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Dietary requirements of synthesizable amino acids
by animals: a paradigm shift in protein nutrition
Guoyao Wu
Abstract

Amino acids are building blocks for proteins in all animals. Based on growth or nitrogen balance, amino acids were
traditionally classified as nutritionally essential or nonessential for mammals, birds and fish. It was assumed that all
the “nutritionally nonessential amino acids (NEAA)” were synthesized sufficiently in the body to meet the needs for
maximal growth and optimal health. However, careful analysis of the scientific literature reveals that over the past
century there has not been compelling experimental evidence to support this assumption. NEAA (e.g., glutamine,
glutamate, proline, glycine and arginine) play important roles in regulating gene expression, cell signaling,
antioxidative responses, fertility, neurotransmission, and immunity. Additionally, glutamate, glutamine and aspartate
are major metabolic fuels for the small intestine to maintain its digestive function and to protect the integrity of
the intestinal mucosa. Thus, diets for animals must contain all NEAA to optimize their survival, growth,
development, reproduction, and health. Furthermore, NEAA should be taken into consideration in revising the
“ideal protein” concept that is currently used to formulate swine and poultry diets. Adequate provision of all amino
acids (including NEAA) in diets enhances the efficiency of animal production. In this regard, amino acids should not
be classified as nutritionally essential or nonessential in animal or human nutrition. The new Texas A&M University’s
optimal ratios of dietary amino acids for swine and chickens are expected to beneficially reduce dietary protein
content and improve the efficiency of their nutrient utilization, growth, and production performance.
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Introduction
Amino acids (AA) are building blocks for proteins and
must be present in cells for synthesis of polypeptides [1].
The carbon skeletons of eleven of these AA (namely
cysteine, histidine, isoleucine, leucine, lysine, methionine,
phenylalanine, threonine, tryptophan, tyrosine, and val-
ine) are not synthesized from non-AA molecules in cells
of any animals [2]. Therefore, they are classified as nutri-
tionally essential AA (EAA) and must be included in di-
ets for nonruminants to maintain physiological functions
of cells, tissues, and the whole body [3,4]. This assumes
particular importance for the small intestine because its
basal membrane lacks an ability to take up a nutrition-
ally significant quantity of all AA, except for glutamine,
from the arterial circulation [5,6].
Classical animal nutrition textbooks do not consider

cysteine or tyrosine as an EAA [7-10], because they can
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be synthesized from methionine and phenylalanine in the
liver, respectively. However, the inability of all animals to
form the carbon skeletons for methionine and phenylalan-
ine means that there is no de novo synthesis of cysteine or
tyrosine [2]. Also, intestinal mucosal cells must depend on
cysteine and tyrosine as essential precursors to synthesize
polypeptides [6]. Moreover, sulfur-containing or aromatic
AA in arterial blood are largely not available to enterocytes
(absorptive columnar cells in the small intestine). Thus,
the presence of cysteine and tyrosine in diets, which can
reduce the dietary needs of their precursor AA, are neces-
sary to maintain the normal structure and function of the
intestine [5,6].
Rose did consider dietary needs of some of the tradition-

ally classified NEAA in his human studies in the 1940s
and 1950s, and reported that the omission of NEAA from
the diet did not affect nitrogen balance in healthy adults
during an eight-day experimental period [8]. Thus, it has
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long been assumed that all of the “nutritionally nonessen-
tial amino acids (NEAA)” are synthesized sufficiently in
the body to meet the needs for maximal growth and opti-
mal health [7-10]. However, careful analysis of the scien-
tific literature reveals that over the past century there has
not been compelling experimental evidence to support
this assumption [2]. Indeed, in the 1960s and 1970s, A.E.
Harper and other investigators found that the absence of
NEAA from chicken and rat diets could not support max-
imal growth of these animals [11-15]. Growing evidence
shows that nearly all of these synthesizable AA are inad-
equately present in typical plant protein (e.g., corn- and
soybean meal)-based diets for growing swine relative to
optimal whole-body protein synthesis [16]. Results of re-
cent research revealed that the NEAA have important
regulatory roles in nutrient metabolism to favor lean tissue
growth and reduction of white adipose tissue [17-20].
Clearly, animals have dietary requirements for not only
EAA, but also NEAA to achieve maximum growth and
production performance [21-23]. This new concept has re-
sulted in a paradigm shift in our understanding of protein
nutrition and is highlighted in the present review article.

