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Abstract

Functional brain images are rich and noisy data that can capture indirect signatures of neural activity underlying
cognition in a given experimental setting. Can data mining leverage them to build models of cognition? Only if it is
applied to well-posed questions, crafted to reveal cognitive mechanisms. Here we review how predictive models have
been used on neuroimaging data to ask new questions, i.e., to uncover new aspects of cognitive organization. We
also give a statistical learning perspective on these progresses and on the remaining gaping holes.
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Introduction
Functional neuroimaging has opened the door to quan-
titative yet non invasive experiments on brain func-
tion. These experiments contribute to bridging the gap
between cognitive sciences and neuroscience: the for-
mer analyse thought and mind while the latter probes
the nervous system at various spatial and temporal
scales. To study high-level aspects of human cognition,
the two modalities of choice are functional Magnetic
Resonance Imaging (fMRI) and electro-and magneto-
encephalography (EEG/MEG), both can be used to
observe brain activity with good spatial resolution for
fMRI and temporal temporal resolution for EEG/MEG.
The concurrent progress of scanners and experimental
paradigms has made it possible to accumulate very rich
imaging data that quantify specific correlates of brain
function in an uncountable variety of cognitive tasks and
processes. In parallel, the advent of machine learning has
brought huge progress to data processing of large datasets.
But these techniques are geared towards well-posed pre-
dictive tasks. The key question is then; how can they be
leveraged to push forward understanding of the brain,
beyond merely predicting a numerical signal?
This paper presents a subjective view on the work that

has been done combining machine learning with func-
tional neuroimaging to advance the understanding of
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brain function. It dwells mostly on modeling considera-
tions: how and what do the predictive models teach us
about the brain? But it also touches upon machine learn-
ing and statistical issues. This review focuses on fMRI in
humans, that represents most of the accumulated func-
tional neuroimaging data; however, most of the concepts
carry to other imaging modalities. FMRI provides images
of the brain at the mm scale, however it is only sensi-
tive to the metabolic counterpart of neural activity and
suffers from a poor temporal resolution. The first two
sections of this paper discuss supervised learning, used
first to model brain activity from the stimuli, then to pre-
dict the task performed from the evoked activity. The last
section reviews the use of unsupervised learning to extract
relevant structures in functional images: the interaction
structure that underlies brain function, or their natural
spatial organization.

Encoding: richer models of evoked activity
The keystone to the use of fMRI in cognitive neuroscience
is the standard mass-univariate analysis framework. It
consists of modeling the brain response evoked via an
experimental paradigm as the linear combination of dif-
ferent experimental conditions [1,2]. A statistical test is
performed at each voxel to delineate regions recruited
differently by the various conditions. The art of fMRI
experiment design and analysis then consists in craft-
ing the succession of conditions so that, when properly
contrasted, they reveal the neural support correspond-
ing to the cognitive function of interest. With regards
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to brain function, this statistical analysis answers natu-
rally a “where” question, but to a lesser extent a “how”
question. Indeed the tests for differences between experi-
mental conditions are statistically well-posed, but not very
expressive to refine cognitive models.
In contrast, the study of neural coding, lead historically

via intra-cellular recordings of neural activity, has opened
the door to breaking down many cognitive functions into
atomic steps implemented by ensembles of neurons. The
seminal work of Hubel and Wiesel [3] showed that neu-
rons in the primary visual cortex have receptive fields
tuned to a variety of image features, from simple cells
sensitive to local orientation in an image, to more com-
plex cells capturing in addition, motion and length of local
image features. Progress on uncovering the link between
stimuli and neural response revealed neurons tuned to
richer and higher-level descriptions of the stimulus, such
as receptive fields specific to complex shapes [4], but
also a richer description of neural responses, in particular
coding distributed across a population of neurons [5].
Beyond individual neurons, at the spatial scales probed

in fMRIa, and high-level cognition arises from functional
integration of multiple specialized brain regions [7].
The stepping stones of this line of work are to find the

