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Abstract

Early detection of disease outbreaks is critical for disease spread control and management. In this work we
investigate the suitability of statistical machine learning approaches to automatically detect Twitter messages
(tweets) that are likely to report cases of possible influenza like illnesses (ILI). Empirical results obtained on a large
set of tweets originating from the state of Victoria, Australia, in a 3.5 month period show evidence that machine
learning classifiers are effective in identifying tweets that mention possible cases of ILI (up to 0.736 F-measure, i.e.
the harmonic mean of precision and recall), regardless of the specific technique implemented by the classifier
investigated in the study.

Introduction
Early detection of disease outbreaks is a crucial capabil-
ity for hospitals and public health officials to effectively
allocate resources to control the spread of diseases and
treat affected patients [1,2]. In Australia, state agencies
keep track of the number of patients tested positive for
influenza and influenza like illnesses (ILI). National
initiatives attempt to obtain timely reporting through
measures such as the Australian Sentinel Practices
Research Network (ASPREN) (http://www.aspren.com.
au/, last visited October 13, 2014), the National Health
Call Centre Network (http://www.health.gov.au/internet/
main/publishing.nsf/Content/national-health-call-centre-
network-team-overview, last visited October 13, 2014)
and community level surveillance through FluTracking
(http://www.flutracking.net/, last visited October 13,
2014). These systems, although enlarging the population
base that is monitored, suffer poor participation rates
[3] and high costs.
Figure 1 outlines the disease prevalence pyramid, where

the width of each layer represents the population size
involved or monitored. The benefits of expanding the data
sources used to produce disease outbreak notifications to

web data and social media [4], in particular Twitter, are
numerous. The data is publicly available, its access cost is
low, the participation rate is high (http://www.nielsen.
com/us/en/insights/news/2010/australia-getting-more-
social-online-as-facebook-leads-and-twitter-grows.html,
last visited October 13, 2014) and the user base is gener-
ally broad, although not uniform with respect to age
groups and geographic areas. By leveraging information
published in Twitter, real time reporting across a large
fraction of the population may be possible.
Previous studies that monitored Twitter in the US [5]

and UK [6,7] have found that it is possible to produce
highly correlated predictions for influenza-affected
patients from the use of Twitter alone. However, the use
of Twitter is not without its problems. The volume of
tweets is exceedingly large, with users producing over 200
million tweets per day globally as of mid 2011 (http://blog.
twitter.com/2011/06/200-million-tweets-per-day.html, last
visited October 13, 2014). The content of a message is
highly condensed and often expressed differently than nat-
ural language due to the size limitation of a tweet (140
characters). To render the data useful for predictions, it
must be collected and analysed in real time, and its man-
ual processing may not be timely nor cost efficient.
This necessitates an automatic system that can classify

tweets reporting influenza cases with high accuracy. Pre-
vious work by Collier and Doan [8] has shown evidence
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that Naive Bayes (NB) and Support Vector Machine
(SVM) classifiers, informed by a limited set of textual fea-
tures created by extracting only terms contained in an
health ontology, were able to classify tweets with respect
to common syndromic categories.
This paper presents a study of detecting mentions of

influenza from Twitter messages originating from Victoria,
Australia, which is characterised by a smaller and more
geographically diverse population (higher population den-
sity and high-speed/large-bandwidth internet access in
metropolitan areas, and low population density and low-
speed/small-bandwidth internet access in rural and regio-
nal areas) than those studied in previous work. The paper
reports a thorough evaluation of an array of machine learn-
ing approaches for identifying Twitter messages that may
indicate cases of ILI. Correlation with confirmed influenza
cases was not within the scope of this work. Investigated
methods go beyond the two popular classifiers tested pre-
viously by others, i.e. Naive Bayes and Support Vector
Machine, expanding the analysis to other learning
approaches such as decision trees (C4.5/J4.8, Random For-
ests, Logistic Model Trees), and perceptrons and regression
models (Voted Perceptron, Linear Logistic regression,
Multinomial Logistic Regression). The results suggest that
machine learning techniques are able to discriminate
among tweets containing mentions of influenza or relevant
symptoms and irrelevant messages. In addition, our experi-
ments show that SVM classifiers do not always return the
highest performance, and alternative approaches (e.g. Mul-
tinomial Logistic Regression and Random Forests) return