Definitions of requirements of dietary AA
Requirements of dietary AA can be classified as qualitative
and quantitative [2]. Qualitative requirements are related to
the question of “what AA are required for maintenance,
optimum performance (e.g., growth, lactation, reproduction,
and sports competition), and optimum health (e.g., preven-
tion of chronic metabolic disorders, resistance to infectious
disease, and recovery from illness)?” Quantitative require-
ments refer to the question of “how much of an AA is re-
quired for maintenance, optimum growth, and optimum
health?” Feeding experiments have traditionally been
employed to determine both qualitative and quantitative re-
quirements of dietary AA by animals [24]. Minimal require-
ments of AA can also be estimated using so-called factorial
analysis, that is, measurements of the loss of N by animals
fed a nitrogen- or AA-free diet via urine, feces, gas, and
other routes (maintenance) +AA deposited in animals +AA
excreted as animal products (e.g., milk, egg, wool, and fetus)
[2]. Over the past three decades, studies involving radio-
active and stable AA tracers have been used along with the
N balance technique to determine dietary requirements for
EAA by humans and farm animals [25,26]. The more mod-
ern methods involve the use of direct and indirect indicators
of AA oxidation during a period of several hours [26]. For
yet unknown reasons, the AA oxidation methods generally
yielded much higher values of dietary EAA requirements by
humans than the nitrogen-balance studies. Readers are re-
ferred to recent articles [2,3,24] for insight into historical de-
velopments of dietary AA requirements. At present, little is
known about dietary requirements for NEAA by mammals,
birds, or fishes.
Development of the ideal protein concept in animal
nutrition
Chickens
Beginning in the late 1950s, Mitchell and Scott at the
University of Illinois conceptualized an ideal protein
(optimal proportions and amounts of EAA) for diets of
chickens [27,28]. NEAA were not considered by these au-
thors. Early attempts to define an ideal protein were based
on the EAA composition of eggs and casein, but were
largely unsuccessful because of the excess of many EAA.
In 1960, Scott’s group simulated the profile of EAA
in the chick carcass [29] to design a revised pattern of diet-
ary EAA in an ideal protein for improving growth perform-
ance of chicks [30]. An improvement in the ideal protein
was indeed achieved using this approach, but remained un-
satisfactory due to the lack of NEAA in the diet. However,
data on the composition of all EAA or NEAA in chicks
were not available [29]. Subsequently, a mixture of several
AA (cystine, glycine, proline and glutamate), which are
synthesized from pre-existing AA (including EAA) by birds
and had previously been thought to be NEAA in chicken
nutrition, was used in dietary formulations to yield better
results on growth performance [31,32]. This extensive
research during the 1960s and the 1970s culminated in
several versions of the “chick AA requirement standard”
for the first three weeks post-hatching [33-36]. Refer-
ence values were given in the Dean and Scott Standard
[33], the Huston and Scott Reference Standard [34],
the modified Sasse and Baker Reference Standard
[35], and the Baker and Han’s Ideal Chick Protein [36]
(Table 1). The common features shared by these different
recommended standards of dietary AA requirements by
chickens are that the diets included: (a) all EAA that
are not synthesized by chickens; (b) several AA (cystine,
glutamate, glycine, proline, and tyrosine) that are synthe-
sized from either EAA or α-ketoglutarate plus ammonia by
animals to various extents; and (c) no data on alanine, as-
partate, asparagine, glutamine, or serine. Note that the pat-
terns of AA composition in the ideal protein for chicks, as
proposed by the Scott [33,34] and Baker [25,36], differ sub-
stantially for glycine and proline, and, to a lesser extent, for
branched-chain AA, histidine, and sulfur-containing AA.
These differences may reflect variations in AA composition
of chickens reported in the literature. Because the content
of proline plus hydroxyproline in the body of chickens was
not known at that time, the relatively small amount of pro-
line in the recommended ideal protein was only arbitrarily
set and could limit responses of the animals to dietary EAA
in their maximal growth and production performance. In
contrast, very large amounts of glutamate (e.g., 13 times the
lysine value in the modified Sasse and Baker Reference
Standard) [35] were used to presumably provide for the en-
tire need for “nonspecific AA N”. However, key questions
regarding whether glutamate fulfilled this role and whether



Table 1 The University of Illinois patterns of amino acid compositions in ideal proteins for chicks during the first three
wk post-hatching1

Amino acid Amino acid content
in the carcass Ref. [29]
(% of crude protein)2

Dean & Scott
standard (1965)
Ref. [33]

Huston & Scott
standard (1968)
Ref. [34]

Sasse & Baker
standard (1973)
Ref. [35]

Baker & Han
standard (1994)
Ref. [36]

