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Abstract

unknown at a single-cell level.

Background: Cancers arise through an evolutionary process in which cell populations are subjected to selection;
however, to date, the process of bladder cancer, which is one of the most common cancers in the world, remains

Results: We carried out single-cell exome sequencing of 66 individual tumor cells from a muscle-invasive bladder
transitional cell carcinoma (TCQ). Analyses of the somatic mutant allele frequency spectrum and clonal structure
revealed that the tumor cells were derived from a single ancestral cell, but that subsequent evolution occurred,
leading to two distinct tumor cell subpopulations. By analyzing recurrently mutant genes in an additional cohort
of 99 TCC tumors, we identified genes that might play roles in the maintenance of the ancestral clone and in the
muscle-invasive capability of subclones of this bladder cancer, respectively.

Conclusions: This work provides a new approach of investigating the genetic details of bladder tumoral changes at
the single-cell level and a new method for assessing bladder cancer evolution at a cell-population level.

Keywords: Single-cell exome sequencing, Bladder cancer, Tumor evolution, Population genetics

Background

Bladder cancer (BC) is among the top ten most common
cancers in the world; and transitional cell carcinoma
(TCC) is the most common form, presenting in 90% of
diagnosed BC [1]. Previous studies have indicated that
the development of TCC involves multiple steps [2-4],
but the key mutations and how this process occurs
remain largely unknown. Clinical and genetic studies
have classified TCC patients into two main categories:
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non-muscle-invasive TCCs (NMI-TCCs), which occur in
approximately 70% of the patients and often carry muta-
tions in the FGFR3 and RAS genes; and muscle-invasive
TCCs (MI-TCCs), which occur in approximately 30% of
the patients and often carry mutations in the 7P53 and
RBI genes [5]. MI-TCC, however, is the form that is
associated with a higher mortality rate [3], which makes
this form of BC, though less common, of greater concern
for developing the means to assess and ultimately devis-
ing viable treatments.

Current information has indicated that there is a
shared genetic pattern in TCCs among patient popula-
tions [6], but it has not yet been possible to apply this in-
formation to understand tumor formation within a
patient. Moreover, the heterogeneous nature of the
tumor and its contamination by infiltrating ‘normal’ cells
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further complicate cancer studies, since the functionally
important mutations may only reside in a portion of the
cells within a tumor sample and would be undetectable
in heterogeneous tumor tissues. Given the heterogeneous
nature of tumors both among patients and within
tumors, understanding tumors at a cell-specific level
may be a direct way for developing targeted ‘persona-
lized’ therapies for bladder cancer.

It is now feasible to gain greater insight into cellular
selection within the tumors given the technical develop-
ment of large-scale data acquisition and genome analysis,
including the emergence of new methods of genome se-
quencing for copy-number genetic analyses [7] and sin-
gle nucleotide analyses at the single-cell level [8,9].
However, there is currently no study that attempts to
place the timing of key mutations within the develop-
ment history of the tumor to infer their potential roles in
tumorigenesis at the single-cell level, which is of great
importance in developing effective cellular targeted ther-
apies in personalized medicine.

Here we present results from single-cell exome sequen-
cing (SCS) and analyses of a MI-TCC. The sequence data
revealed the complexity of the genetic patterns within
this tumor and identified the presence of genetically
different tumor cell types within the tumor tissue. In
addition, by placing the timing of key mutations within
the development history of the tumor, we discovered can-
didate cancer-associated genes that might serve to drive
not only the initiation of carcinogenesis, but
also subsequent cell lineage development that may be
involved in cancer progression.

Data description

We obtained samples of fresh tumor (standard surgery
of bladder cancer: >80% tumor cells) and para-
carcinoma tissue from a 57-year-old male with MI-TCC
of the bladder classified as stage II (T-NoM,) (Add-
itional file 1: Figure S1, see Methods for details).

