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Abstract

Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide
polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly
employed may miss important SNP associations that only appear through multivariate analysis in complex diseases.
However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we
present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way
interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full “Avoca” IBM Blue Gene/Q
installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for
other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the
improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be
performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q
supercomputer “Sequoia” at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as
our results suggest. Given that the implementation used in this study can be further optimised, this runtime means
it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS.

Background
Genome-wide association studies (GWAS) are a common
approach for systematic discovery of genetic variants,
typically single nucleotide polymorphisms (SNPs), which
are associated with a given disease. Standard univariate
analysis techniques, where each SNP is examined sepa-
rately of all others, have detected novel regions of asso-
ciation in many diseases that were previously unknown
[1]. Despite these findings, the total level of association
between variants detected from GWAS and complex dis-
eases is typically lower than the theoretical estimates of
genetic heritability; the issue of “missing heritability” [2].

One common hypothesis is that the univariate
approaches commonly employed may miss important
associations that can only appear through multivariate
SNP interaction analysis [3,4]. However, the computa-
tionally complexity of even the simplest interaction ana-
lysis, e.g. examining pairs of SNPs, grows exponentially
compared to a univariate analysis.
The computational difficulties of exhaustive multivariate

SNP analysis in GWAS has long been hampered by lack of
computing resources [5]. Algorithmic improvements and
improved processor speeds means that two-way interac-
tions can currently be carried out in a few days [6-8].
Using graphics accelerators (GPUs) and parallel comput-
ing, the time to conduct this type of analysis can be
reduced to hours for small to medium GWAS datasets
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[9-11]. However, to exhaustively search all SNP interac-
tions containing three or more SNPs analysis increases the
search space dramatically and exhaustive analysis of this
task remains is currently infeasible [12]. For three-way
interactions, the time using CPU based techniques has
been estimated to take up to 1.5 million years [13] on a
single processor computer. Even when using the fastest
techniques using GPU cards, an examination of all three-
way interactions would take years [10].
Supercomputing holds promise on delivering higher

order interaction studies on exhaustive search in GWAS
but have not yet been examined in depth. In this article,
we explore how state-of-the-art methods for represent-
ing SNPs can leverage supercomputing systems to
enable exhaustive multivariate analysis of GWAS data.
Building on our previous work [14], we present a fast
framework that allows evaluation of SNP interactions
using any contingency table (CT) based statistical tests.
We demonstrate the applicability of such a framework
to high performance computing systems and demon-
strate the potential that such systems may have to allow
exhaustive analysis of higher-order interactions of three-
way interaction studies on smaller GWAS sizes.

Methods
Notation
We denote each GWAS study as a collection of m SNPs
and n samples. The class label, Y, for each sample is
denoted as 0 for controls and 1 for cases. For diploid
organisms, considered in most GWAS, each SNP can take
one of three genotypes depending on whether the SNP
variant occurs on zero, one or both copies of an indivi-
duals relevant chromosome. We denote these genotype
values as 0,1 and, 2 respectively. For k-way interaction of
SNPs, we have a set of possible genotype combinations V
where the total number of possible genotype combina-
tions, |V|, grows exponentially (3k) with the size of the
interaction. For 2-way interactions (pairs), we have |V| =
32 = 9 possible genotype combinations while for 3-way
SNP interactions (triples) we have |V| = 33 = 27 possible
genotype combinations.
The discrete nature of the data in SNP interaction ana-

lysis, with two possible phenotype values and three possi-
ble genotype values per SNP, allows us to summarise the
occurrence of a given SNP interaction as a contingency
table. In Table 1 we describe such a table for an arbitra-
rily sized SNP interaction. Each cell indicates the occur-
rence of a specific genotype combination v ∈ V in either
cases or controls. We use the notation adopted in Agresti
[15] to describe the table cells where nij is used to denote
the observed count in the cell (i, j). Marginal counts can
be described using a standard plus convention, e.g.,

ni+ =
∑

j
nij is the occurrence of all genotypes for a given

phenotype, i. The use of contingency table based analysis
is common for GWAS studies as it allows for the applica-
tion of a wide variety of statistical techniques [2].