Amount
in diet3

% of
lysine

Amount
in diet3

% of
lysine

Amount
in diet3

% of
lysine

Amount
in diet3

% of
lysine

Arginine 6.65 1.10 98.2 1.00 105 0.95 104 0.95 106

Cystine — 0.35 31.3 0.35 36.8 0.35 38.5 0.325 36.1

Glycine — 1.60 143 1.20 126 0.60 65.9 0.60 66.7

Isoleucine 4.35 0.80 71.4 0.60 63.2 0.60 65.9 0.60 66.7

Histidine 1.80 0.30 26.8 0.30 31.6 0.33 36.3 0.32 35.6

Leucine 7.2 1.20 107 1.20 126 1.00 110 0.98 109

Lysine 6.6 1.12 100 0.95 100 0.91 100 0.90 100

Methionine 1.98† 0.55 49.1 0.35 36.8 0.35 38.5 0.325 36.1

Phenylalanine 4.25 0.68 60.7 0.50 52.6 0.50 55.0 0.50 55.6

Proline — 1.00 89.3 0.20 21.1 0.40 44.0 0.40 44.4

Threonine 4.4 0.65 58.0 0.65 68.4 0.65 71.4 0.60 66.7

Tryptophan 0.98 0.23 20.5 0.15 15.8 0.15 16.5 0.145 16.1

Tyrosine — 0.63 56.3 0.45 47.4 0.45 49.5 0.45 50.0

Valine 5.0 0.82 73.2 0.82 86.3 0.69 75.8 0.69 76.7

Glutamic acid4 — 12.0 1071 10.0 1053 12.0 1319 12.0 1333

Total amino acids 23.0 18.7 19.9 19.8

Total nitrogen 2.83 2.33 2.37 2.35
1These ideal protein models were developed for 0- to 21-d-old broilers using crystalline amino acids. It was assumed that all of these amino acids were 100%
available for absorption into enterocytes in chicks. Except for glycine and methionine, all amino acids are L-isomers. DL-methionine is used herein.
2Average values for 1-wk-old and 4- to 5-wk-old chicks.
3% of diet (as-fed basis; 90% dry matter).
4Provided as the nitrogenous source for synthesis of NEAA in chicks.
†This value refers to L-methionine.
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excess glutamate might interfere with the transport, metab-
olism and utilization of other AA in chickens were not ad-
dressed by the Illinois investigators [33-36]. Possibly due to
these concerns and the publication of the NRC nutrient re-
quirements for poultry in 1994 [37], Baker [38] did not in-
clude glutamate, glycine or proline in an ideal protein for
diets of 0- to 56-d-old chickens in his modified University
of Illinois Ideal Ratios of Amino Acids for broiler chickens
in 1997 (Table 2).

Swine
Work on the ideal protein for poultry diets laid a foun-
dation for subsequent studies with growing pigs. Thus,
the British nutritionist Cole suggested in 1980 that
swine diets could be formulated to contain ideal ratios
of EAA (with lysine as the reference AA) based on their
concentrations in the pig carcass (almost exclusively
tissue proteins) [39]. This idea was adopted first by the
British Agricultural Research Council (ARC) in 1981
[40] and then by the U.S. National Research Council
(NRC) in 1988 [41]. Unfortunately, histidine, arginine,
and all synthesizable AA were not included in the ARC’s
concept of ideal protein (Table 3). Also, its conceptual
foundation based solely on the EAA composition of the
body was flawed, because the pattern of AA in the diet
does not reflect the composition of AA in the animal
[16,42]. This mismatch can be explained as follows: (a) in-
dividual AA in the diet undergo extensive catabolism and
transformations at different rates in the small intestine; (b)
the concentrations of AA in the circulation differ markedly
from the relative abundance of AA in the diet; (c) individ-
ual AA in plasma have different metabolic fates in different
animal tissues; and (d) the abundance of AA in tissue pro-
teins differs greatly from that in the diet [2,16,43]. These
major shortcomings limit the usefulness of the early ver-
sions of the ideal protein in formulating swine diets for
maximal growth or production performance of pigs.
Dietary AA are required by animals primarily for main-

tenance (including the synthesis of nonprotein metabo-
lites) and protein accretion [2]. However, the ARC’s ideal
protein concept did not take into consideration the rela-
tive contribution of maintenance to the total AA needs of
the pig [40]. This was due, in part, to technical challenges
to accurately determine maintenance requirements of AA,



Table 2 The modified Baker and NRC patterns of changes in amino acid compositions in ideal proteins for
0- to 56-d-old chicks (% of lysine in diet)

Amino acid Baker’s modified models (1997) for chicks [38]1 NRC (1994) [37]
(0- to 21-d-old chicks)50 to 21 d2 21 to 42 d3 42 to 56 d4

Lysine 100 100 100 100

Methionine 36 37 37 42

Cystine 36 38 38 33

Threonine 67 70 70 67

Valine 77 80 80 75

Arginine 105 108 108 104

Tryptophan 16 17 17 17

Isoleucine 67 69 69 67

Leucine 109 109 109 100

Histidine 35 35 35 29

Phe + Tyr 105 105 105 112
1These ratios are based on true digestible levels of amino acids in diet (as-fed basis; 90% dry matter). Adapted from Baker [38]. Except for glycine, all amino acids are L-isomers.
2Patterns of amino acid composition in the ideal protein are the same for male and female chickens. The amounts of digestible lysine in diet (as-fed basis; 90%
dry matter) are 1.12% and 1.02% for male and female chickens, respectively.
3Patterns of amino acid composition in the ideal protein are the same for male and female chickens. The amounts of digestible lysine in diet (as-fed basis; 90%
dry matter) are 0.89% and 0.84% for male and female chickens, respectively.
4Patterns of amino acid composition in the ideal protein are the same for male and female chickens. The amounts of digestible lysine in diet (as-fed basis; 90%
dry matter) are 0.76% and 0.73% for male and female chickens, respectively.
5These ratios are based on total amino acids in a typical corn- and soybean meal-based diet. The amount of digestible lysine in diet (as-fed basis; 90% dry matter)
is 1.2% for 0- to 21-d-old chicks.

