularly in-
fluential to the inter-omic relationship. The corresponding
metabolome analysis is available in Additional file 4. Des-
pite the lack of KEGG assignments for metabolites, this
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analysis indicated metabolites associated with amino acid,
porphyrin, and chlorophyll metabolism are important to
the inter-omic relationship. Overall, these results sup-
ported our hypothesis that significant inter-omic inter-
dependence existed between the metabolome and
microbiome. We therefore sought to more clearly define
this relationship.

Construction of metabolic modules based on metabolite
co-occurrence

Before proceeding with inter-omic analysis, we first col-
lapsed highly correlated metabolites into modules to
streamline and facilitate downstream analyses. Since me-
tabolites associated by biochemical pathway are expected
to co-occur, we constructed a network of co-occurrent
metabolites, and interrogated the network for modules
that might reveal such pathway representation, and would
also simplify and strengthen downstream analysis by
reducing dimensionality (Methods). The metabolite co-
occurrence network was constructed by Pearson correl-
ation, where the edge connecting each pair of nodes was
the co-occurrence estimate inferred from the relative
abundance profiles of metabolites. Metabolite modules
were then identified in the network by an adaptation of
WGCNA. The modules generated by WCGNA were vali-
dated by independent approaches (Methods). Un-
clustered metabolites were combined with module

centroids (eigenmetabolites defined as the first singular
vector) for each sample. This resulted in a set of 21 and 15
modules and 121 and 170 un-clustered metabolites for the
cecum and sigmoid data, respectively. The complete list of
metabolites, their module organization, and module den-
drograms are available in Additional file 5. In the following
phases of this study, datasets containing module eigen-
values and un-clustered metabolites for each separate
colonic region were used as the inputs for metabolite-
microbial inter-omic analyses.

Inter-omic network analysis reveals enrichment for shared
metabolite associations

Having found a broad inter-omic relationship between
the microbiome and metabolome, we ventured to define
the strongest contributors to the relationship. By identi-
fying the analytes with the strongest inter-omic correla-
tions, we could then observe the organization of the
resulting interaction network and glean information
about the most influential clades and metabolites. Given
that approximately 9*10° correlations were calculated
for each dataset, we used g-values to correct for multiple
comparisons, as the Bonferroni P-value correction elimi-
nated many strong correlations. Using a threshold of
q <0.2, we generated a list of 605 and 1,056 unique
inter-omic Spearman correlations from the cecum and
sigmoid data, respectively. Notable aspects of the
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from the center is indicative of the strength of covariance.

Figure 3 Principal component, Procrustes and coinertia analysis. The first column of plots contains microbiome data (red spots) and the
second column contains metabolome data (green spots). The first row contains cecal data and the second row contains sigmoid data. Principal
component analysis was performed on the cecum microbiome (A), cecum metabolome (B), sigmoid microbiome (D) and sigmoid metabolome
(E). Inter-omic (C and F) Procrustes analysis was then performed. Longer lines on Procrustes plots indicate more within-subject dissimilarity of the
microbiome and metabolome. Significance values shown were calculated using the protest function from the vegan R package, which performs
repeated symmetric Procrustes analysis to estimate significance. (G) and (H) show operational taxonomic unit (OTU)-level coinertia analysis.
Individual OTUs are plotted based on their cointeria-predicted covariance with the metabolome from the cecum (A) and sigmoid (B). To reduce
noise in this visualization, the data were thresholded such that only OTUs measured above background in 218% of samples are shown. Distance

Monte Carlo
P<0.007

Monte Carlo

+ Actinobacteria
Bacteroidetes

¢ Firmicutes
Fusobacteria
Proteobacteria

* Tenericutes

* Verrucomicrobia

¢ Other

resulting networks are shown in Table 2 and graphical
representations are shown in Figure 4. On average, me-
tabolite nodes had significantly more edges than OTUs,
which was expected given that metabolic pathways are
often genomically shared among many organisms.
Firmicutes had more g <0.2 inter-omic relationships than
any other clade, suggesting a more central role in metabol-
ite production (Table 2, row 4). Furthermore, while the ra-
tio of Firmicutes, Bacteroidetes and Tenericutes with
significant metabolic correlations was nearly identical be-
tween colonic regions, the ratio of Proteobacteria and
Actinobacteria with metabolic correlations in the sigmoid
was roughly double that of the cecum. This proportional
difference remained static when the data were thresholded
at g <0.1, suggesting that the Proteobacteria and

Actinobacteria may play more central metabolic roles in
the sigmoid as compared to the cecum.