We carried out single-cell exome sequencing on indi-
vidual cells from these samples as described in [8].
Briefly, we gently disrupted the tissue by collegenase I
and IV, and randomly selected single cells from the
tumor tissue and normal adjacent tissue. Exome capture
was performed on the whole-genome amplification
(WGA) products of each cell. The resulting libraries
were then subjected to second-generation sequencing
(see Methods for exome capture and sequencing details).
To drastically reduce errors in the subsequent analyses,
cells were discarded if they had <70% coverage of the
exome targets or a significant false heterozygous rate
across the X chromosome due to amplification and/or
hybridization failures. With a total of 66 cells sequenced,
44 single cells from the tumor tissue (hereafter referred
to as BC cells) and 11 from the normal adjacent tissue

Page 2 of 14

(hereafter referred to as BN cells) were qualified and
selected for subsequent analyses (Additional file 2: Table
S1). The average sequencing depth in exome regions of
the qualified single cells was 40-fold, compiling a com-
prehensive dataset of approximately 2,200-fold coverage
from all cells, which enabled the genotype calling for
the majority of sites in the exome regions [10]. We
achieved an average of 88.6% whole-exome coverage of
all qualified single cells (Additional file 2: Table S1) and
covered more than 60% of the target region greater
than 5x sequencing depth in all cells (Additional file 3:
Figure S2C-D).

In addition to single-cell exome sequencing, we also
sequenced the whole exome of bulk DNA from the same
bladder cancer tissue with 137x coverage and the normal
bladder tissue with 28x coverage to use as a control for
evaluating the data quality of our SCS (Additional file 3:
Figure S2A-B, Additional file 2: Table SI).
Data described here is available in the NCBI Short Read
Archive [SRA051489] and GigaScience [11].

Analyses

Variation calling and quality assessment

We carried out sequencing data evaluation, somatic
mutation calling, and additional bioinformatics analysis
as described by a pipeline described in [8,9], with minor
modifications as detailed in Additional file 4: Figure S3.

Using these data, we first determined the percentage of
alleles that were missing due to errors introduced by
WGA and exome capture in each single BN cell, and
found that approximately 40% of the heterozygotes had
one allele dropout (ADO) (Additional file 5: Table S2).
This performance was comparable to previous work
[8,9,12]. Additionally, we took the ADO rate into account
for all subsequent analyses to ensure the accuracy of
our findings.

We also examined the percentage of alleles in the
homozygous samples that were false-discovery events
due to errors or artifacts during SCS. The false discovery
rate (FDR) was very low, at 6.7 x 10, which was com-
parable to that of conventional tissue sequencing using
the same sequencing platform in a previous report [13].
We further assessed FDR by examining the sequence
generated from the mitochondrial DNA. While not spe-
cifically targeted on the exome-capture array, sufficient
mitochondrial DNA became captured to cover the
16,561 bp genome by 10-100x or more. The aligned
sequence reads of mitochondrial DNA for each single
normal cell were analyzed by sequence analysis/map
(SAM) tools [14] to generate predicted variants. For 11
single normal cells, the predicted variants were manually
inspected, and sites with fewer than five mutant
reads were discarded. This resulted in seven mutations
identified, with no two cells having the same mutation.
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Assuming all were false positive, this gave an FDR of
2.6x10°. In total, the false discovery analyses pro-
vided very strong evidence that when multiple single
cells had the same mutation, those variants were true
somatic mutations.

We then ascertained somatic mutations in the tumor
cells from SCS as noted in [8,9]. A somatic mutation was
defined as a site that was consistently called homozygous
in all BN cells (with a minimum of six read-coverage BN
cells), but had mutant in less than three BC cells. We set
this specific threshold for cell numbers to eliminate
errors and artifacts from the SCS process: the required
number of BN cell was based on a binomial test using
our ADO (Additional file 6: Figure S4B, Additional file 5:
Table S2), qualified BN cell number, and whole-exome
size; the required number of BC cells was determined
based on a binomial test with the false discovery (Add-
itional file 6: Figure S4A), the qualified BC cell number,
and the whole-exome size.