Table 3 Previously proposed amino acid compositions for ideal proteins for 10–20 kg growing pigs1 (% of lysine)

Amino acid Amino acid content
in the carcass2

ARC (1981)
Ref. [39]3

Wang-Fuller (1989)
Ref. [44]4,a

Chung-Baker (1992)
Ref. [45]4,b

NRC (1998)
Ref. [40]5,b

Baker (2000)
Ref. [46]4,b

Arginine 91 — — 42 42 42

Glycine — — — 100 — —

Histidine 47 33 — 32 32 32

Isoleucine 53 55 60 60 54 60

Leucine 111 100 110 100 102 100

Lysine 100 100 100 100 100 100

Met + Cys 49 50 63 60c 57e 60c

Phe + Tyr 100 96 120 95d 94f 95d

Proline — — — 33 — —

Tryptophan 12 15 18 18 19 17

Threonine 61 60 72 65 62 65

Valine 72 70 75 68 68 68

Glutamate6 — — 826 878 — —
1These ratios are based on true digestible levels of amino acids in diets [40,44-46], except for ARC (1981) [36]. Except for glycine, all amino acids are L-isomers.
2Taken from Baker (1997) [38]. The body proteins in 20–45 kg pigs contain 63 g lysine/16 g nitrogen [38].
3These ratios are based on total amino acids in the diet. The total level of lysine in the diet is 1.10% (as-fed basis; 90% dry matter).
4The diet contains 1.20% true digestible lysine (as-fed basis; 90% dry matter).
5The diet contains 1.01% true digestible lysine (as-fed basis; 90% dry matter).
6Provided as the nitrogenous source for synthesis of other NEAA in animals.
aDietary requirements are for 25–50 kg gilts.
bDietary requirements are for 10–20 kg pigs.
cThe ratio of L-methionine to L-cystine is 1:1.
dThe ratio of L-phenylalanine to L-tyrosine is 53:47.
eThe ratio of L-methionine to L-cystine is 47:53.
fThe ratio of L-phenylalanine to L-tyrosine is 64:36.
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which include replacement of degraded proteins, as well
as the use of AA for synthesis of low-molecular-weight
substances and ATP production [1]. Between 1989 and
1990, in attempts to improve the original ideal protein
concept [39,40], T.C. Wang and M.F. Fuller [45] used gilts
in the weight range of 25 to 50 kg to estimate an ideal pat-
tern of dietary AA that included requirements for both
maintenance and tissue protein accretion. However, these
two authors also failed to consider arginine, histidine or all
so-called NEAA in the ideal protein although they used
glutamate at 826% of the lysine value to provide nonspe-
cific AA-nitrogen [45]. As for the studies with chickens in
the 1960s and 1970s, there were also concerns over the as-
sumptions for inclusion of this high level of glutamate in
the swine diet that lacks all other NEAA. While glutamate
was used to prepare isonitrogenous diets in the previous
studies, none of these investigators considered that ani-
mals have a dietary requirement of glutamate for optimal
growth and production performance.
Table 4 Compositions of amino acids in the whole-body prot

Amino acid Chicks1 Pigs2

mg AA/g protein % of lysine mg AA/g protein % of lysin

Alanine 66.3 108 65.7 109

Arginine 68.5 111 67.7 112

Asparagine 36.5 59.3 36.0 59.7

Aspartate 43.1 70.1 42.8 71.0

Cysteine 15.0 24.4 13.2 21.9

Glutamine 50.5 82.1 51.2 84.9

Glutamate 82.9 135 84.6 140

Glycine 115 187 117 19.4

Histidine 21.1 34.3 20.8 34.5

Isoleucine 35.9 58.4 35.3 58.5

Leucine 69.2 113 68.3 113

Lysine 61.5 100 60.3 100

Methionine 18.9 30.7 18.7 31.0

Phenylalanine 34.8 56.6 34.3 56.9

Proline 85.3 139 86.1 143

OH-Proline 34.8 56.6 37.9 62.9

Serine 45.0 73.2 44.3 73.5

Threonine 36.3 59.0 35.1 58.2

Tryptophan 11.6 18.9 11.1 18.4

Tyrosine 26.6 43.3 27.2 45.1

Valine 41.8 68.0 42.2 70.0

Except for glycine, all amino acids are L-isomers. Adapted from Wu et al. [21]. Calcu
OH-Pro = hydroxyproline.
1Chickens (10-d-old). The content of protein in the body is 14.3 g/100 g wet tissue.
2Pigs (30-d-old). The content of protein in the body is 14.1 g/100 g wet tissue.
3As-fed basis (89.0% dry matter). Corn grain contains 9.3% crude protein (as-fed ba
4As-fed basis (89.0% dry matter). Soybean meal contains 43.6% crude protein (as-fe
5As-fed basis (89.1% dry matter). Sorghum grain contains 10.1% crude protein (as-fe
6As-fed basis (96.1% dry matter). Meat & Bone meal contains 52.0% crude protein (
Having recognized the need to modify the ideal protein
concept for formulating swine diets, D.H. Baker took great
efforts between 1990 and 2000 to evaluate dietary require-
ments of EAA by 10–20 kg swine. In their original study,
D.H. Baker and his student T.K. Chung added arginine
(42% of lysine), glycine (100% of lysine), histidine (32% of
lysine), and proline (33% of lysine) to the basal diet contain-
ing 1.2% true digestible lysine and using glutamate at 878%
of the lysine value to provide nonspecific AA-nitrogen [46].
However, other synthesizable AA (including alanine, aspar-
tate, asparagine, cysteine, glutamine, serine, and tyrosine)
were not considered in the revised version of the ideal pro-
tein and the rationale for the use of arginine, glycine, histi-
dine, and proline at different proportions to lysine was not
explained [46]. Furthermore, the bases for other assump-
tions were unknown, including: (a) whether glutamate is an
effective precursor for sufficient synthesis of all other AA
(including aspartate, glutamine, and serine) in specific tis-
sues (e.g., the small intestine, spleen, and lymph nodes) and
eins of chicks and pigs