right features of the stimuli and neuronal population that
can be matched closely. How well the former explains the
latter gives a natural figure of merit of these models, in a
setting known as encoding [8]. Given models that explain
neural responses at the spatial scales captured by fMRI
[9,10] rather than at the neural level, encoding research
can be lead with fMRI data, which benefits from full-brain
coverage. Technically, designing an encoding model is not
different from specifying the design matrix in a standard
fMRI analysis and can be seen as model-based fMRI [10].
However relinquishing the methodology of contrasts for
more diverse, albeit indirect, statistical tests opens the
door to richer modeling. In particular, it is possible to
tackle more complex stimuli, such as natural stimuli [11],
very high-level and diverse descriptions of the stimuli [12],
or a cognitive model of the observed behavior [10].
This increase in model complexity is the driving force

behind the use of machine learning in encoding. First it
entails fitting many parameters on limited data, and thus
conventional in-sample statistical testing is thorny. For
this reason, goodness of fit of the encoding model is best
assessed via its cross-validated ability to predict brain sig-
nals [13]. Similarly, the predictive engine that links stimuli
features to brain signal is best chosen amongst machine
learning tools, that balance modeling flexibility and regu-
larization, such as a naive Bayes predictor [12], sparse [13]
or ridge [14] regression. Finally, the computational mod-
els that derive encoding features from the stimuli often
draw from the domain-specific feature extraction tech-
niques developed in applied machine learning research.

These provide simple quantitative proxies for the cogni-
tive features of interest. For instance, to map semantic
concepts [12] and [14] used natural language processing
techniques: word co-occurrence or an ontology on words.
The ties between brain science and machine learning are
strikingly close in the study of vision: computer vision,
i.e., the use of computers and machine learning to analyze
and interpret images, has built upon, but also fostered our
understanding of the brain visual system. David Marr’s
seminal work [15] formalized the idea of hierarchical lev-
els of representation that tie together the receptive fields
observed in visual cortex, but is also reflected in mod-
ern state-of-the-art computer vision architecture based
on convolutional networks [16]. Very recently, Yamins
et al. [17] have shown a striking correspondence between
296 neural recordings in the infero-temporal cortex of the
monkey and intermediate layers of computer-vision con-
volutional networks. This work is a quintessential example
of machine learning in encoding models: a predictive
engine performs the same task as the brain system under
study; machine learning is used to fit its parameters on
a set of stimuli and the final architecture matches neural
data.
Transferring such results to fMRI would open doors to

studying the full complete brain of healthy human subjects
rather than 296 neurons in implanted monkeys. How-
ever, it poses significant challenges. Indeed, fMRI is an
indirect and noisy measurement of brain activity, that
captures the average effect of many spikes and does not
resolve cortical columns, let alone individual neurons. The
concept of population receptive field [18] is sometimes
used to refer to the aggregate properties of neurons in
one voxel. Thus, encoding models need to be adapted
to the resulting structured noise and signal convolutions.
Model evaluation and selection is in itself often a major
roadblock.

Decoding: towards principled reverse inference
In the study of neural recordings, decoding models recon-
struct stimuli or behavior from the neural code [5,19].
More generally, the decoding approach can be seen as
solving the inverse problem to the encoding model, even
when applied on fMRI signals that do not capture individ-
ual neural firing [20,21].
Since a decoding model often predicts quantities that

are directly observable, it can provide a very useful tool
to validate an encoding model. Indeed, decoding perfor-
mance is an omnibus test of goodness of fit: it tests the
overall significance of the model, but does not test which
variables have a significant contribution to the model. As
an omnibus test, decoding is used with explicit sophis-
ticated encodings [8,11-14], but also with simple fMRI
analysis to perform an omnibus test at the region level [22]
or on a wide family of regions as in searchlight analysis
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Figure 1 Schematics of the distinction between encoding and decoding in brain imaging.