In total, 443 somatic mutations were identified from a
single-cell exome and its 100 bp flanking regions (Table 1,
Additional file 5: Table S2), of which 146 were nonsy-
nonymous mutations in a total of 205 somatic mutations
in exons. We randomly selected 17 predicted genotypes
(in 17 mutation genes), and with being able to amplify a
total of 54 DNA fragments in randomly selected 33 can-
cer cells and three fragments in one normal cell (only
limited DNA products for normal cells) as control, 54
(including all three in the normal cell) of the fragments
(94.73%) and 100% of predicted genes were confirmed by
PCR-Sanger capillary sequencing, supporting that our
experiment and mutation calling pipeline used in this
study was of high confidence. In addition, the vast ma-
jority of these somatic mutations (374 in 443, or 84.42%)
ascertained from single cells were also supported by at
least one mutant read from sequencing read data of bulk
tissue DNA (BC tissue) (Additional file 5: Table S2B),
which further indicated that the mutation calls in single
cells were mostly true positives after amplification errors
were efficiently removed. Mutational spectrum in this
tumor was dominated by C:G >T:A transitions, equiva-
lent to a prior sequencing study of TCC [6]. Of note,
none of these mutations appeared in the commonly mu-
tant MI-TCC genes, TP53 or RBI1. Nonetheless, we
observed significant enrichment of loss of heterozygosity
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and copy number variations [15] in Chromosome 9 and
11 (Additional file 7: Figure S5), which were commonly
mutant in MI-TCC [2,3], reconfirming this TCC was
muscle-invasive.

In addition to the evaluation of the specificity for mu-
tation calling, we also took advantage of SCS to estimate
the frequency of mutant alleles in the cell populations
within the MI-TCC. The cell mutant allele frequency
from multiple single-BC cells was highly correlative
(R* >0.89) with the mutant-read frequency in all read-
covered mutant sites in BC tissue (Additional file 6: Fig-
ure S4C). This result indicated that the frequency esti-
mation from single cells was accurate and the genetic
analyses of these single cells can, on behalf of this MI-
TCC, enable us to apply population genetics analysis to
this cell population.

Of additional note, when we used conventional exome
sequencing of the DNA from the whole tissue samples
and then compared the consensus sequences from the
BC and BN tissues, though with very high sequencing
depth (137-fold) for BC tissue, we could only identify
134 (30.25% of 443) high-confidence mutations found in
our single-cell analyses, which indicated that single-cell
analyses had a much higher sensitivity for identifying
rare mutations present in tumor tissues.

Inference of tumor development by population

genetics methods

The comprehensive data set and accurate estimation of
allele frequency, that we obtained for the tumor and nor-
mal cell populations, provided us an unprecedented op-
portunity to apply population genetics analysis methods
to decipher the genetic pattern of this bladder
cancer development.

To do so, we first derived the somatic mutant allele
frequency spectrum (SMAFS) separately for the tumor
and normal cells to gain a genetic landscape during the
development process of this TCC (Figure 1). The SMAFS
of normal cells showed that the somatic mutations iden-
tified in normal tissue did not spread across the popula-
tion (nearly all mutations had a frequency of <0.1),
suggesting that these changes were primarily cell-specific
changes in terminally differentiated cells (Figure 1A). In
contrast, the SMAFS of tumor cells showed an abun-
dance of much higher frequency (> 0.1) mutant alleles in

Table 1 Summary of somatic mutations called in single-cell exome sequencing

Mutant alleles observed in Total CDS 3'UTR 5'UTR Intron Intergenic
matched tissue sequencing N (%) NS N (%) SN (%) NS/S N (%) N (%) N (%) N (%)
Yes 374(84.42) 133(91.10) 54(91.53) 246 13(92.86) 7(87.50) 161(77.40) 6(75.00)
No 69(15.58) 13(8.90) 5(847) 260 1(7.14) 1(12.50) 47(22.60) 2(25.00)
Total 443(100) 146(100) 59(100) 247 14(100) 8(100) 208(100) 8(100)