Framework for contingency table based interaction
analysis
To conduct an exhaustive interaction analysis of an
entire GWAS on a massively parallel supercomputer, we
have implemented a fast contingency table-based frame-
work using the high-level procedure described in Algo-
rithm 1. It was implemented in the C/C++ programming
language using the Message Passing Interface (MPI) for
inter-node communication and OpenMP for intra-node
parallelism.
After system initialization, during which the number of

nodes and dimensions of the GWAS dataset are deter-
mined, the data decomposition and load balancing step
establishes the workload for each process (MPI rank). The
GWAS dataset is loaded onto each node using MPI broad-
cast so that each process can access it in memory. Each
process then evaluates all allocated SNP interactions. For
each interaction, we derive a contingency table describing
the occurrence of each possible genotype combination in
case and control samples for the given SNP interaction. A
chosen statistic is then applied to the contingency table
and a score, typically either a test statistic, a heuristic
score or a p-value, is derived. This phase of the algorithm
can be carried out in memory which allows the use of
shared memory parallelism. After all possible interactions
have been evaluated, the list of all recorded SNP interac-
tions is sent back to the lowest rank node, and the com-
bined set of significant SNP interactions are written to
disk.
input : X: GWAS dataset with m SNPs × n individuals

k: The order of interaction we wish to exam-
ine (2 = pairs, 3 = triplets etc.)

rank: Rank of current compute nodes
nodes: Total number of compute nodes
t: significance threshold of given statistic

output: significant_interactions = List of SNP interac-
tions that meet significance threshold
1 significant_interactions = {}

// Determine the set of SNP interactions for this
rank to evaluate

Table 1 Example contingency table

Genotype Frequencies

Phenotype 1 2 ... V Row Counts

Controls Y = 0 n01 n02 ... n0V n0+

Cases Y = 1 n11 n12 ... n1V n1+

Col. Counts n+1 n+2 ... n+V n

2 × V-contingency table summarising the occurrence of genotype
combinations for an arbitrary SNP interaction in a case-control GWAS study.
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2 allocated_interactions = assignInteractions(rank, m, k)
// Evaluate each possible tuple of SNP indices

describing the interaction
3 for indicies_tuple in allocated_interactionsdo
4 ct = buildContingencyTable(indicies_tuple, X)
5 score = evaluateStatistic(ct)
6 if score ≥ t then
7 significant_interactions.insert(indicies_tuple,

score)
8 end
9 end

// Nodes with a rank > 0 send recorded interactions
to rank 0
10 if rank > 0 then
11 send(significant_interactions,0);

// Rank 0 gets interactions from all nodes, merges
them & saves them to disk
12 else
13 significant_interactions = receiveSignificantIn-

teractions(nodes-1)
14 write(significant_interactions)
15 end
Algorithm 1: High level overview of framework for par-

allel GWAS interaction analysis. All nodes are allocated a
set of SNP interactions to evaluate independent of all
other processes. The lowest rank node is responsible for
outputting the significant interactions to disk.
This type of algorithm has been commonly used by

many of the fastest exhaustive SNP interaction analysis
methods currently available [6,11,12,16]. The exhaustive
phase modelled here is typically used to apply a fast
screening statistic, with detected interactions then evalu-
ated using a slower, more robust filter.

Data representation and calculation of contingency tables
The analysis framework used in this work has two core
steps to evaluate each interaction: building a contingency
table of genotype combination occurrences and calculating
a test statistic over the resulting table. Given the computa-
tional simplicity of many tests of association or interaction,
often the computational bottleneck is the building of con-
tingency tables for SNPs in a given interaction. The large
number of interactions that exist for any exhaustive multi-
variate SNP analysis means that reducing the time to eval-
uate each SNP interaction is key to improving the overall
system performance.
By taking advantage of the low number of possible geno-

type values, some implementations [6,12,16] have been
able to use a binarisation of individual SNPs to form a
representation that simultaneously reduces the space
taken by each genotype to two bits, while enabling parallel
evaluation of multiple samples in a single operation.
Each SNP can be viewed as a vector containing up to

three values, four if “missing” genotypes are stored.