higher performance under specific settings. However, the
results also reveal that there is only limited differences in
performance across the different types of classifiers. This
suggests that future research efforts on the detection of
influenza related tweets should be directed beyond improv-
ing machine learning techniques, in particular addressing
how disease outbreak monitoring systems should cope
with false positive notifications produced by the proposed
automatic methods, as well as true influenza mentions that
are not captured (i.e. false negatives).

Collection of Twitter messages and manual
assessment
We obtained tweets posted in a 3.5 month period (May to
August 2011), corresponding to the peak Australian flu
season, all of which originated from users based in
Victoria. This amounted to just over 13.5 million tweets.
The tweets were captured using the ESA-AWTM archi-
tecture [9] that leverages the Twitter API, incorporating
other services such as Yahoo! and Google maps to add
extra metadata (e.g. location data). Initial analysis of these
tweets revealed that around 0.1-0.2% of all 13.5 million
tweets reported influenza cases [10]. In order to retain a
significant amount of positive influenza reporting tweets
from our data to train a classifier, but still be able to effi-
ciently deploy computational methods, the Twitter stream
was filtered to store only messages that contained key-
words (and their derivatives) that may indicate cases of
influenza. These keywords are listed in Table 1 and were
selected by considering typical influenza symptoms as well

Figure 1 Disease prevalence pyramid and notification data sources; dotted line is proposed. Adapted from [10].
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as extending the keywords reported in previous research
(e.g. Sadilek et al. [11] and Signorini et al. [12]). Note that
re-tweets were removed. The application of this filtering
process retained approximately 100,000 messages that
were potentially influenza-related (0.75% of the initial
data).
From these approximately 100,000 tweets, a set of

10,483 tweets was randomly selected for manual classifica-
tion to assess their likelihood of reporting a case of influ-
enza. Seventeen volunteer assessors from The Australian
e-Health Research Centre, CSIRO were asked to use a
scale of 0-100 to select how likely they thought a tweet
was representative of the user reporting a case of influenza
(either with themselves or in others): 0 being no flu, 100
being certain of a flu. Figure 2 presents the results of this
manual classification. The majority of filtered tweets
(78.12%) were assessed as not related to ILI, although
interestingly, 6.49% of tweets were assessed as certainly
related to ILI.
In addition, 363 tweets, from the set of those that

were manually classified, were assessed by multiple
volunteers (three classifications per tweet on average), as
an effort to measure inter-assessor agreement. The aver-
age standard deviation between the scores of tweets
with multiple assessors was 4.89, indicating that the
classification labels assigned by different assessors were
comparable. Shorter tweets did have a higher standard

deviation on average, as might be expected given that
they contain less information. However, the differences
between their scores were not judged large enough to
require them to be treated differently. If a tweet was
reviewed by more than one assessor, its average score
was used for the remainder of the analysis.

Automatic flu classification: statistical machine
learning classifiers
Problem definition
The problem of detecting ILI-related Twitter messages is
casted into a binary classification problem: classify a tweet
as being ILI-related or not. The collected ground truth
indicates the likelihood of a tweet to be ILIrelated as a per-
centile score (i.e. between 0 and 100). Percentile scores
were transformed into binary classes according to a
threshold th which “defines an influenza related tweet”.
We refer to “definition of influenza related tweet” as the
process of collapsing percentile scores assigned to tweets
into a binary classification (i.e. ILI-related or not). Thus a
“loose definition” corresponds to considering as influenza-
related also tweets that have been assigned a relatively low
score (e.g. 50). A “strict definition” instead corresponds to
considering as influenza-related only tweets assigned with
a high score (e.g. 100).