Note: ‘NS/S" indicated the rate of the nonsynonymous mutation count to the synonymous one in CDS region.
CDS, Coding sequence; NS, Nonsynonymous; S, Synonymous; UTR, Untranslated region.
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Figure 1 Somatic mutant allele frequency spectrum (SMAFS) of synonymous (green) and nonsynonymous (missense and nonsense,
red) mutants. (A) Normal cell populations and (B) tumor cell populations. The allele frequency was binned to 10 columns; the first column
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the cell population (Figure 1B). We observed a peak of
the tumor SMAFS at around 50%-frequency (p-value =
9.0x 107, Pearson’s goodness-of-fit test to a hyperbolic
model), which was likely due to an excess of heterozy-
gous mutations (where one allele was mutant and the
other allele was wild type) in the majority of the tumor
cells. This indicated that this TCC most likely originated
from a single ancestral tumor cell (a cancer stem cell)
that contained heterozygous mutations. Thus, all of the
tumor cells that were descendants of this ancestral cell
would contain the same common heterozygous muta-
tions, thereby resulting in the observed 50%-frequency
spectrum peak.

In addition, other somatic mutations outside the 50%-
frequency peak displayed a hyperbolic decay in counts
with mutant allele frequency increases, which is a char-
acteristic of cell population expansion with somatic
mutation accumulations under a neutral model— math-
ematically similar to a population genetics model pro-
posed at the individual human level [16]. This suggested
that the ancestral tumor cell acquired a growth advan-
tage over the other cells and expanded from this
event forward.

To assess whether the mutations under selection dur-
ing tumorigenesis occured by tumor SMAFS, we found
the nonsynonymous mutations had a frequency distribu-
tion of shift to the high frequency (right in the figure), in
other words, they had a significant excess (p-value = 0.02,
Fisher’s test) of higher frequency (> 0.1) mutations
compared to the identified synonymous mutations
(Figure 1B). This shift was also seen after excluding the
50%-frequency spectrum peak (40%-60%). Given that the
synonymous mutations were under neutral selection and
thus not conferring functional impacts, the above obser-
vation gave a signature that the somatic mutations
were generally under positive selection in this MI-TCC.
This suggested that the common ancestral tumor cell
acquired characteristics of the tumor and had a continu-
ally proliferative advantage over the normal cells during
the tumor development process. This constant selective
pressure would provide a similar means for specific sub-
clones of the tumor cells to gain additional mutations
which provided a higher growth or survival advantage
over other tumor cells. These beneficial growth confer-
ring mutations have been defined as driver mutations
[17], even though they may not be the triggering events,
but instead were acquired during tumor progression.

We next subjected the identified mutations to a princi-
pal component analysis (PCA) to characterize the genetic
heterogeneity of tumor and normal cells (Additional file
8: Figure S6). Here, the first vector clearly differentiated
the tumor cells from normal cells into two distinct clus-
ters, which indicated there was no contamination
of normal cells during tumor cell selection from the
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dissected tumor tissue, or vice versa. The eigenvector
positions of all the normal cells and normal tissue showed
they were nearly identical, also indicating no contamin-
ation in normal tissue samples. In contrast, the tumor
cells showed considerable diversity across the all principal
vectors (first to fourth vectors), which indicated this MI-
TCC was heterogeneous and also supported our conclu-
sions that the tumor cell population expanded during
positive selection on these specific mutant cells.