Corn grain3 Soybean meal4 Sorghum grain5 Meat & bone meal6

e g AA/100 g foodstuff

0.71 1.95 0.96 4.78

0.38 3.18 0.41 3.67

0.35 2.10 0.31 2.21

0.43 3.14 0.36 3.08

0.20 0.70 0.19 0.49

1.02 3.80 0.85 2.81

0.64 4.17 1.18 4.05

0.40 2.30 0.39 8.67

0.23 1.13 0.23 1.19

0.34 2.03 0.38 1.92

1.13 3.44 1.21 3.56

0.25 2.80 0.21 3.13

0.21 0.60 0.20 1.10

0.46 2.21 0.51 1.85

1.06 2.40 0.96 5.86

0.00 0.09 0.00 2.88

0.45 2.12 0.46 2.08

0.31 1.76 0.32 2.42

0.07 0.62 0.10 0.39

0.43 1.66 0.45 1.45

0.44 2.09 0.50 2.23

lations were based on the molecular weights of intact amino acids.

sis) [91].
d basis) [91].
d basis) [91].
as-fed basis) [91].
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the whole body; or (b) whether the high content of glutam-
ate in the diet may affect the transport, metabolism and
utilization of other AA in the diet. Furthermore, little atten-
tion was paid to inter-organ fluxes of amino acids relative
to their intracellular metabolism. For example, only ~5% of
dietary glutamate enters the portal circulation in growing
pigs [5,6]. In addition, although intracellular glutamate is
used to synthesize aspartate, many extra-intestinal tissues
and cells (e.g., liver and red blood cells) have a limited abil-
ity to take up glutamate from the blood circulation [2]. The
10th edition of the NRC Swine Nutrient Requirements
published in 1998 [41] did not recognize the needs of pigs
for dietary proline or glycine; therefore, Baker [47] omitted
glycine and proline from the last version of his “ideal
Table 5 True ideal digestibilities of amino acids in corn and s

Amino acid Chicks1

Corn grain Soybean meal Sorghum grain Meat & Bone

Alanine 87.6 88.9 85.4 90.2

Arginine 88.4 90.6 87.2 91.4

Asparagine 86.5 88.3 85.9 90.6

Aspartate 87.2 89.5 86.1 90.2

Cysteine 85.1 86.4 84.8 89.4

Glutamine 88.6 89.5 87.6 90.8

Glutamate 89.2 90.2 88.4 91.2

Glycine 86.4 88.3 85.7 90.5

Histidine 85.5 87.4 84.9 89.6

Isoleucine 88.7 89.3 88.0 90.8

Leucine 88.2 89.0 87.6 90.3

Lysine 85.0 88.4 84.3 90.0

Methionine 87.5 90.1 86.8 90.6

Phenylalanine 89.1 90.3 88.5 90.9

Proline 86.8 88.0 85.9 89.4

Hydroxyproline — — — 88.7

Serine 88.4 90.2 87.5 91.1

Threonine 85.2 86.5 84.8 89.3

Tryptophan 86.0 87.2 85.3 89.0

Tyrosine 88.5 89.6 88.0 91.4

Valine 88.2 89.8 87.6 90.7
1Except for glycine, all amino acids are L-isomers. Broiler chickens (21-wk-old). Ileal
fed either a nitrogen-free purified diet (consisting of 94.9% cornstarch, 2% soybean
0.25% NaCl, and 0.2% chromic oxide) or a diet containing the test feed ingredient (
dicalcium phosphate, 0.5% vitamin premix, 0.5% mineral premix, 0.25% NaCl, and 0
the diet was provided to overnight (16 h)-fasted chicks at 25 g/kg body weight. Am
nitrogen-free purified diet or the diet containing the test feed ingredient were anal
AA [2]. Data are means for 8 chicks per ingredient, with pooled SEM values being le
2Pigs (50- to 65-d-old). Ileal digestae were obtained from 50- to 65-d-old cannulated pi
94.9% cornstarch, 2% soybean oil, 1.65% dicalcium phosphate, 0.5% vitamin premix, 0.
test feed ingredient (consisting of 79.9% cornstarch, 15% test ingredient, 2% soybean
NaCl, and 0.2% chromic oxide). The amount of the diet was provided to overnight (16
digestae from pigs fed either the nitrogen-free purified diet or the diet containing the
true ideal digestibilities of AA [2]. Data are means for 6 pigs per ingredient, with poole
protein” for swine diet formulations in 2000, as he did in
1997 [38]. Over the past two decades, there have been suc-
cessful attempts to refine the patterns of some AA in diets
for lactating, suckling, weanling, finishing, and gestating
pigs by addition of arginine [48-53], glutamine [54-59],
glutamate [60-64], proline [65-67], or glycine [68,69], or
by determining mammary gland growth, changes of
whole-body AA composition, and milk yields in lactat-
ing sows [70,71]. The outcomes are increases in neo-
natal and postweaning growth, lactation performance,
and litter size in pigs.
Growing evidence shows that both EAA and NEAA (e.g.