Classifiers
The machine learning classification methods evaluated in
this study for the task of identifying influenzarelated
tweets are listed below. We investigated classifiers from
three wide families of machine learning approaches,
namely linear classifiers, support vector machines and
decision trees. The corresponding Weka version 3.6.7
[13] implementations of these classifiers were used in the
empirical experiments.
Linear classifiers

• standard Naive Bayes classifier.
• Linear logistic regression classifier (SimpleLogistic
in Weka).
• multinomial logistic regression classifier with ridge
estimator [14] (Logistic in Weka).

Table 1 Keywords that may indicate or exclude cases of influenza

(a) Included keywords.

flu sick headache fever unwell chills antibiotics

ache cough throat cold doctor fatigued tissues

stomach runny sneeze pneumonia down with vomit snot

influenza Stuffy tylenol diarrhea nausea vicks shivering

(b) Excluded keywords.

doctor who jab vaccine

shot pandemic fully sick

weather Bieber sick of

Figure 2 Manually classified tweets, bucketed by likelihood of
influenza or ILI score.
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• Voted Perceptron which takes advantage of data
that is linearly separable with large margins.

Support Vector Machine (SVM) classifiers
• Support Vector Machine (SMO in Weka) that uses
a polynomial kernel and the sequential minimal opti-
mization algorithm by Platt [15].
• Support Vector Machine (SPegasos in Weka) that
uses a linear kernel and a stochastic variant of the
primal estimated sub-gradient solver method by
Shalev-Shwartz et al. [16].

Decision trees
• C4.5 Decision Tree learner (J48 in Weka) that
builds a decision tree based on information entropy
as measured on training data.
• Random Forest, an ensemble classifier method that
constructs multiple decision trees during the training
phase.
• Logistic model trees classifier (LMT in weka)
where logistic regression functions are used at the
leaves of the tree.

Details of the classification approaches and their
implementation can be found in the Weka documenta-
tion; standard settings were used as defined in the soft-
ware package.

Features
The Medtex text analysis software [17] was used to extract
features from the free-text of Twitter messages. Medtex is
a medical text analysis platform that has been used in pre-
vious studies on cancer reporting [18-20], radiology recon-
ciliation [21], and medical information retrieval [22].
Medtex architecture is characterised by a messaging frame-
work built on the concept of message queues, producers
(senders), and consumers (receivers). Because multiple
message consumers can be set up in parallel to receive
messages from the same queue, Medtex provides high text
analysis throughput, making it an ideal framework for ana-
lysing large streams of Twitter data. While some of the
specific clinical text analytic capabilities of Medtex were
not used in this study (e.g. SNOMED CT and UMLS con-
cept extraction), we extended the platform to include infor-
mation extraction capabilities for specific entities that
are present in Twitter messages, such as the presence of
Twitter usernames (e.g. @Username), hash-tags indicating
specific topics (e.g. #Topic), and emoticons (e.g. :-) and ;().
The features extracted from tweets using the Medtex

software include:

• word tokens: strings identified by word boundaries
such as white spaces and punctuation;
• word stems: the root stems of the word tokens (if
available); stems were extracted using the Porter
stemmer algorithm [23];

• word token n-grams: a continuous sequence of n
word tokens in a tweet; we extracted both bi-grams
and tri-grams (n = 2 and n = 3);
• binary feature representing the presence of a
http:// token, identifying that the tweet contains a
link to a web page;
• binary feature representing the presence of the
token @ followed by a sequence of characters, iden-
tifying that the tweet has been directed to a Twitter
user or presents a mention of that user;
• binary feature representing the presence of hash-
tags, i.e. tokens that start with the symbol # used to
mark keywords or topics in a tweet;
• binary feature that represents the presence of a
positive (negative) emoticon, i.e. a metacommunica-
tive pictorial representation of a facial expression
that conveys a positive emotion like happy, love, etc.
(a list of positive and negative emoticons is given in
Table 2);

A total of 26,698 unique features formed the feature
vocabulary for the entire set of annotated tweets used in
the experiments reported in this article.