Rather than representing this SNP as a single vector of
three values, we can instead represent the SNP as three
separate binary vectors; one for each of the three possi-
ble genotype values. Each binary vector has a ‘1’ to indi-
cate samples containing the relevant genotype, and a ‘0’
for the remaining samples. An example showing the
transformation of genotype data for a single SNP to this
binary representation is shown in Figure 1a.
Storing each genotype as a separate binary vector not

only reduces the space required to store each genotype
but also allows for calculation of contingency tables using
fast bitwise operations. Consider the case of evaluating the
co-occurrence of a given genotype combination for a SNP
pair, illustrated in Figure 1b. Taking the logical AND of
the two relevant binary vectors, indicates which samples
the genotypes co-occur in. Counting the number of set
bits in the resulting binary vector, provides the total num-
ber of times the given genotype combination occurs.
These two operations, logical AND and counting the set
bits, can both be computed over a 64-bit word using only
two hardware operations for most modern CPUs. Repeat-
ing this computation for all genotype combinations in case
and control samples allows us to quickly compute the con-
tingency table for each SNP pair. Such an operation is tri-
vially extended to genotype combinations for any k-way
interaction of SNPs.

Pearson’s Chi-squared test
There exists numerous tests of association that can be
implemented in our interaction analysis framework. In
this work, focussing on the computational rather than
statistical, aspects of GWAS we have implemented Pear-
son’s chi-squared test. The chi-squared test is perhaps
the most commonly used test to determine whether two
sets of paired observations are statistically independent
[17]. In the context of GWAS studies, the test is used to
assess departure from the null hypothesis that the distri-
bution of genotype combinations is the same for case and
controls. While other statistics for testing independence
exist, Pearson’s chi-squared test has been previously used
in SNP interaction analysis techniques [7,18-20] because
it is simple to compute and is easy to interpret [15]. The
closed form solution of Pearson’s chi-squared test means
its computation is far faster than methods that derive
solutions through iterative methods, such as logistic
regression [8], or methods that require repeated simula-
tions, such as many Bayesian approaches [21].
Given the contingency table for a specific SNP inter-

action, the test statistic for the chi-squared test can be
written as

χ2 =
2∑
i=1

|V|∑
j=1

(ni,j − Ei,j)
2

Ei,j
(1)
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where Ei,j =
ni+ · n+j

n
, ni+ is the total number of sam-

ples in phenotype class i, n+j is the total samples carry-
ing a specific genotype j ∈ V , and n is the total number
of samples.
A p-value can be derived by the comparing the result-

ing test score to the chi-squared distribution with
degrees of freedom, df = |V| − 1.

Data decomposition and load balancing
As with many other exhaustive SNP interaction analysis
methods, each SNP interaction in our framework is
evaluated with no dependency on any other SNP inter-
action. This independence of evaluation means that the
data decomposition is “pleasantly parallel” and is there-
fore particularly suitable for distributed computing
implementation.
To divide the total set of interactions amongst an

arbitrary set of computation processes, we first deter-
mine the total number of interactions that need to be
evaluated. For a given GWAS data set with m SNPs,

there total number of

(
m
k

)
=

m!
k!(m − k)!

interaction

terms. Dividing this total by the number of parallel pro-
cesses, NP yields the number of interactions to be tested
by each process,

Interactionsprocess =
(
m
k

)
/NP (2)

where NP is the total number of parallel processes
used during the computation i.e. NP = Ncore ×Nthreads.
Each test can be considered to have an index in a one-
dimensional array of tests. Thus, each process knowing
its MPI rank, the indices for the lower and upper
bounds for each process within the overall test array
can be defined within each process independently.
To determine which SNP interactions correspond to

the respective test, we can make use of combinatorial
number systems. This allows for conversion of a given
SNP k-way interaction to a linear index between 0...

k-wayindex =
(
xk
k

)
+ · · · +

(
x2
2

)
+

(
x1
1

)
by applying the

following formula

k-wayindex =
(
xk
k

)
+ · · · +

(
x2
2

)
+

(
x1
1

)
(3)

where (xk, ..., x2, x1) represents an k-way interaction
where x represents the indices of the SNPs in the data
set whose interaction is being tested. Note that the con-
dition xk > ... >x2 >x1 must be met otherwise there will
be duplication of testing for interaction terms. For
example in a 3-way interaction study, a given triple of
SNPs (x3, x2, x1) would become the linear index

3 - wayindex =
(
x3
3

)
+

(
x2
2

)
+

(
x1
1

)
(4)

such that x3 >x2 >x1.
This simple calculation using overall workload, i.e. the

total number of interaction tests to be computed, and the
process identifier (MPI rank) of a given node then gives us
the set of interaction terms that need to be processed by
the specific node. By leveraging shared memory paralle-
lism using the OpenMP application programmers inter-
face, the set of interactions to be examined by each node
are further parallelized across different hardware threads.
The multiple levels of decomposition and parallelism are
illustrated in Figure 2.