[23]. Interestingly, an early fMRI study [9] on neural rep-
resentation hypothesized that “objects are represented by
a relatively widely distributed activity of functional mod-
ules”, but considered this statement to be insufficiently
quantitative to allow a statistical test. Nowadays this study
would probably be formulated in an encoding/decoding
framework [8], using a multivariate predictor to provide
evidence for the author’s hypothesis, as in [22]. It is often
considered that multi-voxel analysis, as used in decoding,
provides an increase in sensitivity compared to standard
mass-univariate analysis [24]; however, we stress that it
does not correspond to an increase in statistical power,
but rather to a different test performed: decoding per-
forms a global (omnibus) test of the model, while voxel-
level tests are useful to delineate regions, but are subject
to corrections for multiple comparisons.
As noted in [25], decoding analysis provides a good

framework to interpret overlapping activation patterns.
Brain maps in encoding and decoding settings carry actu-
ally a different meaning. An inference with an encoding
model, or in the fMRI standard analysis framework, is a
statement on whether or not the signal in a brain region
is well explained by the model that we have of the task:
we can conclude that the task implies this brain activa-
tion, and we say that the region is recruited by the task.
A decoding analysis tells us that if we observe a certain

brain activity, we can deduce properties of the task or the
stimulus. Such a conclusion is the converse implication
of the encoding settings, sometimes dubbed reverse infer-
ence [26]. Reverse inference, i.e., drawing conclusions on
behavior and mental processes from the brain activations,
answers natural questions in cognitive neuroimaging, e.g.,:
what is the function of neural sub-system? But reverse
inferences drawn from maps, estimated using encoding
models, are a logical fallacy [26]. On the other hand,
decoding models provide a path to principled reverse
inferences [27]. However, it is important to keep in mind
that, in general, a decoding experiment does not tell us
anything about tasks and cognitive processes that it did
not probe. For example, an experiment studying brain
regions discriminating images of faces from images of
houses [22] does not inform us on how these regions are
related to recognizing letters.
The appealing idea of inferring brain processes from

brain activation only carries meaning if the decoding
model has captured a large variety of brain processes.
Beyond interpretation of brain images, the basic neuro-
science questions at stakes here are that of functional
specificity. For instance, while many brain regions are
more activated under physical pain, a decoding analysis
including many different aspects of pain showed that a
network comprising parts of the thalamus, the insulae,
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and the somatosensory cortex was specific of physical
pain [28]. At the spatial scale probed by fMRI, the mul-
tiplicity of regions needed to come to precise conclu-
sions on the cognitive function recruited is consistent
with the modern view that high-level cognitive processes
arise from distributed networks. This calls formultivariate
decoding engines.
Going beyond a specific cognitive domain, such as

vision or pain, and studying functional specialization in
a broad sense require probing more functions than can
be addressed in one experimental paradigm. For this rea-
son, investigators have turned to accumulating data across
experiments. Using 8 studies, covering 22 different cogni-
tive concepts, Poldrack et al. [29] were able to predict the
concepts involved from activation images in unseen sub-
jects. The use of a variety of studies, with different experi-
mental protocols, can overcome the idiosyncrasies of each
protocol that are not relevant to cognitive concepts of
interest; for instance, to study high-level decision mech-
anisms independently of the modality used to present
stimuli –visual or auditory. However, in [29], the train set
contained images from the same protocols as the test set;
thus, the hypothesis that the decoder was actually detect-
ing protocols rather than cognitive concepts cannot be
ruled out. To generalize to unseen protocols, the challenge
is to describe them in terms that are common enough
to be shared across many protocols, but also sufficiently
rich to capture their cognitive content. Schwartz et al. [30]
used an ontology of experimental paradigms and multi-
label classification: labeling 83 different conditions, from
19 studies, with a set of different terms from the ontology.
The resulting predicting engine can not only describe the
content of an unseen experiment from the corresponding
brain activation, but also give brain maps associated with
each term in a reverse inference. Covering more cognitive
concepts requires accumulating many brain images. Shar-
ing data across institutions is a practical means to this end,
for instance relying on the OpenfMRI project [31] that
hosts to this day 24 different fMRI studies. Another inter-
esting alley is to collect from the literature the coordinates,
in standard brain space, of observed activation foci, as in
the Neurosynth project [32].
Although decoding gives a principled methodological

framework for reverse inference, there are some tough sta-
tistical challenges. Indeed, the discriminant brain maps
extracted may be the most relevant information captured
by the model from a neuroscience perspective. However,
decoders solve a high-dimensional multivariate statisti-
cal estimation problem that is very ill-posed [33] given
the typical small sample size. Many different brain maps
will give rise to similar predictive performance. Worst
yet, minimizing a prediction risk does not lead to any
control on the brain maps. For instance, if two neigh-
boring voxels carry the same information but one is