To determine the genera with the largest number of
significant correlations, OTUs were binned at the genus
level and the number of correlated metabolites was
quantified for each. Roughly 56% of all OTUs had
genus-level resolution, resulting in 255 and 279 unique
genera in the cecum and sigmoid data, respectively.
However, only eighteen and forty of these had at least
two significantly correlated metabolites, suggesting that
only a minority of genera had distinguishable metabolic
signatures (Table 3). The genera with the largest num-
bers of correlated metabolites were similar for the
cecum and sigmoid. For example, Clostridium, Blautia,
Coprococcus, Bacteroides, Oscillospira, Faecalibacterium,
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q <0.2 q <0.1
Cecum Sigmoid Cecum Sigmoid
Total interactions, number 605 1056 442 805
Unique microbial nodes, number 338 372 297 342
Unique metabolic nodes, number 95 147 87 142
Ratio of Firmicutes OTUs with metabolic correlations 34% 34% 30% 31%
Ratio of Bacteroidetes OTUs with metabolic correlations 18% 18% 16% 18%
Ratio of Proteobacteria OTUs with metabolic correlations 12% 24% 1% 22%
Ratio of Actinobacteria OTUs with metabolic correlations 25% 54% 20% 54%
Ratio of Tenericutes OTUs with metabolic correlations 24% 24% 19% 24%
Average number of interactions per OTU 18 28 1.5 24
Average number of interactions per metabolite 64" 72" 51 57"

**Mann—Whitney test, P <2 x 107" for comparison between interactions of operational taxonomic units (OTUs) and metabolites.

Roseburia and Ruminococcus significantly correlated
with the most unique metabolites in both datasets.
Therefore, these genera may represent some of the more
metabolically unique and/or productive bacteria in vivo.
Furthermore, several genera had many more interactions
in the sigmoid compared with the cecum, including Myco-
plasma, Ralstonia, Aquabacterium, Novosphingobium,
Cupriavidus, Actinomyces, Afipia, and Collinsella. Not-
ably, none of these genera were highly abundant in either
colonic region but still had =10 metabolic interactions in
the sigmoid and <1 in the cecum, suggesting they might
be more metabolically central or active in the sigmoid

compared with the cecum. The complete list of g <0.2
Spearman correlations is available in Additional file 2.

Concordance of putative metabolite IDs and functional
metagenomic predictions

Having observed strong correlation between individual mi-
crobes and metabolites, we were curious about the nature
of the correlation. Correlation between microbes and me-
tabolites could arise due to either catabolism/anabolism of
metabolites by microbes or stimulation/inhibition of micro-
bial growth by metabolites. To help determine whether
catabolic or anabolic reactions might be responsible for any
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Figure 4 Inter-omic Spearman correlation networks. Pair-wise Spearman correlation was calculated for each operational taxonomic unit (OTU)
and metabolite (module or un-clustered) pair. Any resulting correlations with g 20.2 were removed. The resulting correlation networks for the
cecum (A) and sigmoid (B) data are shown. The key provided is applicable to both A and B. Blue edges represent negative correlation, while red
edges represent positive correlation. Selected metabolites and metabolic modules from Table 4 are labeled.
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Table 3 Genera with the most metabolic correlations (g <0.2) from the cecum and sigmoid data

Genus Cecum interactions, Sigmoid interactions, Average % abundance in Average % abundance in
number number cecum sigmoid
Clostridium 24 48 520 461
Blautia 24 34 0.58 0.56
Coprococcus 13 27 1.05 1.01
Mycoplasma 0 23 2.39E-03 1.82E-03
Ralstonia 1 22 0.09 0.11
Bacteroides 17 21 4132 43.28
Oscillospira 11 19 045 042
Aquabacterium 1 17 003 0.04
Faecalibacterium 8 16 8.76 795
Roseburia 8 13 0.95 0.85
Novosphingobium 0 13 1.65E-03 2.08E-03
Cupriavidus 0 1 2.74E-03 2.08E-03
Actinomyces 1 10 741803 8.01E-03
Afipia 0 10 2.65E-04 144E-03
Collinsella 0 10 0.04 0.05
Alistipes 3 9 031 038
Stenotrophomonas 0 9 3.52E-03 2.96E-03
Parabacteroides 3 8 3.05 388
Zoogloea 0 8 1.45E-03 1.39E-03
Ruminococcus 1 7 4.20 2.78
Anaerostipes 1 7 5.84E-03 7.55E-03
Oxalobacter 0 7 2.70E-03 3.60E-03
Sphingomonas 0 6 248E-03 1.77E-03
Lachnospira 2 5 0.35 038
Rothia 1 5 6.22E-03 546E-03
Streptococcus 0 5 0.13 0.15
Desulfovibrio 0 5 0.06 0.15
Sutterella 0 4 211 2.1
Prevotella 5 3 1.08 1.99
Mitsuaria 0 3 9.38E-03 8.71E-03
Xenophilus 0 3 2.98E-03 291E-03
Methylotenera 0 3 333E-04 4.68E-04
Staphylococcus 0 3 2.05E-03 2.69E-04
Ramlibacter 0 3 3.13E-03 3.38E-03
Bifidobacterium 3 2 0.06 0.08
Eubacterium 2 2 0.16 0.20
Pantoea 1 2 1.30E-03 1.38E-03
Anaerofustis 0 2 2.20E-04 2.27E-04
Curvibacter 0 2 2.20E-04 241E-04
Coprobacillus 0 2 1.02E-02 1.60E-02
Dialister 5 1 0.26 0.27
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Table 3 Genera with the most metabolic correlations (q <0.2) from the cecum and sigmoid data (Continued)

Adlercreutzia 4 1
Actinobacillus 3 1
Oribacterium 2 0

3.50E-03 6.48E-03
0.09 0.04
7.57E-06 2.04E-03

of the observed correlations, we sought to determine
whether metabolic associations were concordant with gen-
omic enrichment/depletion of cognate metabolic pathways.
The underlying expectation was that observable metabolic
differences between organisms would be concomitant with
metagenomic enrichments/depletions of the corresponding
metabolic pathways.