Computational resources
The computing resources available for the presented
study comprise an IBM Blue Gene/Q (BG/Q) supercom-
puter named “Avoca” hosted by the Victorian Life
Science Computation Initiative (VLSCI). Avoca is a
four-rack BG/Q installation with 4,096 compute nodes.
Each node is a 64-bit system-on-chip POWER A2 pro-
cessor with 16 cores dedicated to computation and one
supplemental core to handle operating system tasks.
Each core supports four-way hardware threads. Thus,
Avoca comprises 65,536 compute cores with support for

Figure 1 Binary genotype representation. Example showing a) the conversion of a given SNP into the binary representation, b) computing
the occurrence of a single genotype combination for a pairs of SNPs by taking their logical AND and counting the number of set bits in the
resulting binary vector.
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262,144 hardware threads. BG/Q can be set up during
initialization such that each physical node can run a sin-
gle process (MPI rank) with 16 × 4 threads (four for
each core on each node). The ratio of processes per
node versus threads per process can be changed in
orders of two to the other extreme where each hardware
thread can run a single process with a single thread
each. Depending on the given set up, memory per pro-
cess changes. The processors are clocked at 1.6 GHz
and have 16 GB per compute node of directly accessi-
ble memory. The four-rack BG/Q therefore has a total
of 64 TB of distributed memory. The communication
network that links all compute nodes is a five-dimen-
sional torus that enables very high bandwidth and fast
communication.
While largely different in size and technology, all

supercomputing systems have the characteristic of being
massively parallel, distributed memory supercomputers.
The parallel, distributed memory characteristic also
applies to local or cloud based clusters. Hence, our
methodology is equally applicable to any parallel com-
puter, both with distributed and shared memory.

Simulated datasets
In order to examine the time efficiency for the data represen-
tations discussed in this work, we have simulated human
genotype data using the HAPGEN2 software [22]. Data is
simulated by making use of known haplotype blocks, i.e.
sequences of (DNA) on the same chromosome that are typi-
cally inherited together. Given a reference panel of known
haplotype blocks, such as that from HapMap [23] or 1000
Genomes Project [24], the HAPGEN2 method resamples
sequences of haplotype blocks from across the reference
panel to generate a new “imperfect mosaic” of DNA
sequence, mimicking the effect of recombination [22]. By
resampling from real human data, the technique maintains
the linkage disequilibrium structure, i.e. correlations between
local SNPs, seen across the genome. Using the HAPGEN2
software combined with the 1000 Genomes reference panel,
we generated datasets of varying sizes ranging between 100
to 1.1 million SNPs, each with 2000 samples.

Measures of runtime performance
To evaluate the parallel performance, we have carried
out strong scaling simulations and consider the speedup

Figure 2 Illustration of data decomposition and load balancing. Decomposition strategy. For any given SNP interaction study, the entire
calculation is divided into equal-sized partitions. For each partition one MPI task is executed on an assigned CPU card. The further
decomposition into small sub-tasks are handle by OpenMP dynamic scheduler.
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and efficiency of each run as the main measures by
which we evaluate our implemented framework. We
define the speedup S of the program as

S =
tp=1
tp=N

(5)

with tp = 1 being the measured time in serial execution
versus the measured time on N threads tp = N. Based on
the speedup, we can define the efficiency E as

E =
S
N

=
tp=1

NP × tp=N
(6)

A program is called “strongly scalable” if by increasing
the number of parallel threads p, we can get a constant
efficiency E while problem size remains fixed. Thus,
strong scalability is indicative of the efficient use of par-
allel computing resource.
We can break this down to evaluate the scaling factor

that appears between consecutive runs with different
numbers of hardware threads. If our program is strongly
scalable, the total run time should be decrease by a fac-
tor of two if the number of processors is increased by
factor two.