arginine, glutamine, glutamate, glycine, and proline) play
important roles in regulating gene expression, cell
oybean meals for poultry and swine diets (%)

Pigs2

meal Corn grain Soybean meal Sorghum grain Meat & bone meal

88.5 89.0 87.2 90.5

89.3 90.2 88.4 91.3

86.8 88.5 86.0 90.2

86.3 88.2 85.8 89.7

86.0 87.1 85.1 89.0

87.7 89.2 86.8 90.8

88.1 89.6 87.4 91.0

86.6 88.0 85.7 89.5

87.0 88.5 86.2 90.2

88.2 88.9 87.6 90.5

87.8 89.6 86.4 90.6

84.5 89.8 83.7 90.4

88.6 89.1 87.4 90.5

89.5 90.0 88.9 91.0

86.4 87.2 86.0 89.2

— — — 88.4

88.6 89.0 87.9 90.6

84.9 86.8 84.3 88.5

85.2 88.1 84.6 89.7

89.0 90.2 88.2 91.0

87.1 88.7 86.1 90.3

digestae were obtained from 21-d-old broiler chicks [92] at 6 h after they were
oil, 1.65% dicalcium phosphate, 0.5% vitamin premix, 0.5% mineral premix,
consisting of 79.9% cornstarch, 15% test ingredient, 2% soybean oil, 1.65%
.2% chromic oxide) and then euthanized by cervical dislocation. The amount of
ino acids in the diet, as well as the digestae from chicks fed either the
yzed as described by Li et al. [91,94] to calculate the true ideal digestibilities of
ss than 0.8%.
gs [93] at 6 h after they were fed either a nitrogen-free purified diet (consisting of
5% mineral premix, 0.25% NaCl, and 0.2% chromic oxide) or a diet containing the
oil, 1.65% dicalcium phosphate, 0.5% vitamin premix, 0.5% mineral premix, 0.25%
h)-fasted pigs at 12 g/kg body weight. Amino acids in the diet, as well as the
test feed ingredient were analyzed as described by Li et al. [91,94] to calculate the
d SEM values being less than 1.2%.
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signaling, nutrient transport and metabolism, intestinal
microbiota, anti-oxidative responses, and immune re-
sponses [1,2]. Based on these lines of compelling evidence
from animal studies, Wu and colleagues proposed the new
concept of functional AA, which are defined as those AA
that participate in and regulate key metabolic pathways to
improve health, survival, growth, development, lactation,
and reproduction of the organisms [1,2,16]. Metabolic
pathways include: (a) intracellular protein turnover (syn-
thesis and degradation) and associated events; (b) AA syn-
thesis and catabolism; (c) generation of small peptides,
nitrogenous metabolites, and sulfur-containing substances
(e.g., H2S); (d) urea cycle and uric acid synthesis; (e) lipid
and glucose metabolism; (f) one-carbon-unit metabolism
and DNA synthesis; and (g) cellular redox signaling. Func-
tional AA can be nutritionally “essential”, “nonessential”,
or conditionally essential AA. Notably, the concept of
functional AA in nutrition has also been adopted for fish
[72-74], poultry [75-79], and small laboratory animals (e.
g., mice and rats) [80-83]. Readers are referred to recent
Table 6 Texas A&M University’s optimal ratios of true digestibl

Amino acid Growing pigs, kg2

5-10 10-20 20-50 5

Alanine 1.14 0.97 0.80

Arginine 1.19 1.01 0.83

Asparagine 0.80 0.68 0.56

Aspartate 1.14 0.97 0.80

Cysteine 0.32 0.28 0.24

Glutamate 2.00 1.70 1.39

Glutamine 1.80 1.53 1.25

Glycine 1.27 1.08 0.89

Histidine 0.46 0.39 0.32

Isoleucine 0.78 0.66 0.54

Leucine 1.57 1.33 1.09

Lysine 1.19 1.01 0.83

Methionine 0.32 0.28 0.24

Phenylalanine 0.86 0.73 0.60

Proline 1.36 1.16 0.95

Serine 0.70 0.60 0.49

Threonine 0.74 0.65 0.55

Tryptophan 0.22 0.19 0.17

Tyrosine 0.67 0.57 0.46

Valine 0.85 0.72 0.59
1Data are taken from Wu [95]. Except for glycine, all amino acids are L-isomers. Valu
(e.g., feed-grade arginine, glutamate, glutamine and glycine), whose true ileal diges
molecular weights of intact amino acids were used for all the calculations. The cont
in the diets of growing pigs, gestating pigs, and lactating pigs is 3,330, 3,122, and 3
2Fed ad libitum (90% dry matter).
3Fed 2 kg/d on d 0–90, and 2.3 kg/d on d 90–114 (90% dry matter).
reviews and original research article on these new devel-
opments [24,84-101].