Experimental settings
To evaluate the effectiveness of the machine learning
approaches investigated in this article, we set up an eva-
luation framework that consisted of a first set of experi-
ments using the 10-fold cross-validation methodology
and a subsequent set of experiments where the classifi-
cation models learnt in the cross-fold experiments were
validated on unseen data (i.e. data not used for creating
the models).
To this aim, we first constructed a balanced dataset for

cross-validation experiments, that contained an equal
number of positive (influenza-related) and negative (not
influenza-related) instances. Specifically, the dataset con-
tained 90% of the positive instances (i.e. tweets that had
been annotated as being influenzarelated) and an equal
amount of negative instances. These instances were ran-
domly sampled from the respective classes. This dataset
was subsequently randomly partitioned in 10 folds, and
for each iteration of the cross-validation algorithm a

Table 2 List of emoticons associated with positive and
negative emotions

Emoticons

Positive Emotions :) :=) :-) :D :=D :-D :d :=d :-d 8) 8=) 8-) B) B=) B-)
:o :=o :-o :O :=O :-O :* :=* :-* :P :=P :-P :p :=p :-p
:$ :-$ :=$ :\"> ]:) >:) 8-| B-| 8| B| 8=| B=|
:x :-x :X :-X :# :-# :=x :=X :=# :? :-? :=?

Negative Emotions :( :=( :-( ;( ;-( ;=( (:| :| :=| :-| :^) |-) I-)
I=) |( |-( |=( |-() :& :-& :=& :@ :-@ :=@
x( x-( x=( X( X-( X=( :S :-S :=S :s :-s :=s
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unique combination of 9 folds were used for learning a
classification model and the excluded one was used for
testing the obtained model.
A second dataset was then formed by combining the

remaining 10% of positive instances with the remaining
amount of negative instances: this dataset was used to
validate on unseen data the models learnt through
cross-validation.
The described procedure was iterated for each ‘likeli-

hood of influenza score’ threshold level (th), i.e. datasets
were constructed for each threshold value: datasets varied
in size across threshold values, due to the difference in
number of positive instances when considering strict (e.g.
th = 99) or relaxed (e.g. th = 49) thresholds for defining
an influenza-related tweet. The use of unseen data to
validate the models created using n-fold cross validation
further reduces risks that the obtained results are due to
over-fitting.

Classification effectiveness
Effectiveness on 10-fold cross validation
Precision and recall values obtained by the studied clas-
sifiers in the 10-fold cross-validation experiments and
with different threshold values th are detailed in Table 3
and the F-measure values are plotted in Figure 3. The
F-measure summarises the precision-recall evaluation,
being a balanced average of the two measures. Because
the dataset used for the cross-validation experiments is
balanced (same number of positive and negative
instances), the two target classes (i.e. influenza and not-
influenza) have equal importance. A majority class clas-
sifier then would achieve a maximum of 0.5 precision/
recall/F-measure value. The confusion matrices for each
setting of classifier and threshold value are reported in
Table 4.
Figure 3 suggests that overall, all classifiers achieve

better performance when a loose definition of influenza
related tweets is used, i.e. when 49 ≤ th ≤ 74, with the

best F-measure value achieved by multinomial logistic
regression classifier (Logistic, 0.736 F-measure at th =
59). When stricter threshold values are used, then the
F-measures of all classifiers decrease, this decrement
occurring somewhere in the interval of threshold values
between 74 and 84, with F-measures being overall stable
between 84 and 99. The values of precision and recall
(Table 3) report a similar finding, although losses in
performance are different across precision and recall for
different classifiers. For example, the Random Forests
classifier exhibits a higher loss in precision than that in
recall when passing from a threshold value of 49 to 99.
Conversely, the Naive Bayes classifiers exhibits similar
losses in performance across both precision and recall
when considering threshold values of 49 and 99.
Figure 3 confirms findings of previous studies, that