We were able to impute metagenomes for each OTU
using the bioinformatic tool PICRUSt, which allows one to
build metagenomes for each OTU using closest-related ge-
nomes of cluster OTUs available in the GreenGenes refer-
ence database. This bioinformatic method has been
productively used in a recent study of functional microbial
traits associated with IBD and is robust for large datasets
despite the noise introduced through imputation [11]. Ac-
cordingly, a metagenome was created for each OTU
(representing imputed genes from the closest pre-
sequenced GreenGenes OTU) and the relative genomic
proportion of each functional pathway was determined
using HUMANN [41].

We then selected all metabolites that were significantly
correlated with at least five OTUs (and thus, likely to be
more biologically relevant) and had at least one putative
molecular ID for this analysis. This resulted in a total of 64
metabolites, and due to multiple possible putative IDs for
some metabolites, represented 111 molecules with KEGG
pathway associations. For each putative metabolite ID, we
generated two vectors: one containing every metabolite-
OTU Spearman correlation coefficient for the metabol-
ite in question, and another vector with the imputed
metagenomic abundance of the putative KEGGpathway
that produces the metabolite in question for every OTU.
The two vectors were aligned by OTUs and then compared
using Pearson correlation (Additional file 6). The rationale
was that bacterial correlation with a single metabolite
should be concordant with the corresponding metagenomic
abundance of the source metabolic pathway in each bacter-
jum in cases where catabolism or anabolism is the source
of the OTU-metabolite correlation. This analysis resulted
in 41 significant (Bonferroni P <0.05) positive correlations
and 31 significant negative correlations; 39 correlations
resulted in non-significant rko values (Additional file 7).
Therefore, given the significance of the relationships, these
data suggested some metabolic associations were probably
due to microbial catabolic or anabolic reactions. However,
more detailed in vitro or in vivo analyses are necessary to
further explore these implications.

Relationships between the metabolome and microbial
composition and function

We then sought to utilize the combined metabolome,
imputed metagenome and microbiome data to define re-
lationships between metabolic function and microbial
community structure. Our strategy involved stratifying
microbes based on their correlations with metabolites
that were significantly correlated (g <0.2) with two or
more OTUs (to reduce noise introduced by stratifying
with insignificant metabolites) and analyzing the resulting
microbial clusters for phylotypic and functional metabolic
enrichments. First, we generated hierarchical cluster-based
heat maps of OTUs based on their metabolic Spearman
correlations (Figure 5A and 6A). Inspection of these net-
works revealed clusters of bacteria with similar metabolic
associations, reflecting groups of bacteria with dense
metabolic similarities. Using prediction strength, we deter-
mined that there were <6 significant cecal clusters and
<20 significant sigmoid clusters. However, to allow com-
parison between the two regions, we cut the hierarchical
dendrograms (Additional file 8) such that six cecum clus-
ters and seven sigmoid clusters of bacteria were produced.
The phylotypic composition of each resulting cluster was
then analyzed (Figure 5B and 6B).

Four observations emerged from this analysis at the
phylum level. First, microbial clades did not cluster ex-
clusively with themselves; instead, each cluster had a di-
verse and distinctive representation of microbial phyla.
Second, while most clusters contained OTUs from mul-
tiple different clades, the Firmicutes, Bacteroidetes and/
or Proteobacteria were most prevalent in the compos-
ition of each cluster, as expected from their relatively
high representation compared to other phyla in the over-
all microbial community (Figure 2). Furthermore, for
both the cecum and sigmoid data the abundance of clus-
ter 1 was dominated by Proteobacteria while the
Firmicutes were most abundant in higher-numbered
clusters. This most likely reflects the diverse metabolic
specialization represented among members of each
phylum. Third, this analysis was re-evaluated using finer
levels of dendrogram cutting. As expected, this revealed
enrichment of dense clusters of phylotypically similar
bacteria. However, species-level bacteria did not always
cluster together, reflecting potential species-level meta-
bolic divergence (Additional file 9). Such species-level
divergence might be expected given the large amount of
horizontal gene transfer between intestinal bacteria
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Figure 5 Cecal microbial clusters. Heat maps were created that were sorted based on hierarchical clustering of both bacteria and metabolites
(A). The microbial dendrograms were then cut such that six or seven microbial clusters were generated based on k-means prediction strength.
The number and horizontal span of each cluster is indicated at the bottom of the dendrogram. The proportion of the phylotypic clades
comprising each cluster is depicted for each cluster (B). To determine the differences in imputed metagenomic enrichments/depletions of Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways between clusters, the metagenomic composition of each operational taxonomic unit
(OTU) was then computed using phylotypic investigation of communities by reconstruction of unobserved states (PICRUSt) and quantitatively
analyzed for relative genomic pathway abundance using Unified Metabolic Analysis Network (HUMANN) and Kruskal-Wallis one-way analysis of
variance. Only pathways that significantly varied in at least one cluster (Bonferroni, P <0.05) are shown (C). Beanplot colors differentiate cluster

numbers; ‘Bonferroni, P <0.05.