Texas A&M University’s optimal ratios of amino acids in
diets for swine and chickens
The carbon skeletons of EAA (including tyrosine and cyst-
eine) are not synthesized from non-AA substances in ani-
mals [2]. As noted previously, synthesis of NEAA from
EAA in animals is inadequate for their maximal growth,
milk production, and reproduction performance or for opti-
mal development and health. Thus, the traditional classifi-
cation of AA as EAA or NEAA is purely a matter of
definition. For example, emerging evidence shows that ar-
ginine, glutamine, glutamate, and glycine play important
roles in regulating gene expression, cell signaling, antioxida-
tive responses, and immunity [51-56]. Additionally, glutam-
ate, glutamine, and aspartate are major metabolic fuels for
enterocytes [6] and also regulate intestinal and neurological
development and function [2]. In addition, glutamine is es-
sential for ATP production, synthesis of nucleotides,
e amino acids in diets for swine1 (% of diet (as-fed basis))

Gestating pigs3 Lactating sows2

0-110 d 0-90 d 90-114

0.64 0.69 0.69 0.83

0.66 1.03 1.03 1.37

0.45 0.50 0.50 0.66

0.64 0.61 0.61 0.94

0.20 0.19 0.19 0.26

1.12 0.89 0.89 1.81

1.00 1.00 1.60 1.38

0.71 0.48 0.48 0.75

0.26 0.29 0.29 0.39

0.43 0.45 0.45 0.66

0.87 1.03 1.03 1.41

0.66 0.51 0.51 0.80

0.20 0.16 0.16 0.25

0.48 0.54 0.54 0.77

0.76 0.89 0.89 1.24

0.39 0.45 0.45 0.74

0.46 0.41 0.41 0.56

0.14 0.11 0.11 0.18

0.37 0.40 0.40 0.62

0.47 0.55 0.55 0.72

es are based on true ileal digestible amino acids. Crystalline amino acids
tibility is 100%, can be added to a diet to obtain their optimal ratios. The
ent of dry matter in all the diets was 90%. The content of metabolizable energy
,310 Kcal/kg diet, respectively.



Table 7 Texas A&M University’s optimal ratios of true
digestible amino acids in diets for chickens1 (% of lysine
in diet)

Amino acid Age of chickens

0 to 21 d2 21 to 42 d3 42 to 56 d4

Alanine 102 102 102

Arginine 105 108 108

Asparagine 56 56 56

Aspartate 66 66 66

Cysteine 32 33 33

Glutamate 178 178 178

Glutamine 128 128 128

Glycine 176 176 176

Histidine 35 35 35

Isoleucine 67 69 69

Leucine 109 109 109

Lysine 100 100 100

Methionine 40 42 42

Phenylalanine 60 60 60

Proline 184 184 184

Serine 69 69 69

Threonine 67 70 70

Tryptophan 16 17 17

Tyrosine 45 45 45

Valine 77 80 80
1Except for glycine, all amino acids are L-isomers. Values are based on true
ileal digestible amino acids.
2Patterns of amino acid composition in the ideal protein are the same for
male and female chickens. The amounts of digestible lysine in diet (as-fed
basis; 90% dry matter) are 1.12% and 1.02% for male and female
chickens, respectively.
3Patterns of amino acid composition in the ideal protein are the same for
male and female chickens. The amounts of digestible lysine in diets (as-fed
basis; 90% dry matter) are 0.89% and 0.84% for male and female
chickens, respectively.
4Patterns of amino acid composition in the ideal protein are the same for
male and female chickens. The amounts of digestible lysine in diets (as-fed
basis; 90% dry matter) are 0.76% and 0.73% for male and female
chickens, respectively.
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expression of anti-oxidative genes, and redox signaling in
enterocytes [57]. Furthermore, glutamate activates chemical
sensing in the gastrointestinal tract and may inhibit degrad-
ation of both EAA and NEAA by intestinal microbes [2,60].
Finally, proline and arginine, which are major sources of or-
nithine for intestinal and placental synthesis of polyamines
[42], are essential for DNA and protein synthesis and also
participate in protein and DNA methylation, and, thus gen-
etic and epigenetic regulation of cell growth and develop-
ment [2]. Collectively, animals have dietary requirements
for all synthesizable AA to achieve their full genetic poten-
tial for growth, development, reproduction, lactation, and
resistance to infectious disease [21].
Composition of EAA in feed ingredients and true ileal