Scaling of previously reported timings
A comparison of runtime for the framework presented
in this study with that of previously reported SNP inter-
action analysis techniques is difficult given that reported
timings were run over different hardware. Lack of avail-
ability of source code for many methods means that we
cannot port these algorithms directly to Blue Gene.
Instead, we have estimated the running times from the
times reported in literature when scaled to the same
hardware and dataset size. For CPU-based methods, we
have scaled times to those of the Avova BG/Q system

with 262,144 threads running at 1.6 Ghz. For GPU-
based methods, we have scaled times to those of the
Nvidia GTX470 graphics card with 448 hardware
threads running at 1.22 GHz. Both estimated timings
were also scaled to estimate runtime over a datasets
containing 2000 samples and 1.1 million SNPs, as used
in 3. For all methods we assume prefect linear scaling
with time and number of interactions. Using these cri-
teria, the column for “Scaled” runtime in Table 2 is
obtained using the following formulas.
Formula for CPU scaling estimate (1.1 million SNPs,

2000 samples, 262,144 threads running at 1.6 Ghz)

tCPU = torig ×
(
1.1× 106

nSNP

)2

× 2000
nsample

× ncores
262144

× fclock
1.6

(7)

Formula for GPU scaling estimate (1.1 million SNPs,
2000 samples, 448 threads running at 1.22 Ghz)

tGPU = torig ×
(
1.1× 106

nSNP

)2

× 2000
nsample

× ncores
448

× fclock
1.22

(8)

where torig, Nsample, NSNP, Ncores and fclock is the run-
time, number of samples, SNPs, threads and clock fre-
quency reported in the original study.
The estimates obtained by these scaling formula are

rough given there are many differences in hardware that
have not been taken into account. Nevertheless, these
estimated times should provide an indication of differ-
ence in runtime performance between algorithms.

Results and discussion
Threads vs time
To explore the strong scaling of the runtime of our frame-
work with respect to the number of parallel hardware
threads used, we have evaluated the runtime of our frame-
work as the number of hardware threads is exponentially

Table 2 Hardware, dataset size and previously reported runtimes for a variety of CPU- and GPU-based pairwise SNP
analysis methods

Method Hardware Cores Clock (Ghz) SNPs (1000 s) Samples (1000 s) Time (min) Estimated 3-way runtime

Unscaled Scaled

CPU-based

Present method PowerPC A2 262,144 1.60 1,100 2 8 8 5.8 years

Wang Intel X3430 172 2.40 500 2 538 3 >1000 years

Ma Intel X5355 528 2.66 50 2 1158 1877 >1000 years

GPU-based

Goudey Nvidia GTX470 448 1.22 450 5 13 31 21.7 years

GBOOST Nvidia GTX285 240 1.48 351 5 80 220 219 years

Kam-Thong Nvidia GTX295 960 1.24 4 10 2 19664 >1000 years

Hardware, dataset size and previously reported runtimes for a variety of CPU- and GPU-based pairwise SNP analysis methods. For each method, we show the
make and model of processor or GPU card, the processor speed and the number of hardware cores. Runtime is additionally shown as originally reported as well
as scaled to a dataset with 1.1 million SNPs, 2000 samples and using either the full Avoca system (CPU methods) or using the Nvidia GTX295 (GPU methods). In
the final column we show the estimated time to processes all 3-way interactions for a 1.1 million SNP, 2000 sample dataset using the originally reported
hardware and assuming perfectly linear scaling.
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increased from 128 (27), the lowest allocation on the
Avoca system that can hold the dataset in memory, to
262,144 threads (218), the entire Avoca system. For each
run, we fixed the dataset size at 1.1 million SNP and 2000
samples, the largest set of simulated data we have gener-
ated. Each run evaluates over 605 billion SNP pairs. We
record the total time required to exhaustively evaluate all
SNP pairs as the number of threads is altered, including
overhead such as communication between threads and
data loading time.
Using the full Avoca system, we are able to evaluate

605 billion SNP pairs in less than 10 minutes. The time
to compute the test statistic on the whole GWAS data-
set as the number of hardware cores increases is shown
in Figure 3a. It shows observed runtime as well as the
theoretically time required in the case of perfect scaling.
The scaling factor, the speed-up in computation time as
the number of threads is increased, between cores is
shown in Figure 3b. We show efficiency, as calculated in
Equation 6, in Figure 3c starting with a baseline runtime
measured at 128 (27) hardware threads.