Support Vector Machine approaches are generally better
than Naive Bayes in determining if a tweet is reporting
ILI cases, e.g. [8]. However, our study reports on the per-
formance of a wider range of classifiers. The empirical
results show that there are a number of classifiers that
guarantee performance that are usually bounded by those
of SVMs and Naive Bayes, and exceed SVMs perfor-
mance in specific circumstances. For example, while the
multinomial logistic regression classifier (Logistic) gener-
ally achieves F-measures higher than Naive Bayes but
lower than SVMs, it does improve over SVMs when the
threshold value is 59. The multinomial logistic regression
classifier in fact proves to be comparable to the best
SVM approach (SMO - polynomial kernel and sequential
minimal optimisation algorithm) when a relaxed defini-
tion of influenza is used to classify tweets. When a more
strict definition of flu-related tweets is adopted, the per-
formance of Logistic degrades, indicating poor robustness
across threshold values of this logistic regression classi-
fier for this task. A similar conclusion can be drawn for
the other logistic regression approaches investigated in
this study. In fact, the linear logistic regression classifier

Table 3 Precision (prec) and recall (rec) values with respect to the ‘likelihood of influenza’ threshold level obtained by
the studied classifiers when evaluated using 10-fold cross-validation

th > 49 th > 59 th > 74 th > 84 th > 89 th > 94 th > 99

rec prec rec prec rec prec rec prec rec prec rec prec rec prec

NaiveBayes .752 .668 .752 .695 .742 .687 .736 .632 .732 .636 .734 .639 .734 .641

J4.8 .760 .682 .750 .693 .747 .685 .748 .638 .755 .643 .751 .640 .749 .634

SMO .760 .664 .759 .710 .748 .696 .746 .654 .755 .645 .746 .643 .745 .645

SPegasos .764 .674 .761 .703 .747 .685 .749 .647 .755 .647 .749 .643 .747 .647

VotedPerceptron .762 .682 .750 .703 .740 .700 .730 .653 .732 .651 .730 .635 .721 .650

Logistic .753 .690 .751 .722 .736 .706 .725 .665 .730 .650 .728 .642 .728 .650

SimpleLogistic .758 .674 .751 .714 .738 .676 .747 .644 .750 .645 .752 .639 .749 .632

LMT .765 .684 .760 .694 .744 .685 .748 .638 .754 .642 .752 .634 .751 .637

RandomForest .765 .684 .761 .698 .742 .687 .749 .634 .754 .636 .753 .627 .746 .637

Bolded results indicate the best performance achieved for each threshold value.
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(denoted SimpleLogistic) produces F-measures compar-
able to that of SVMs when the threshold is set to 59, 89,
94; however it does perform poorly with other threshold
values, i.e. 49, 74, 99.
We now examine the results reported in Table 4 i.e. the

confusion matrices produced by each classifier in the
cross-validation experiments. Confusion matrices provide
a crude but finer-grain understanding of classifier perfor-
mance than summary measures like F-measure. For each
matrix in the table, the first row indicates the number of
tweets that are influenza-related according to the ground

truth annotations and their classification value according
to the studied classifiers (left column: classified as influ-
enza, i.e. true positive (TP) cases; right column: classified
as non-influenza, i.e. false negative (FN) cases). Vice
versa, the second row indicates the number of tweets
that have been assessed as not reporting influenza cases;
the leftmost value corresponds to non-influenza tweets
that have been erroneously classified as being influenza-
related false positive - FP), while the rightmost value
corresponds to non-influenza tweets that have been cor-
rectly classified (i.e. true negative - TN).

Figure 3 Classifier effectiveness (F-measure) at different threshold values.