[48-50]. Fourth, the composition of clusters was highly
conserved between the two colonic regions at both the
phylum level (Figure 5B and 6B) and OTU level
(Figure 7). While cluster composition was not identical
between the two regions (for example, cecum cluster 5
was not significantly similar to any sigmoid cluster),
groups of bacteria consistently co-segregated with each
other, suggesting robust metabolically driven structure
that may have broad applicability. Indeed, the differences
between the cecum and sigmoid data likely reflect the
known biogeographic variation of both metabolites and
microbes [11,45,51].

We next attempted to determine the differential meta-
bolic functions represented by each microbial cluster. For
this, we chose to focus on imputed metagenomic content
of microbes in each cluster due to the rich data made avail-
able through PICRUSt. We performed Kruskal-Wallis one-
way analysis of variance on all pairs of microbial clusters
and imputed metagenomic KEGG pathways and selected
some pathways that were significantly different (Bonferroni,
P <0.05) in at least one cluster. Figures 5C and 6C highlight

the genomic representation patterns in the clusters for
these pathways. For example, cluster 1 (from both the
cecum and sigmoid data) primarily contained Proteo-
bacteria and was enriched for fatty acid metabolism and
depleted for several amino acid metabolism pathways.
The fact that this microbial cluster contained many Proteo-
bacteria and was enriched for fatty acid metabolism sug-
gests that it may have relevance for IBD, as many studies
have shown increases of certain Proteobacteria and de-
creases of short-chain fatty acids (SCFA) in IBD and other
inflammatory diseases [11,52-55]. Conversely, cluster 4
(from both cecum and sigmoid data) were not enriched for
fatty acid metabolism but were instead enriched for fatty
acid biosynthesis, which would presumably provide SCFA-
mediated protection from IBD [56,57]. Indeed, genus level
analysis of this cluster revealed enrichment for Roseburia
and Faecalibacterium genera, which have been shown to
produce SCFA and are depleted in IBD [11,58-60]. Unsur-
prisingly, representation of carbon utilization pathways also
differentiated the clusters. For example, clusters containing
significant amounts of Proteobacteria were depleted for
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Figure 6 Sigmoid microbial clusters. Heat maps were created that were sorted based on hierarchical clustering of both bacteria and
metabolites (A). The microbial dendrograms were then cut such that six or seven microbial clusters were generated based on k-means prediction
strength. The number and horizontal span of each cluster is indicated at the bottom of the dendrogram. The proportion of the phylotypic clades
comprising each cluster is depicted for each cluster (B). To determine the differences in imputed metagenomic enrichments/depletions of Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways between clusters, the metagenomic composition of each operational taxonomic unit
(OTU) was then computed using reconstruction of unobserved states (PICRUSt) and quantitatively analyzed for relative genomic pathway
abundance using Unified Metabolic Analysis Network (HUMANN) and Kruskal-wallis one way analysis of variance. Only pathways that significantly
varied in at least one cluster (Bonferroni, P <0.05) are shown (C). Beanplot colors differentiate cluster numbers; "Bonferroni, P <0.05.

genes encoding starch, sucrose, amino sugar and nucleotide
metabolism. Furthermore, genes encoding glutathione me-
tabolism also strongly differentiated the clusters. Among its
many functions, glutathione is involved in intracellular oxi-

of these genes could be indicative of varying levels of oxida-
tive stress tolerance [61]. In addition, genes involved in
lipopolysaccharide (LPS) biosynthesis varied between clus-
ters, likely reflecting the varying composition of Gram-

dative stress control and thus, the differing representation  negative bacteria in each cluster.
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Figure 7 Compositional comparison of cecum and sigmoid microbial clusters. The compositional similarity of microbial clusters between
the cecum and sigmoid data was assessed by quantifying overlap of cluster assignment for each operational taxonomic unit (OTU) measured
from both colonic regions. The top number in each box is the number of shared OTUs in each corresponding cluster and the bottom number is
the P-value, as determined by Fisher's exact test. Boxes with significant (Bonferroni, P <0.05) overlap are highlighted red. NS, not significant.
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Microbes with shared metabolite associations exhibit
significant microbial community structure
One possible source of inter-omic syntropy could be stimu-
lation or inhibition of microbial growth by metabolites.
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Strong evidence suggests diet can influence microbial
composition, but the metabolic processes that select
different bacteria remain unclear [16,25,26]. The mech-
anisms for selection could include any combination of