less noisy than the other, a decoder might favor select-
ing only that one. For related reasons, sparse models
can only capture a subset of relevant voxels [34]. Inject-
ing priors –or regularization– in the estimation makes
it well-posed and shapes the brain maps extracted. Cap-
turing large-scale brain systems calls for spatial regular-
ization such as sparsity and spatial smoothness [35] or
total-variation (TV) for piecewise smooth maps [36]. In
particular TV-�1 regularization, combining sparsity and
total-variation, selects well the predictive regions [37].
Unlike widespread belief, multivariate tools used com-
monly, such as support vector machines or searchlight,
seem to do a worse job at selecting predictive regions than
univariate tools [37].
Encoding and decoding models explore the two direc-

tions linking brain activation to stimuli and cognitive
processes [8] (see Figure 1). Both of these methodolo-
gies do not form credible models of how the brain creates
cognition. They are rather experimental devices to test
hypotheses and retrieve brain maps, where the critical
modeling work goes in the formal description of the cog-
nitive concepts associated with the brain signals under
study. This description is most often a non-trivial trans-
formation of the stimuli, non-linear [17] or calling for
concept ontologies [14,29,30]. Following the concepts of
neural coding and Marr’s vision that good representa-
tions give rise to powerful computational processing [15],
encoding and decoding models are often understood as
revealing a representational space, distributed represen-
tations in the cortex that reflect fundamental concepts
[9,38]. However, the combination of the lack of tempo-
ral dynamics in fMRI and the linear models that we rely
upon naturally create such an understanding of the data
in terms of representations, while for some functions stud-
ied, the actual neural implementation may be closer to
processes [39] dynamically sustained information, as in
theories of conscious processing [40]. In this light, the use
of linear models for decoding may be criticized as too
simple to capture non-linear interactions. However, from
the neuroscience point-of-view they lead to probing well-
posed questions [8] and from the statistical learning point
of view, they can be relatively well-behaved even in very
high dimensional settings with the typical small sample
sizes faced by fMRI [34].

Finding hidden structure: parcellations and
connectomes
In machine learning applications, it is often easier to
accumulate unlabeled data than labeled data. This is
also the case in neuroimaging, as controlling the cog-
nitive state of the subject is very challenging and calls
for careful experimental design and analysis. Data
collection speed is limited by the timescale of psycho-
logical experiments. On the opposite, accumulating
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so-called resting-state acquisitions, in which the men-
tal state of the subject is not controlled, is much
more tractable [41], and is applicable to dimin-
ished populations [42]. The interest of resting-state
data for cognitive neuroimaging is not immediate, as it
does not carry explicit cognitive information; however,
they reflect on-going activity, which is an important
part of brain function. Indeed, on-going activity shares
a common substrate with activity explicitly evoked by
controlled cognition, priming cognition but also shaped
by task [43]. Unsupervised learning on resting-state
scans holds the promise of extracting intrinsic brain
structures [41].

Capturing brain interactions
The brain is a heavily interacting system.Mapping its con-
nections in the form of a connectome [44] can help to
understand the flow of information in the brain. Fluc-
tuations in brain activity, for example, observed at rest,
reveal functional interactions and thus can be used to
estimate a functional connectome [45]. From a statistical
learning perspective, the estimation of a connectome can
be formalized as extracting the conditional independence
structure from observed correlations [46]. The challenge
here is that of the paucity of data, and can be tackled with
graph estimators that have good small-sample structure
recovery properties, such as sparse covariance models
[47,48].