Identifying key mutant genes in TCC

To identify key genetic changes within this TCC, we
looked for genes that were commonly mutated, and then
placed the timing of these changes within the develop-
ment history of the tumor to infer their potential roles in
tumorigenesis. With numerous mutations (Additional
file 5: Table S2), SCS allowed us an unprecedented
opportunity to profile 146 nonsynonymous mutations (in
113 genes, see Additional file 5: Table S2B), to
decipher the composition of tumor heterogeneity
(Figure S6, Additional file 5: Table S2C), and to under-
stand the clonal structure of tumor cells. Using heat map
and its matched cell-lineage tree analyses (see details in
Methods), we clustered the tumor cells into three identi-
fiable subclones, each with distinguished signatures by
different sets of genes (Figure 2A). The subclone-specific
genes were also supported by concurrent and exclusive
mutation analysis (Figure 2C), for the two set of
subclone-specific genes were almost all (17/19) mutually
exclusive with each other. To further validate the subpo-
pulations by an alternative technology, we detected 27
genes, which were randomly selected in the three sub-
clones, with cancer tissue by mass
spectrometry (MassARRAY Analyzer) genotyping. The
92.59% (25/27) mutant allele frequency in cancer tissue
fitting with cell frequency in heat map, in the view of
most cells with heterozygous mutations, reconfirmed
high confidence of our heat map clustering (Figure 2B).

Almost all cells in the three subclones (Clones A, B, C,
and their inferred schematic diagram of clonal formation
in Figure 3 that would be discussed in next section) car-
ried mutations in a set of 22 common genes (Group I).
The presence of these commonly mutant genes, which
should include the driver gene or genes that initiated
tumorigenesis, in the cell populations further suggested
these subclones were derived from a common ancestral
tumor cell.

In addition, we also found two emerging subclones
(Clones B and C) that separately obtained additional
clone-specific mutant genes (7 and 12, respectively
for Clones B and C in Figure 2A) that occurred sub-
sequently to initiating events in tumor progression.
Although numerous evaluations with varying mutation
rates in tumor tissues and normal tissues [18-20], we
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Figure 2 (See legend on next page.)




Li et al. GigaScience 2012, 1:12
http://www.gigasciencejournal.com/content/1/1/12

Page 7 of 14

(See figure on previous page.)

Figure 2 Clonal structure of tumor and normal cells. (A) Clonal structure of tumor and normal cells (rows) profiled in a heat map by
nonsynonymous mutant genes (columns). Based on sequencing data and taking uncertainty in allele observation caused by allele dropout and
binomial noise, the likelihood ratio for being not mutant was calculated for every gene in every cell. A profiling color of red meant a gene of
likely mutant in the cell, while blue meant not mutant. Three major cell subclones were identified in tumor cells: 1) Clone A, with concordant
mutant genes in Group |; 2) Clone B, with concordant mutant genes in Group | and Group IIl; 3) Clone C, with concordant mutant genes in Group
I'and Group Il. Normal cells were clustered together (Clone N), free of mutations in all the three gene groups. (B) Somatic mutant allele frequency
of certain genes in cancer tissue were detected by mass spectrometry. We detected 27 genes, in the three subclones incancer tissue by mass
spectrometry (MassARRAY Analyzer) genotyping. (C) Concurrent and exclusive mutation analysis of mutant genes in tumoral cell population.
Concurrent and exclusive mutation analysis was performed with two Perl packages [41,42]. The result was a concurrent and exclusive p-value
between each two selected genes, indicated as depths of color. Note: a p-value 20.3 was indicated as white.

conservatively assumed a mutation rate of 5x 10 per
base pair per cell generation, given that cancer tissues
did not have a lower mutation rate than adjacent normal
tissues. Thus, the divergence time between clones should
be less than 40 generations. Hence, the two emerging
subclones appeared to have originated late in the tumor
history, and should only make up a small proportion of
all the cells by random. However, Clones B and C each
represent approximately 35% of the tumors’ cells, which
was significantly larger than expected. This suggested the
two subclones were undergoing positive selection over
original Clone A, revealing the subclone-specific genes
were not all passenger mutations, but instead included
mutations that conferred additional growth or survival
advantages. Thus, subclone-specific genes were likely to
be equally important in understanding the complex
makeup of this tumor.