Table 4 Analysis of metabolite-associated microbial communities

Metabolite Putative ID Colonic  Correlated Total Association Average Average  Number of  Number of
mass and region OTUs, branch type positive negative  correlations correlations
retention number (g length correlation correlation >0.2 <-0.2

time <0.2)
Magenta Multiple Cecum 120 1658  All positive 016" —014™" 2182" 1930™"
module
Green yellow Multiple Cecum 94 1648 Mostly 014" -014™ 1707 126~
module positive
3422631 m/z trans-2- Cecum 45 1121 Mostly 016" 014" 290™ 298™"
RT = 4.2272 Dodecenoylcarnitine negative
Pink module Multiple Cecum 31 9.17 Mostly 0.13 -0.11 90 58
negative
Brown module Multiple Cecum 23 6.81 All positive 018" -0.12 88" 42
386.2897 m/z 3-Hydroxy-cis-5- Cecum 19 6.18 Mostly 0.13 -0.1 28 20
RT=43619  tetradecenoylcarnitine negative
230.1845 m/z N1,N8- Cecum 17 6 All negative 032" -029™"" 102" 84"
RT = 0.4078 diacetylspermidine
596.3475 m/z ? Sigmoid 61 897  All positive 0.14 -0.14" 442" 406"
RT = 3.04
595.3469 m/z L-Urobilin Sigmoid 58 105 Al positive 0.13 -0.12" 326 322"
RT = 3.0469
5933309 m/z I-Urobilinogen Sigmoid 54 9 Mostly 0.15 -014™" 384" 344"
RT = 3.0247 positive
6133011 m/z  Harderoporphyrinogen  Sigmoid 52 902  All positive 015" -014™" 376" 356"

RT = 3.0293

6053348 m/z  (235)-23,25-dihdroxy-  Sigmoid 43 10.1 Mostly 015" -013" 222" 194
RT =3.3185  24-oxovitamine D3 23- positive

(beta-glucuronide)

5913203 m/z  Mesobilirubinogen  Sigmoid 37 9.03 Mostly 0.13 -012" 152" 122

RT = 3.0304 positive
Salmon Multiple Sigmoid 37 8 Mostly 0.15 014" 184" 160™
module positive

1000761 m/z 2-Hydroxy-2- Sigmoid 32 837 22% 021" 016" 178" 196"
RT = 03093 methylbutanenitrile Negative,

78% positive
673.3209 m/z ? Sigmoid 30 7.93 Mostly 015" 014" 128" 110”
RT =33132 positive
434.1867 m/z ? Sigmoid 26 6.54  30% Positive, 028" -021" 160" 162"
RT = 0.6621 70%
negative

6193474 m/z ? Sigmoid 25 9.13 Mostly 0.13 013" 76 48
RT = 3.6896 positive

1240395 m/z Nicotinate Sigmoid 21 747 Mostly 018" -0.11 58" 30
RT = 03735 negative

6153154 m/ Mesobilirubinogen Sigmoid 18 6.31 All positive 0.1 -0.08 6 2

ZRT = 30227

Midnight blue Multiple Sigmoid 18 6 All positive 0.1 —-0.08 14 12
module

Significance values: “"P <0.001, ™ P <0.01, " P <0.05.
Total branch length is the sum of all branch lengths from Phylogenetic (Newick) trees containing the corresponding operational taxonomic units (OTUs).
Retention time (RT) is provided in minutes.
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competition, inhibition and niche specialization of bac-
teria. To try and identify such relationships, we ana-
lyzed the microbial abundance data of bacteria that
shared at least one correlated metabolite and compared
the SparCC [42] correlation structure of the microbial
community with that of 1,000 permutations of the same
number of randomly selected bacteria. SparCC is a cor-
relation methodology developed specifically for micro-
bial data to eliminate the influence of compositional
effects. We reasoned that microbial co-occurrence
structure driven by a metabolite (or the metabolic path-
way driving production of the metabolite) would mani-
fest as statistically significant increases (cooperation)
and decreases (competition) of the average positive and
negative SparCC correlation coefficient, respectively.
To supplement this analysis, we also examined the
number of positive and negative correlation coefficients
above 0.2 and below -0.2 for each community (Table 4).
We found that approximately 57% of tested metabolite-
associated microbial groups had significantly higher
positive and lower negative intra-community correla-
tions than randomly selected bacteria.

Close examination of the metabolites with multiple ¢
<0.2 microbial correlations revealed three classes of me-
tabolites: 1) those with almost exclusively positive corre-
lations with bacteria; 2) those with almost exclusively
negative correlations with bacteria; and 3) those with
multiple positive and negative correlations with bacteria.
Two examples of the latter are shown in Additional file
2, Figure S2 and Additional file 6, Figure S6 and are ana-
lyzed further in the Discussion. Unfortunately, due to
the partial transitive nature of correlations, we could not
conclude that the observed significance of metabolite-
associated microbial community structure was ecologic-
ally relevant. Lacking tools to disambiguate the transitive
features, we can only postulate that metabolites associ-
ated with communities with significant community
structure may have ecologic influence.