Scaling is almost linear for fewer than 212 cores and
more than 214 with a drop in scaling efficiency at 213 cores.
The drop in efficiency may be caused due inefficiencies in
our code with respect to translation onto the physical hard-
ware system including IO cards and torus topology. Aside
from the discrepancy in timing results seen at 213 cores, we
find that the runtime is almost halved as the number of
hardware threads is doubled. The cumulation of discrepan-
cies in the scaling factor reveals that the overall efficiency
of the system drops to almost 50% as the framework is
scaled up to the maximum number of hardware threads.
However, the loss in efficiency is due to the inefficiency
going from 213 to 214 hardware threads and is carried for-
ward. Since the efficiency and scaling factor continues to
be constant from 214 hardware threads and higher, one can
argue that parallel efficiency will be close to 100% with
code/hardware optimization to remove the discrepancy at
213 hardware threads. Resolving these reductions in scaling
efficiency indicates that the runtime required to evaluate
all SNP pairs in a 1.1 million SNP dataset should drop
below 5 minutes if using Avoca’s full 218 threads.

Figure 3 Run time, scaling and efficiency analysis for strong scaling simulations. Total run times, scaling and efficiency (a., b. and c.
respectively) as the number of hardware threads is increased for a 1.1 million SNP, 2000 sample dataset.
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SNP vs time
Similarly, we can evaluate the scaling of runtime as the
problem size i.e. the number of SNPs is varied, while
the number of hardware threads is kept constant. Given
that the 1.1 million SNP dataset used in Figure 3 is lar-
ger than the majority of current GWAS studies, the
time required for smaller datasets may be significantly
smaller and require less hardware. We have therefore
generated subsets of our simulated data at increasing
powers of 10 (103 - 106) and evaluated these using two
different amounts of threads; 8192 (213) and 31768 (215),
representing 3.1% and 12.5% of Avoca’s total system size
respectively. For each of these runs, we have again
recorded the total runtime and evaluated the scaling fac-
tor between each decrease in datasets size.
When the size of the dataset being evaluated has greater

than 100,000 SNPs (5 billion SNP pairs), Figure 4a shows

that the scaling of runtime is almost linear with the num-
ber of SNP pairs. This is confirmed by examination of the
scaling factor in Figure 4b. For these larger datasets, as the
number of SNP is reduced by 10 and the corresponding
number of SNP pairs and the overall runtime is reduced
by a factor of 100.
Given that the number of pairs increases quadratically

with the datasets size, smaller datasets require far less
computation to conduct the interaction analysis. The time
require for analysis rapidly drops below a few seconds for
datasets with fewer than 10,000 SNPs (50 million SNP
pairs). In these datasets, the runtime required to process
evaluate the SNP pairs becomes so low that communica-
tion overhead and memory allocation begin to take a large
enough percentage of time for each node and impact scal-
ing efficiencies. This can be observed to a greater degree
as a larger number of hardware threads are used,

Figure 4 Run times and scaling for varying size GWAS datasets on 64 and 1024 computing nodes. Runtime and scaling (a. and b.
respectively) as the number of SNPs increases, using either 1024 or 64 nodes respectively. Subsets of the simulated data at increasing powers of
10 (103 - 106) are used. The scaling factor in subplot b. indicate the decrease in runtime as the number of pairs is reduced by a factor of 100.
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decreasing the amount of work that is required by each
individual process. Given that the runtime for these is less
than a few seconds, the practical impact of this drop in
efficiency is low.

Comparisons with previous interaction techniques
The inherent parallelism in exhaustive mutivariate GWAS
analysis allows this type of analysis to be conducted over a
variety of hardware. In this work, we have developed a
flexible framework for interaction analysis in GWAS stu-
dies and scaled our analysis to the full Avoca Blue Gene/Q
system. However, other solutions using parallel CPU and
GPU based methods have been previously conducted. To
address the computational challenge of exhaustive GWAS
analysis, Ma et al. (2008) [13] used the supercomputing
facilities at the Minnesota Supercomputer Institute, an
SGI Altix XE 1300 Linux cluster system with 2.66 GHz
quad-core Intel X3430 processors with 2 GB of memory.
The analysis was carried out on 132 compute nodes, i.e.
528 cores. Wang et al. (2011) [7] proposed a cloud-based
solution, using a similar framework to that used in this
study, over a 43 compute node cluster with 2.4 Ghz quad-
core Intel X3430 processors with 8 GB of memory for
investigating scalability of their method. GPU based meth-
ods have become popular for conducting this type of ana-
lysis given their increasing availability in desktop
computers and every-increasing importance for scientific
computing [25]. Methods by Goudey et al. (2013) [11] and
Wan et al. (2010) [6] have used two-stage filtering meth-
ods, employing a fast analytical filter followed by a more
computationally expensive filter. Kam-Thong et al. (2011)
[9] conducted a similar analysis using a fast approximation
to linear regression. All three GPU methods described
above use Nvidia GPU cards to conduct their analyses.
We have summarised the hardware, data-size and run-