Learning functional units
Interest in resting-state data arose originally from the
observation that voxel-based signals observed at rest
could be used to segment spatial structures known from
task studies [49]. Subsequently, researchers realized that
these could exhibit some additional functional structures
[50]. What spatial distributed brain networks are modu-
lated during rest? This question can be formulated as that
of blind source separation, and independent component
analysis (ICA) provides a good algorithm to recover these
networks [51,52]. Datasets of increasing size and qual-
ity lead to extracting more networks, that break up in a
set of smaller regions, paving the brain in a parcellation
[53]. Breaking down the brain into homogeneous units
is a long quest in neuroscience that can be traced back
to Brodmann areas. Such parcellations have been histor-
ically driven by anatomical features. Resting-state fMRI
provides valuable data to learn a functional parcellation,
as it gives a spatially-resolved window into intrinsic brain
function. Indeed, functionally-homogeneous regions can
be extracted by clustering voxels with similar fMRI time-
series [54,55]. The unmixing model underlying ICA can
be adapted to extracting regions by formulating it in the
more general framework of dictionary learning [56] and
adding sparsity-inducing penalty that also favor clustered

spatial components, thus yielding region segmentations
[57]. While identifying intrinsic functional brain modules
is crucial from a basic neuroscience point of view, brain
parcellation can also provide useful data reduction even
if they don’t capture true functional units [21,34]. These
different purposes give rise to different methodological
trade-offs [58]. Beyond resting-state data, applying sim-
ilar methods to databases of evoked activity exploring a
large variety of cognitive concepts can have the additional
benefit of appending cognitive labels to the spatial units
extracted [59,60].
However, care must be exercised when applying the

brain-parcellation techniques. By construction, such
methods will return a parcellation, even if there is lit-
tle to no structure in the data. They do not build upon
well-posed statistical hypothesis testing. The methods
can often be unstable, with a small modification of the
input data leading to large changes in the results. This
unstability can be explained by, on one hand the lack
of explicit noise model, and on the other hand the
fact that unsupervised learning is an intrinsically hard
problem from the statistical standpoint. Validation of
the functional units is very challenging beyond a sim-
ple confirmation bias that boils down to checking for
known structures, the variability of which is unknown and
uncontrolled. Some researchers have explored quantify-
ing variability of the patterns [55,57,58,61] or controlling
how well they explain the data [57,58] but these are
weak proxys of the neuroscientific questions on brain
organization.

Practical considerations: methods and
implementations matter
The focus of this review is not on methodological details,
but on general concepts and approaches that further our
understanding of brain function. However, it is impor-
tant to stress that many of the roadblocks to the use
of machine-learning-related techniques in cognitive neu-
roimaging lie in the methods. From a theoretical point
of view, the statistical control is seldom warranted by the
models used [34,37]. On the empirical side of things, best
practices are not established. The high-dimensionality of
the statistical models and the plurality of methods con-
sidered mean that, at the level of the literature, machine-
learning techniques probably give rise to more variability,
although they do come with more expressiveness and
power.
A final critical aspect, all too often overlooked, is that of

software. The standard GUI-based fMRI data processing
environments, such as SPM, FSL [62] or AFNI [63], do not
implement most of the modeling approaches described in
this review. FSL and AFNI do provide some methods tai-
lored to fMRI uses (respectively ICA [52] and basic decod-
ing [64]). There is progress on dedicated tools such as
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PyMVPA [65], but these require the practitioners to learn
new skills, in particular some understanding of machine
learning and basic programming. The challenges of a good
environment for machine-learning on fMRI data is that it
should be simple enough to be within reach of the prac-
titioner, yet leverage a powerful machine-learning toolkit,
such as the popular scikit-learn package in Python [66],
and offer flexibility to assemble new models, encoding,
decoding, or unsupervised [67].

Conclusions
The goals of cognitive neurosciences are to link cognition
with its neural basis. FMRI gives a noisy and incomplete
window on neural mechanisms. Nevertheless, to map
effects at a large scale, it is priceless, as it can be applied
massively on healthy human subjects, and thus enables the
systematic study of high-level cognition. Machine learn-
ing tools are instrumental in making the most of this data,
as they do not require a precise mechanistic understand-
ing of the signal, but rather to frame a prediction problem
that captures some relevant aspects of brain function,
as in encoding or decoding. However, for progress in
neuroscience, black-box prediction engines do not suf-
fice as the key to understanding brain function lies in
the properties of the signal used for prediction. For these
reasons, the statistics aspects in statistical learning can-
not be neglected: different methods give rise to different
results and the figure of merit does not simply boil down
to predictive power.

Endnote
aIt is unlikely that standard fMRI acquisitions, even

after analysis with powerful multivariate methods,
capture information at the level of the cortical column [6].
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