Discussion

With the advent of next-generation sequencing platforms,
a major influx of studies have sought to identify microbial
composition differences in various habitats. However, such
studies rarely consider environmental variables, such as
metabolites or proteins, resulting in incomplete systemic
clarity and potentially erroneous assumptions. This study
represents one of the first successful attempts to integrate
components of the adult gut mucosal ecosystem. We
chose to perform analysis on two distinct colonic regions
to ensure reproducibility of findings. Notably, all mucosal
samples were collected from subjects who had undergone
bowel preparation. While standard for both clinical and
research endoscopy, bowel preparation is known to alter
microbial alpha and beta diversity [62]. Accordingly, such
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depletion of mucosal microbiota is likely to reduce the
scope of detectable inter-omic relationships. However, we
reason that the observed relationships are representative
of the native mucosa. Also, bowel preparation should re-
sult in less dietary and enteric secretion input from the
proximal intestine, thereby increasing biogeographic reso-
lution and decreasing noise from dietary metabolites.
Nonetheless, it is possible that bowel preparation intro-
duces metabolic changes in the microbial community that
elicits non-physiologic inter-omic relationships. Therefore,
the scope and quality of these inter-omic relationships
merit additional assessment in undisturbed mucosal sites.

This study revealed significant inter-omic structure in
both the cecum and sigmoid colon that was independent
of age or disease status. While the relationship between
the microbiome and metabolome appeared strongest in
the cecum by Procrustes and coinertia analysis, a larger
number of significant correlations were observed in the
sigmoid compared to the cecum, possibly reflecting the
known biogeographic differences of both microbes and
metabolites [11,45,51]. Despite this biogeographic dis-
similarity, we observed significant overlap in findings be-
tween the cecum and sigmoid data. While only 342
metabolites were measured in both colonic regions, sev-
eral observations remained consistent between datasets.
As highlighted in Figures 5 to 7, the cecum and sigmoid
microbial clusters were very similar in composition and
function. Furthermore, as shown in Table 2, the relative
ratios of inter-omic correlations were nearly identical at
the phylum level. However, some biogeographic differ-
ences were observed. For example, the sigmoid data had
nearly double the number of significant inter-omic cor-
relations involving Proteobacteria and Actinobacteria,
which might suggest differing biogeographic functional
roles. Furthermore, using prediction strength, six micro-
bial clusters were predicted for the cecum data while
twenty were predicted for the sigmoid, suggesting that
microbial function in the sigmoid is much more distinct
than in the cecum.

This study also identified microbial clusters that were
both metabolically and metagenomically concordant.
Using observed metabolic correlations to govern cluster
assignment of microbes revealed similarities among di-
verse groups of bacterial phyla that might not otherwise
have phylogenetic or genomic associations. The meta-
bolic relationships defined by these clusters may provide
a new avenue to consider iz vivo microbial function and
host response. As noted above, species of Firmicutes, in-
cluding Faecalibacterium, Phascolarctobacterium, and
Roseburia tend to be depleted in IBD while Proteo-
bacteria species tend to be enriched [11]. All three IBD-
depleted genera were substantially confined to cluster 4
of both colonic regions, which was enriched for fatty
acid biosynthetic genes and depleted of fatty acid
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metabolism genes. Fatty acids with the most relevance
are SCFA, which are produced as fermentative
byproducts. Multiple dietary inputs can be used by bac-
teria to produce SCFA, including microbial or dietary-
derived starch, acetate, lactate, linoleic acid, and fiber
[63]. Fatty acid biosynthesis is particularly relevant to
the host because SCFA, like butyrate, can 1) act as en-
ergy sources for colonocytes; 2) inhibit Nuclear Factor-
KB activation in human colonic epithelial cells, resulting
in decreased levels of inflammatory cytokines; and 3)
stimulate mucin production, which could result in in-
creased barrier protection [64]. Accordingly, reduction
in SCFA availability to the host, which could occur if
cluster 4 bacteria were depleted, could increase mucosal
propensity for and susceptibility to inflammation. How-
ever, cluster 4 is also highly enriched for various amino
acid metabolic and biosynthetic pathways that could also
influence the environmental availability of such mole-
cules and thereby contribute to mucosal homeostasis in
ways that have not yet been examined (Figures 5C and
6C). Furthermore, cluster 4 was depleted of genes from
the KEGG glutathione metabolism pathway, which in-
cludes both biosynthetic and metabolic genes. Glutathi-
one is important for mitigating oxidative stress and acts
as a powerful redox buffer [61]. Therefore, depletion of
genes involved in production and metabolism of gluta-
thione could indicate that bacteria in cluster 4 were
more susceptible to oxidative stress and would therefore
be at a selective disadvantage in oxidative inflammatory
conditions like those found in IBD. Conversely, cluster
1, which contained many Proteobacteria, was signifi-
cantly enriched with genes from the glutathione metab-
olism pathway, which could explain why such bacteria
tend to more abundant in IBD [65]. Therefore, grouping
metabolically similar bacteria into clusters aids func-
tional analyses by 1) reducing the dimensionality of data;
2) allowing assignment of potential functions to bacteria
that might not be culturable in vitro; and 3) defining col-
lective relationships between bacteria that might not be
overtly related by phylogenetic sequences.