Next, we surveyed the identified commonly mutant
genes in an additional cohort of 99 TCC patients by the
conventional exome sequencing [6] (Additional file 9:
Table S3), to determine whether these mutant genes
were all unique to this patient or exist recurrently as

mutant genes which would more likely to be candidate
cancer genes. We found four genes, out of the 22 com-
monly mutant genes (Group I), also had non-silent
mutations in at least three other TCC patients, including
CFTR (mutant in seven patients), NIPBL (mutant in five
patients), ASTNI (mutant in four patients) and DHX57
(mutant in three patients), which were all novel findings
of this study. These mutant genes in the derived ances-
tral tumor cell may have complementary rather than
overlapping functions, and then cooperate to confer an
overall growth or survival advantage. Of interest, the
known functions of these recurrently mutant genes were
diverse. For example, NIPBL was a cohesion complex
regulator, playing a role in recruiting histone deacetylases
to chromatin, and was the cause of most cases of Corne-
lia de Lange Syndrome that can lead to severe
developmental anomalies [21], and was also identified
in ovarian and other tumors [22]. Mutations in these
chromosome-remodeling proteins may lead to epigenetic
changes followed by deregulated gene expression and
consequently, tumorigenesis [23]. In addition, CFTR was
a chloride channel and the cause of cystic fibrosis [24];

Fertilization  Birth

cell population.

CFTR DHX57

Cancer initiation

Figure 3 Schematic diagram of cancer initiation and progression of this TCC patient. The cancer initiation and progression was placed
within the life history of this TCC patient. A total of eight recurrent genes, involved in three clones, are indicated in the schematic diagram.
A (red), B (blue), C (purple) represent Clone A, B, C in the cancer cell population, respectively; N represents Clone N (green) of the normal

Cancer progression

Monoclone formation




Li et al. GigaScience 2012, 1:12
http://www.gigasciencejournal.com/content/1/1/12

DHX57 was a putative ATP-dependent RNA helicase
truncated in this TCC tumor [25]; and ASTNI was a
neuronal adhesion molecule shown to be mutant in pre-
vious tumor studies [26,27].

We also identified three recurrently mutant genes,
which were all also first found in this study, among the
subclone-specific genes that may serve as potential driver
genes unique to clones B and C. Among Clone B, ATM
was mutant and found recurrently altered in five other
TCC patients. ATM was a known tumor suppressor that
played a key role as a cell-cycle checkpoint kinase in re-
sponse to DNA damage [28,29]. From Clone C-specific
mutant genes, COL6A3 and KIAA1958 each recurred in
four additional patients. COL6A3 encoded a collagen
protein reported to have significant changes in expres-
sion level in certain tumor tissues [30] and was
a putative pancreas cancer biomarker [31]. The role of
KIAA1958, however, remained uncharacterized, but its
potential role made it an interesting candidate for future
analyses in tumors.

To further assess the likelihood of these seven recur-
rent genes being important to TCC development of this
patient, we also scored the genes with Q-score by cancer
driver prediction [8,32] that believed driver genes were
likely to contain significantly more nonsynonymous
mutations than background mutations. We observed that
four genes (CFTR, ASTN1, DHX57 and KIAA1958) had a
Q-score higher than or close to 1 (10% false discovery
rate). Although not all Q-score genes were higher than 1
(Additional file 10: Figure S7), we still believed all these
recurrent genes were likely to be of great importance in
TCC, given that the key importance of a driver gene
depends on its functional impact more than just accumu-
lation of more and more nonsynonymous mutations.