Table 4 Confusion Matrices for 10-fold cross-validation experiments

th > 49 th > 59 th > 74 th > 84 th > 89 th > 94 th > 99

predicted classes true classes

I NI I NI I NI I NI I NI I NI I NI

NaïveBayes 984 489 809 355 672 306 426 248 410 235 394 223 392 220 I

324 1149 267 897 234 744 153 521 150 495 143 474 142 470 NI

J4.8 989 484 824 340 674 304 430 244 414 231 393 224 394 218 I

319 1154 270 894 230 748 141 533 135 510 131 486 131 481 NI

SMO 980 493 812 352 679 299 434 240 417 228 397 220 395 217 I

313 1160 261 903 228 750 145 529 135 510 133 484 133 479 NI

SPegasos 981 492 812 352 679 299 435 239 417 228 397 220 395 217 I

313 1160 261 903 228 750 146 528 137 508 133 484 131 481 NI

VotedPerceptron 998 475 828 336 677 301 432 242 421 224 396 221 402 210 I

324 1149 279 885 231 747 154 520 155 490 144 473 152 460 NI

Logistic 1005 468 832 332 687 291 440 234 419 226 396 221 399 213 I

334 1139 279 885 250 728 164 510 156 489 146 471 145 467 NI

SimpleLogistic 987 486 814 350 669 309 428 246 414 231 392 225 388 224 I

311 1162 271 893 220 758 149 525 135 510 129 488 130 482 NI

LMT 119 45 93 37 75 34 428 246 414 231 390 227 389 223 I

1700 5673 1882 6143 2032 6386 150 524 135 510 129 488 130 482 NI

RandomForest 985 488 817 347 682 296 427 247 410 235 388 229 386 226 I

309 1164 264 900 233 745 142 532 137 508 128 489 126 486 NI

I indicates the positive class, i.e. instances reporting ILI cases, while NI indicates the negative class, i.e. non-ILI instances. Bolded results indicate the highest true
positive (TP) value obtained for each threshold value; results highlighted in italics indicate the lowest false positive (FP) value obtained for each threshold value.
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If identifying more influenza-related tweets is of key
importance, then the best classifier that achieves this is
the one with the larger number of TP instances (or
vice-versa, the lower number of FN). In Table 4 the
highest TP value has been highlighted in bold for each
threshold value. For low-mid threshold values (49 ≤ th ≤
84), the multinomial logistic regression classifier (Logis-
tic) returns the highest number of TP instances. For
higher threshold values, the highest number of TP
instances is returned by the voted perceptron (th = 89,
99) and SVMs classifiers (th = 94), although Logistic
provides a very similar result.
If on the other hand producing a low amount of false

positive influenza alerts is of key importance, then the
most suitable classifier is the one that produces the low-
est amount of FP instances (or vice-versa, the highest
number of TN); this has been highlighted in italics in
Table 4. While the Random Forests classifier produces
the lowest number of FP instances at low and high
threshold values (th = 49, 94, 99), not one classifier
exhibits consistently lower FP instances for mid values
of the threshold (59 ≤ th ≤ 89).
Effectiveness on unseen data
The results obtained by the classifiers when validated
against unseen data are analysed next. Tables 5 and 6
report respectively the F-measure values and the confu-
sion matrices produced by the classifiers.
The classifiers exhibit lower F-measures when vali-

dated on the unseen dataset than when tested in the
cross-validation settings. This is because the dataset
used for cross-validation was balanced across the two
classes (same number of influenza-related and non
influenza-related instances), while the dataset used in
this second experiment is heavily imbalanced towards
the negative class. This means that there are many more
non-influenza tweets than the influenza ones: in fact,
the percentage of influenza-related tweets in this dataset
varies across the different threshold values and ranges
between 2.22% for th = 49 and 0.74% for th = 99 (while
in the balanced dataset was 50%). Nevertheless, the

results confirm the observation made in the cross-
validation settings that automatically classifying tweets
under a loose definition of influenza is easier than
under the strict settings, i.e. all classifiers obtain higher
F-measures for low threshold values than for high
threshold values. The SPegasos variation of SVM does
however constitute an exception, as inconsistent F-mea-
sure values are measured across the range of threshold
values; in particular, performance yielded at the lowest
threshold are worse than that at any other threshold
value. The values reported in the confusion matrices for
SPegasos (Table 6) highlight that this classifier is unable
to correctly identify a large percentage of positive
instances (TP) while it correctly identifies non-influenza
cases (TN) at a higher rate than other classifiers, there-
fore yielding often larger values of F-measure due to the
imbalanced nature of the dataset.
The results discussed in the previous paragraph suggest

that considering F-measure values may lead to performance
underestimation: an error rate for negative instances has a
proportional larger contribution than a similar error rate
on positive instances. To avoid this, we calculate the
balanced accuracy yielded by each classifier under the dif-
ferent threshold settings. Balanced accuracy Â (i.e. the aver-
age accuracy obtained on either class) is defined as [24]:

Â =
0.5 ∗ TP
TP + FN

+
0.5 ∗ TN
TN + FP

(1)

When contrasted with the standard accuracy measure,
balanced accuracy presents the advantage that Â is high
if a classifier performs equally well on both classes, while
Â is low when high (standard) accuracy is obtained only
because the classifier is advantaged or penalised by an
imbalanced dataset, like in this case. A majority class
classifier (in this case a classifier that assigns every
instance to the negative class) and a minority class classi-
fier (all instances assigned to the positive class) will
obtain a balanced accuracy equivalent to chance (i.e. 0.5).
The balance accuracy obtained by the classifiers investi-
gated in this study is reported in Table 7.

Table 5 F-measure values with respect to the threshold level obtained by the studied classifiers when evaluated on
unseen data

th > 49 th > 59 th > 74 th > 84 th > 89 th > 94 th > 99

NaiveBayes .110 .084 .064 .036 .034 .031 .031

J4.8 .119 .083 .064 .037 .035 .033 .033

SMO .118 .086 .067 .038 .035 .033 .033

SPegasos .050 .101 .058 .108 .073 .079 .079

VotedPerceptron .117 .085 .066 .037 .034 .032 .031

Logistic .117 .085 .066 .037 .033 .030 .030

SimpleLogistic .120 .088 .068 .037 .035 .033 .033

LMT .120 .089 .068 .037 .035 .033 .033

RandomForest .119 .089 .066 .038 .035 .032 .033
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Values of balanced accuracy generally decrease as the
threshold values increase: this confirms the previous ana-
lysis. In addition, balance accuracy reveals that the SVM
instance implemented by SPegasos performs just above
chance across all threshold values. This suggests that the
model learnt by SPegasos on the cross-validation data is
poorly applicable to the unseen data contained in the sec-
ond dataset. Performance of other classifiers do however
scale on unseen data. The best values of balance accuracy
across each threshold value are highlighted in bold in
Table 7. The observation that the Naive Bayes classifiers
constitutes a lower bound in classification performance
in the cross-validation experiments is confirmed in this
second experimental setting. The SMO implementation

of SVM classifier is confirmed to provide consistently
high performance. The finding observed under the cross-
validation settings that the multinomial regression classi-
fier Logistic performs similar to SMO for low threshold
value while losing effectiveness for higher vales is con-
firmed in this experiment. Vice versa, in this second
experiment the other linear regression classifier, Simple-
Logistic, is found to provide similar results to SMO
across the different threshold values.

Conclusions
In this paper we have investigated the performance of
machine learning classifiers for the task of detecting
Twitter messages that mention possible cases of influenza