Another central finding of this study was the rich net-
work of significant correlations between the micro-
biome and metabolome. Such correlation structure
likely arises from a combination of two general pro-
cesses: 1) catabolism and anabolism of metabolites by
microbes, and 2) stimulation and inhibition of micro-
bial growth by metabolites. Indeed, it is widely accepted
that dietary alteration is accompanied by shifts in gut
microbiome composition and that microbial compos-
ition influences the intestinal metabolome [16,25,26].
However, the metabolites and metabolic pathways in-
volved in such processes are unknown. Therefore, while
it is difficult to conclusively assign cause and effect to
correlation data, a central goal of this study was to
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determine whether bioinformatic signatures of either
process could be detected.

To observe whether catabolic or anabolic reactions con-
tributed to the inter-omic correlation structure, KEGG
pathway representation of imputed OTU metagenomes
was correlated with the correlation coefficients from the
pair-wise microbe-metabolite comparisons. While roughly
half of these comparisons had significant positive correl-
ation coefficients, indicating concordance between ob-
served metabolite abundance and metagenomic abundance,
a large proportion of correlations were insignificant or sig-
nificantly negative (Additional file 6). While the mecha-
nisms remain unclear, multiple possibilities exist for the
differing directionality of observed correlations. For ex-
ample, a metabolic end product might have a positive cor-
relation with the OTU (and thus the originating pathway)
that produces and exports it, but a negative correlation with
the OTU (and thus the originating pathway) that imports
and processes it in a downstream pathway. Unfortunately,
this also means that some metabolites might have less sig-
nificant correlation curves due to organisms that encode
enzymes producing such metabolites, but are not correlated
with the metabolites because they are not exported, which
was required for us to measure the association. Given the
immature understanding of gut metabolic pathways and
the imperfect nature of putative metabolite ID picking, we
were not able to resolve this issue. Regardless, these data
suggest that our predicted metagenomic and putative me-
tabolite ID data were concordant. This was an important
finding because defining metabolite IDs using biochemical
methods is subject to numerous limitations that could be
simplified with metagenomic data. To try and detect signa-
tures of microbial inhibition or stimulation, we attempted
to quantify the significance of community structure be-
tween microbes with shared metabolite correlations. While
significant community structure was observed between
microbes, we were unable to deconvolute the transitive ef-
fects of correlation and thus, could not conclude that
metabolite-mediated microbial stimulation/inhibition oc-
curred. However, we provided two examples of communi-
ties that appeared to have exceptional structure, even
compared against other metabolite-associated microbial
communities. Additional file 10 shows the structure of a
microbial community that was defined by common correl-
ation with a cecal metabolite (mass = 230.1845, retention
time = 04078 minutes). This metabolite negatively corre-
lated with 17 bacteria. When correlated with each other,
these bacteria formed two tight clusters with extremely
well-defined co-exclusion structure. An appealing explan-
ation for this type of behavior is that the two communities
actively compete with each other for consumption of
the metabolite. The metabolite-associated community in
Additional file 11 involved a sigmoid metabolite (mass =
434.1867, retention time = 0.6621 minutes). This metabolite
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was negatively correlated with one Tenericute and eighteen
Proteobacteria OTUs and positively correlated with seven
Firmicutes OTUs. When correlated with each other, these
bacteria also formed two distinct communities that were
extremely co-exclusive; one community contained all the
Firmicutes, and the other community contained most of
the Proteobacteria. This behavior could be indicative of a
Firmicutes-produced metabolite that is inhibitory to
Proteobacteria. While it is possible that the observed struc-
ture was due to the transitive nature of the correlations,
these observations would seem to suggest that metabolites
might be driving microbial community structure and may
directly or indirectly modulate inter-species competition.

Regardless of the mechanism of correlation, the strong
correlation between individual metabolites and microbes
has numerous potential implications for future innova-
tions. For example, strong correlative relationships may
have value as biomarkers for individual or groups of
analytes. An obvious application would be the use of
specific metabolites as indicators of the presence of cer-
tain bacteria, which would presumably be faster than
culture- or sequence-based approaches. Furthermore,
knowledge of the relationships between metabolites and
bacteria may prove useful in either direct (therapeutic)
or indirect (dietary) interventions for chronic disorders
with microbial compositional shifts, such as IBD.

Conclusions

The data presented here reveal significant interdependence
of the mucosal metabolome and microbiome. Evidence was
presented that suggests the microbiome and metabolome
have bi-directional influence, with bacteria influencing me-
tabolite composition and metabolites contributing to mi-
crobial community architecture. The results also suggest
that metabolites should be more deeply interrogated as dir-
ect mediators of microbial-associated disease activity and
that metabolites may be a direct target for monitoring and
therapeutically manipulating microbial community function
in IBD and other microbiome-associated intestinal diseases.

Additional files

Additional file 1: Primers used for the V4 rRNA PCR and
sequencing analysis. Contains three supplemental tables containing:
(1) Reverse PCR primers used in the lllumina-based high-throughput
sequence analysis of bacterial 165 rRNA genes; (2) Forward PCR primer
used in the lllumina-based high-throughput sequence analysis of
bacterial 165 rRNA genes; and (3) Sequencing primers used in the
lllumina-based high-throughput sequence analysis of bacterial 16S rRNA
genes. PCR, polymerase chain reaction.