Discussion

Here we carried out deep exome sequencing of individ-
ual cells from both tumor and adjacent normal tissues of
an MI-TCC patient. Overall, the genetic profile of gene
mutations in this MI-TCC indicated that the genesis of
this tumor was multi-factorial, though it did not include
the typical genetic signatures found in many other TCC
tumors. The data from the single-cell exomes allowed
us to successfully apply a population genetics analysis
using the individual cells and provided evidence that this
MI-TCC had a monoclonal origin. With comparison
of SMAFS analysis between tumor and normal cells, we
discovered the tumor cells suffered constant positive
selection and accumulated driver gene mutations during
both the initiation and progression processes. We had
successfully deciphered the subclonal structures and cell-
lineage trees of this complex tumor tissue, and
identified several putative driver gene candidates using
additional tumor samples from a 99-patient cohort.
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Anchoring these mutant genes to cell-lineage tree
branches revealed mutually exclusive subclone-specific
driver gene candidates, which may provide an insight into
how a tumor evolves into the difficult to treat metastasis.

Given the importance for understanding tumor devel-
opment mechanisms for designing workable cancer
treatments, several models have been proposed to
characterize this complex process. These include the
clonal evolution model [33], the mutator phenotype
model [34],and the stochastic progression model [35].
With the data from our single-cell exomes, we recon-
structed the developmental history of this tumor and its
subclones (Figure 3), providing new information relevant
to these models. Our data indicated this tumor had a
monoclonal origin from an ancestral cell with multiple
mutant driver gene candidates that could generate the
hallmarks of cancer [36], which fit best with the clonal
evolution model. The only ambiguity in our defined
tumor development process, however, was whether the
inferred common ancestral cell represented the initial
tumor cell, or whether it emerged after an earlier tumor
initiation event and developed growth/survival advan-
tages over other early tumor cells via clonal selection.
Further studies on early-stage tumor tissues would serve
to distinguish between the two scenarios. Of additional
interest, we found certain mutations that function in
genome stability and DNA repair in this tumor, suggest-
ing this MI-TCC would also be compatible with the
mutator phenotype model, as several driver genes under-
lying tumor initiation followed by clone-specific expan-
sion. The fact that our data fit both the cancer evolution
and mutator phenotype model suggests that a single
model may not serve as a suitable model for all types, or
even one type, of cancer.

In this study we carried out genetic analyses of individ-
ual cells collected from a whole tumor, rather than from
specific tumor coordinates. Thus a clear next step, given
distinct genetic differences within the tumor [37], is to
obtain a set of single cells from different tumor quad-
rants and carry out similar cell population analyses — also
beneficial for designing more effective drugs and
efficient treatments. Defining the genetic changes and the
evolution of such changes within these different compo-
nents of a tumor may indicate the presence of different
types of selective pressures, or of specific genetic muta-
tions that are important to areas of tumors that are inter-
acting with separate types of cellular microenvironments.

Methods

Case report and sample collection

The patient was a 57-year-old male, diagnosed with
primary muscle-invasive transitional cell carcinoma
(MI-TCC) of the bladder according to the 2004 World
Health Organization (WHO)/ International Society of
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Urological Pathology (ISUP) grading systems. The details
of diagnosis were as follows (Additional file 1: Figures S1
and Additional file 3: Figure S2): a 7 x4 x4 cm papillary
tumor in the trigone of the urinary bladder, invaded the
bladder wall — the cut surface was grey-white and brittle,
and classified as stage II (T5-NyM,) under microscopic
examination. Tumor invasion into shallow muscularis of
bladder wall was observed, but it did not penetrate deep
into the muscularis and serous layer. Furthermore the
tumor did not invade the prostate tissue or cause a bilat-
eral ureteral obstruction, and there was no metastasis in
six pelvic lymph nodes. The hematoxylin eosin-stained
sections prepared using the cancerous tissues were
microscopically evaluated by two independent patholo-
gists (Additional file 3: Figure S2). Afterward the primary
tumor sample and matched para-carcinoma tissue
were obtained from a surgery-resected sample from this
MI-TCC patient at the Peking University Shenzhen
Hospital. Informed written consent was obtained from
the study participant. The studies were conducted in
accordance with the Declaration of Helsinki II and were
approved by the local Ethical Committees.