Table 6 Confusion Matrices obtained when testing on unseen data

th > 49 th > 59 th > 74 th > 84 th > 89 th > 94 th > 99

predicted classes true classes

I NI I NI I NI I NI I NI I NI I NI

NaiveBayes 110 54 91 39 74 35 44 31 43 29 39 30 39 29 I

1725 5648 1950 6075 2124 6294 2298 6762 2414 6707 2413 6767 2416 6775 NI

J4.8 118 46 95 35 77 32 45 30 43 29 40 29 40 28 I

1701 5672 2054 5971 2219 6199 2300 6760 2324 6797 2351 6829 2353 6838 NI

SMO 117 47 94 36 78 31 46 29 43 29 40 29 40 28 I

1696 5677 1954 6071 2133 6285 2320 6740 2324 6797 2351 6829 2353 6838 NI

SPegasos 5 159 10 120 5 104 7 68 4 68 5 64 5 63 I

30 7343 58 7967 57 8361 48 9012 33 9088 53 9127 53 9138 NI

VotedPerceptron 121 43 95 35 73 36 46 29 44 28 42 27 41 27 I

1788 5585 2000 6025 2025 6393 2382 6678 2465 6656 2497 6683 2514 6677 NI

Logistic 121 43 95 35 78 31 46 29 43 29 38 31 40 28 I

1776 5597 2002 6023 2170 6248 2392 6668 2463 6658 2396 6784 2529 6662 NI

SimpleLogistic 119 45 89 41 76 33 45 30 43 29 40 29 40 28 I

1700 5673 1855 6170 2060 6358 2189 6871 2324 6797 2351 6829 2353 6838 NI

LMT 119 45 95 35 76 33 45 30 43 29 39 30 40 28 I

1700 5673 1912 6113 2045 6373 2300 6760 2324 6797 2263 6917 2353 6838 NI

RandomForest 119 45 94 36 77 32 44 31 41 31 38 31 39 29 I

1725 5648 1881 6144 2153 6265 2187 6873 2242 6879 2263 6917 2271 6920 NI

I indicates the positive class, i.e. instances reporting ILI cases, while NI indicates the negative class, i.e. non-ILI instances. Bolded results indicate the highest true
positive (TP) value obtained for each threshold value; results highlighted in italics indicate the lowest false positive (FP) value obtained for each threshold value.

Table 7 Balanced accuracy values (Â) with respect to the threshold level obtained by the studied classifiers when
evaluated on unseen data

th > 49 th > 59 th > 74 th > 84 th > 89 th > 94 th > 99

NaiveBayes .718 .729 .713 .667 .666 .651 .655

J4.8 .744 .737 .721 .673 .671 .662 .666

SMO .742 .740 .731 .679 .671 .662 .666

SPegasos .513 .535 .520 .544 .526 .533 .534

VotedPerceptron .748 .741 .715 .675 .670 .668 .665

Logistic .748 .741 .729 .675 .664 .645 .657

SimpleLogistic .748 .727 .726 .679 .671 .662 .666

LMT .748 .746 .727 .673 .671 .659 .666

RandomForest .746 .744 .725 .673 .662 .652 .663
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or ILI. Our experiments considered a number of standard
textual features, such as word tokens, stems and n-grams;
in addition, we did consider features that are specific to
Twitter messages, such as the presence of Twitter user-
names, hashtags (i.e. #String), URLs and emoticons. The
creation and investigation of new alternative features is
left for future research.
Previous studies have shown the effectiveness of SVMs

over Naive Bayes classifiers. While our study confirms this
result, we show that Naive Bayes’s performance can often
be considered as the lower bound of a wide range of alter-
native classifiers and that there are a number of classifiers
that perform similarly (or better under specific settings)
than SVMs. In particular, the instance of SVM with linear
kernel and stochastic gradient descent (SPegasos) tested in
our study showed limited robustness when tested on a
heavy imbalanced unseen dataset, although confirming
good performance on cross-validation experiments with
balanced data.
Differences in performance between the cross-validation

experiments and those on unseen data may highlight the
importance of the training methodology used to form the
classifiers, and in particular whether to balance or stratify
the datasets used during the training and testing phases.
Chai et al [25] found that classification methods trained,
validated, and tested on balanced datasets overestimated
classification performance when compared with testing on
imbalanced (stratified) data. Similar results were found
in our study, where classifiers’ F-measure in the cross-
validation experiments (with a balanced dataset) were
higher than those achieved in the unseen dataset experi-
ments (with an imbalanced dataset). To overcome this
issue and present a meaningful analysis of the result
obtained on unseen data, we used the balanced accuracy
measure [24], that overcomes the issue of a biased classi-
fier that has taken advantage of an imbalanced test set,
like in the case for the SPegasos classifier in our experi-
ments. We leave further investigation and analysis of train-
ing/testing methodology designs to future work.
Finally, the results also reveal that often there is only

limited difference in performance across the different
investigated classifiers. This suggests that future research
efforts for the detection of ILI related tweets should be
directed beyond improving machine learning techniques,
in particular addressing how disease outbreak monitoring
systems should cope with false positive notifications pro-
duced by the proposed automatic methods. Knowing the
exact number of true ILI-related tweets may be not neces-
sary in the settings of a disease outbreak monitoring sys-
tem, as increases or decreases in trends of tweets classified
as likely to be ILI-related may be sufficient to correctly
suggest disease outbreaks. This hypothesis requires further
investigation and is left for future work.
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