Additional file 2: Inter-omic metabolome versus microbiome
correlation analysis for cecum and sigmoid data. A list of g <0.2
significant correlations between the microbiome and metabolome is
included with Spearman Rho values, P-values and g-values for each
comparison. Data from the cecum and sigmoid data are included in
separate worksheets.
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Additional file 3: Coinertia analysis. Coinertia analysis was performed
to compare the global similarity of the microbiome and metabolome. The
cecum (A) and sigmoid (B) coinertia analysis of the microbiome and
metabolome measured from the same samples are shown. As with
Procrustes analysis, longer lines indicate greater dissimilarity.

Additional file 4: Metabolite-level coinertia analysis. Individual
metabolites are plotted based on their coinertia-predicted covariance with the
microbiome from the cecum (A) and sigmoid (B). To reduce noise, data were
first thresholded such that only metabolites measured above background in
218% of samples were analyzed. Distance from the center is indicative of the
strength of covariance. Technical limitations limited assignment of putative
IDs, and thus Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, to
metabolites, so only a minority of metabolites are labeled. )

Additional file 5: Metabolites and module colors from cecum and
sigmoid. Module assignment for each metabolite is provided. Since the IDs
of the measured metabolites are only putative, the technical information is
provided for each metabolite, including the ion mode used to detect the
metabolite, the measured m/z mass, and retention time (in minutes).
Metabolites that were not grouped into modules are designated as un-
clustered. Module dendrograms are included after each list of cecum and
sigmoid metabolites.

Additional file 6: Correlations of inter-omic data and metagenomic
data. Correlations values for each microbial-metabolite pair were
compared with metagenomic data for each respective operational
taxonomic unit (OTU), such that metabolite-associated pathways could
be tested against metagenomic data. The rationale was that bacterial
correlations with a single metabolite should be concordant with the
corresponding metagenomic abundance of the source metabolic
pathway in each bacterium in cases where catabolism or anabolism is
the source of the OTU-metabolite correlation. Each of the 111 tested
correlations is shown from highest to lowest Pearson rho value.
Correlations with significant Bonferroni-corrected P-values (P <0.05) are
shaded in red. Insignificant correlations are shaded in grey.

Additional file 7: Comparison of metagenomic abundance data
with correlated metabolite data. A list of metabolites is included with
the colonic region detected, the module name (if the metabolite was
clustered into a module), putative KEGG identifiers for each metabolite
and the KEGG pathway names from which the metabolites are produced.
For each putative ID, we generated two vectors: one containing every
metabolite-operational taxonomic unit (OTU) Spearman correlation
coefficient for the metabolite in question, and another vector with the
imputed metagenomic abundance of the putative Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway that produces the metabolite in
question for every OTU. The two vectors were then aligned by OTUs and
then compared using Pearson correlation. The Pearson correlation

value is represented in the column entitled Metabolite-metagenome
correlation. Uncorrected and corrected (Bonferroni) P-values are

also provided.

Additional file 8: generation of microbial clusters from
metabolically driven hierarchical clusters. Dendrograms of the cecum
(A) and sigmoid (B) are shown with red lines indicating the height at
which each dendrogram was cut. Cut heights were selected based on
prediction strength to yield six (cecum) or seven (sigmoid) clusters.

Additional file 9: Microbial cluster designation for each
operational taxonomic unit (OTU). Two worksheets are provided
containing OTUs and the clusters for which they were assigned from
the cecum (first worksheet) and sigmoid (second worksheet) data.
Taxonomic information is also provided for each OTU along with
GreenGenes ID numbers.

Additional file 10: Microbial community structure potentially
driven by microbial competition for a metabolite. A heat map
generated from a SparCC-correlated matrix of operational taxonomic
units (OTUs) that were all found to significantly negatively correlate with
a single metabolite (mass = 230.1845, retention time = 0.4078 minutes).
The heat map depicts two strongly co-occurrent clusters of bacteria that
display co-exclusive behavior. The microbial IDs are shown to the left of
each corresponding row in the heat map. This behavior could be explained
by competition by the two communities for the associated metabolite.
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Additional file 11: Microbial community structure potentially
driven by an inhibitory metabolite. A heat map generated from a
SparCC-correlated matrix of operational taxonomic units (OTUs) is shown;
they were all either positively or negatively correlated with a single
metabolite (mass = 434.1867, retention time = 0.6621 minutes). OTUs
from the Firmicutes clade were exclusively positively associated with the
metabolite, while OTUs from the Proteobacteria clade were exclusively
negatively associated with the metabolite. The SparCC heat map shows
these two phylogenetically distinct communities were extremely co-
exclusive. The microbial IDs are shown to the left of each corresponding
row in the heat map. One potential explanation for this phenomenon is
if the metabolite is an inhibitory metabolite that specifically targets
members of the Proteobacteria clade that is produced by OTUs from the
Firmicutes clade.
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