time of all of these methods alongside the times reported
reported in this study in Table 2. The hardware utilised by
these different studies is clearly different with Ma et al.
(2008) using only 0.1% of the threads that are avaliable in
the full Avoca system. This difference in hardware is also
clear for the GPU methods, which all used Nvidia graphics
cards that vary greatly in the number and processing
speed of these hardware threads.
It is unclear how the runtime of the various algorithms

compare if the hardware and datasets sizes were made
comparable. Therefore, we additionally report a scaled
runtime, where an estimate of runtime is made if the
dataset size is scaled to 1.1 million SNPs, 2000 samples
and the number of processors and clock speed is scaled
to be consistent with the full Avoca system for CPU
methods or the Nvidia GTX295 for GPU methods. The
formulas for this scaling is shown in the Methods section.
In the final column, we show the estimated time to pro-
cesses all 3-way interactions for a 1.1 million SNP, 2000

sample dataset based on the unscaled runtime (e.g. using
original hardware) and assuming perfectly linear scaling.
The scaled timings indicate there may be some room

for optimisation of the framework developed in this
work, though it is competitive with state-of-the-art meth-
ods. The analysis techniques proposed by Wang et al.
(2011) show a marked improvement over the times we
report, and may indicate that there are further optimisa-
tions that can be applied to the engineering behind the
framework we have presented here. Given the roughness
of the runtime estimates conducted here, it is unclear
how much of this improvement relates to factors not
taken into consideration as part of the scaling conducted
here.
The timings reported by the GPU methods examined

here indicate that the use of GPU based systems is compe-
titive with the runtime reported over the supercomputer.
While GPUs are more commonly available and cheaper,
from a research perspective there are some issues in devel-
oping novel algorithms for these cards. Improvement in
speed depend on how much the communication between
main memory and GPU memory can be reduced. The
level of speed in communicating between these two mem-
ory caches is slow compared to the processor speed of the
actual GPU cores. There is also only a small amount of
memory available to each separate GPU core. These con-
straints have two large ramifications on the programming
of GPU accelerated software. The first is that efficient pro-
gramming of GPU-accelerated software requires a deep
level of understanding about the underlying hardware
architecture. Without understanding the different levels of
memory and the ways to make efficient use of the memory
registers and caches on the card, the level of improvement
in speed is often small [26]. Secondly, the overall algo-
rithm that is being optimised on the GPU must be full
designed before any programming can begin. Alterations
of the algorithm mid-way through implementation can
have a large impact on the way that memory is allocated
across the different registers in the card and hence can
cause dramatic reduction in the level of speed-up gained
[26]. The inflexibility of programming for GPU cards can
limit the suitability of this type of hardware to research
techniques that may be require ongoing improvements
and optimisations. The supercomputer environments con-
sidered here are typically a development environment
more similar to standard desktop programming, allowing
for greater flexibility and a lower entry barrier to develop-
ing on them.
If we consider exhaustive search of three-way interac-

tions, the results in Table 2 indicate that all methods on
hardware examined here are too slow. An exhaustive
three-way interaction analysis on 1.1 million SNP data-
set would require over 5.8 years on the full Avoca
machine. This is hundreds of times faster than estimates
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for other CPU based methods and four times faster than
runtimes estimated for GPU methods, indicating how
the improvement in the level of hardware applied to
interaction analysis may alter the types of analysis that
can be performed. On the currently largest IBM Blue
Gene/Q installation “Sequoia” at Lawrence Livermore
National Laboratory (24 times larger than Avoca with
roughly 6.29 million computational threads), the same
analysis could take only under three months assuming
linear scaling. Given that the implementation used in
this study can be further optimised, this runtime means
it is becoming feasible to carry out exhaustive analysis
of higher order interaction studies on large modern
GWAS.

Conclusion
This study illustrates that higher order interaction studies
on GWAS data are becoming feasible on supercomputing
systems. We have shown near-linear scalability of runtime
with the number of threads on a parallel, distributed
memory supercomputer allows for a reduction in analysis
runtime that has not been achieved previously. While the
approach taken here is yet to be applied over real data, the
presented framework gives technical capability to enable
previously unachievable research opportunities in GWAS
analysis.
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