digestibilities of EAA in swine [41] and poultry [37,90]
have been published. As an initial step to define NEAA re-
quirements by animals, we recently determined the com-
position of all protein-AA in major feedstuffs [86] and in
animal tissues [21]. Examples are given in Table 4 for corn
grain, soybean meal, sorghum grain, and meat & bone
meal. Based on the previous studies of AA biochemistry
and nutrition (including AA metabolism and tissue pro-
tein gains) in poultry e.g., 3, [37] and swine e.g., [48-69],
the author of the present work would like to propose
Texas A&M University’s optimal ratios of true digestible
AA in diets for swine (Table 5) and chickens (Table 6) dur-
ing different phases of growth and production. The values
for 5- to 10-kg young pigs are based primarily on consid-
eration of: (a) the entry of dietary AA into the portal vein
for 30-day-old postweaning pigs, as compared to the ac-
cretion of AA in the body [16]; (b) the published data of
Baker [47] and NRC [41] on dietary EAA requirements;
and (c) the estimated rates of AA synthesis, catabolism
and accretion in the body [2,16,88]. Specifically, these esti-
mations are that: (a) rates of net synthesis of aspartate, ar-
ginine, glutamate, glutamine, glycine, and proline in extra-
intestinal tissues of 5–10 kg postweaning pigs are 195,
361, 415, 1149, 331, and 276 mg/kg body weight per day,
respectively; (b) rates of catabolism (including oxidation
and synthesis of low-molecular-weight substances) of ala-
nine and tyrosine in extra-intestinal tissues are 30% of
their rates of accretion in body proteins; (c) rates of catab-
olism (including oxidation) of leucine and isoleucine in
extra-intestinal tissues are 30% and 25% of their rates of
accretion in body proteins, respectively; (d) the rate of ca-
tabolism (including oxidation) of asparagine in extra-
intestinal tissues is 124 mg/kg body weight per day;
(e) rates of catabolism (including oxidation) of valine and
serine in extra-intestinal tissues are 15% of their rates of
accretion in body proteins; (f) the rate of catabolism (in-
cluding oxidation) of phenylalanine in extra-intestinal tis-
sues is 124 mg/kg body weight per day; and (g) the ratio of
phenylalanine to tyrosine is 60:40, whereas the ratio of
methionine to cysteine is 1:1. Additionally, the Texas
A&M University’s optimal ratios of true digestible AA in
diets for gestating and lactating sows are based on previ-
ous studies of dietary AA composition [89], ileal true di-
gestibility of AA in feed ingredients (Table 4 and Ref. [41]),
composition of EAA and NEAA in the body (Table 4), em-
bryonic/fetal survival and growth [42,49,57], as well as milk
production and piglet growth [42,50,57].
Several additional comments on the Texas A&M Uni-

versity’s optimal ratios of dietary AA are warranted. First,
the author adopts the NRC [41] values for lysine, methio-
nine, threonine, and tryptophan in the Texas A&M Uni-
versity’s model for 5- to 10-kg pigs. Second, optimal ratios
of EAA in diets of older pigs are based on the suggestions
of the NRC [41] and Baker [47] in that the ratios of
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tryptophan, sulfur-AA, and threonine to lysine (all based
on true digestibility of EAA) increase slightly with age,
whereas the ratios of other EAA to lysine are not altered
substantially during postnatal development. Third, this is
the first time that NEAA are included in optimal ratios of
dietary AA for pigs and poultry at various physiological
stages. Fourth, for EAA, the ratios of BCAA, histidine,
phenylalanine or tyrosine to lysine in the Texas A&M Uni-
versity’s optimal ratios of dietary are higher than those
proposed by the NRC [41] and Baker [47] for swine. This
is based on the following considerations [2]: (a) BCAA are
actively degraded in extra-hepatic and extra-intestinal tis-
sues; (b) leucine can stimulate muscle protein synthesis in
young pigs; (c) leucine, isoleucine and valine should be in
an appropriate ratio to prevent AA imbalance; (d) large
amounts of histidine-containing dipeptides are present in
skeletal muscle; and (e) tyrosine is actively utilized in mul-
tiple metabolic pathways and its carbon skeleton is formed
only from phenylalanine in animals. Finally, the data on
dietary EAA requirements by chickens [38], along with
composition of EAA and NEAA as well as AA accretion
in the body (85 and Table 4) and new knowledge of AA
metabolism in birds [2], provided the basis for the pro-
posed Texas A&M University’s optimal ratios of amino
acids in chicken diets (Table 7). The recommended values
for EAA and NEAA requirements must be revised as new
and compelling experimental data become available.

Conclusion and perspectives
Amino acids have versatile and important physiological
functions beyond their roles as the building blocks of pro-
tein [101]. Thus, dietary NEAA and EAA are necessary for
the survival, growth, development, reproduction and
health of animals. Growing evidence shows that pigs and
poultry cannot synthesize sufficient amounts of all NEAA
to achieve their maximum genetic potential [95-100].
NEAA (e.g., glutamine, glutamate, proline, glycine and ar-
ginine) play important roles in regulating gene expression,
cell signaling, antioxidative responses, neurotransmission,
and immunity. Additionally, glutamate, glutamine and as-
partate are major metabolic fuels for the small intestine to
maintain its digestive function and to protect its mucosal
integrity. While metabolic needs for an AA by animals do
not necessarily translate into its dietary needs, results of
recent studies indicate that animals have both metabolic
and dietary needs for AA that are synthesized in the body
[101-115]. Thus, “synthesizable amino acids” should not
be considered as “nutritionally nonessential amino acids”
in animal feeding. Besides EAA, NEAA and conditionally
essential AA should all be taken into consideration in:
(a) revising the classical “ideal protein” concept; and
(b) formulating balanced diets to improve protein accretion,
feed efficiency, and health in animals. The Texas A&M
University’s optimal ratios of AA in diets for swine or
poultry, as proposed herein, are based on experimental
data from published biochemical and nutritional studies.
This new initiative will provide a much-needed framework
for both qualitative and quantitative analysis of dietary
requirements for all AA by livestock, poultry and fish
through conduct of additional research. Adoption of these
recommended values in animal feeding are expected to
beneficially reduce dietary protein content and improve
the efficiency of nutrient utilization, growth, and produc-
tion performance of farm animals. The concept of dietary
requirements for NEAA also has important implications
in human nutrition and health.
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