Single-cell isolation and WGA

Every step during the experiment was reduced to a strict
minimum. With sufficient dispersion and cascade dilu-
tion of cells, single cells were randomly isolated from
collagenase I and IV digested tumor or para-carcinoma
tissues into PCR-ready tubes using an inverted micro-
scope and a self-made mouth-controlled, fine hand-
drawn micro-capillary pipetting system. The single cell
isolation was visually confirmed by photograph under
microscope. Afterward, WGA of single-cell DNA were
performed using the REPLI-g® Mini Kit (Qiagen GmbH,
Hilden, Germany) according to the manufacturer’s
instruction, using a no cell reaction as a negative control,
and a reaction of human tissue genomic DNA as positive
control.

Quantitation and genome-integrity assessment of the
WGA products

The DNA concentration of the WGA products were
measured with highly sensitive fluorescence-based
Quant-iT™ assays using the Qubit™ Quantitation Plat-
form (Life Technologies, Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instruction. The gen-
omic integrity of the qualified products (> 60 ng/ul) were
then assayed with their amplification represented by 10
housekeeping-gene-PCR tests, and the 10 genes (PRDX6,
RPL37a, ADDI1, ARHGEF7, EIF2B2, PSMD7, PSMB6,
MC2R, BCAT2, and ATP50) were interspersed across 10
different chromosomes. Afterward, WGA products of
best performance from both housekeeping PCR (=8/10)
and Qubit assays (> 60 ng/pl) were selected for
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downstream experiments. Every step was performed
along with a sample of genomic DNA from human
tissue as a positive control and a no template reaction as
a negative control, respectively.

Whole exome capture and sequencing of samples

High molecular weight genomic DNA was extracted
from the primary tumor and matched para-carcinoma
tissue, respectively. And for both DNA samples (single
cells and matched tissues), whole exome capture was
accomplished based on liquid phase hybridization of
sonicated 2 pg genomic DNA to the bait cRNA library
synthesized on magnetic beads using the SureSelect”
Human All Exon 50 Mb kit (Agilent Technologies, Santa
Clara, CA, USA) according to the manufacturer’s pro-
tocol. The captured targets were subjected to massive se-
quencing using the Illumina HiSeq2000 with the paired-
end 100 bp read option, according to the manufacturer’s
instruction.

Public dataset access

Human (Homo sapiens) reference genome sequence
(Hgl8) and its annotation files (e.g., dbSNP v128) were
downloaded from the University of California Santa Cruz
Genome Bioinformatics site [38]. The targeted
region files of exome capture were downloaded from
the Agilent Technologies website [39].

Reference-guide genome assembly

SOAPaligner/SOAP2 version 2.20 was used to align all
short sequencing reads to the Hgl8 reference genome
with a maximum of two mismatches and non gap para-
meters. The insert size distribution of each library was
checked by Eland contained in the Illumina Pipeline, and
thus the insert size range was set for SOAPaligner.

SNP calling

All reads uniquely mapped to exome region and 100 bp-
flanking regions were selected for SNP calling. SOAPsnp
version 1.03 was used for calculating the likelihood
of each cell genotype and mixed tissue. In each sample,
putative SNPs were filtered based on the following cri-
teria: (1) a Q20 quality cutoff; (2) at least five reads; (3) a
p-value >0.01 (that means no significant difference
between the sequencing quality of the two alleles in a
heterozygous genotype); (4) a 5 bp distance from each
other; and (5) 1/3 ~ 3 variation between quality score of
two bases in heterozygous sites. And the final SNP data
of the filtered SNP in each cell was combined.

Evaluation of ADO rate
With the final SNPs, the ADO ratio is defined as the
random non-amplification of one of the alleles present in
a heterozygous sample.
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We first defined a background dbSNP subset, which
was read-covered in both tissue sequencing of the tumor
and matched normal among dbSNP. We then deter-
mined the heterozygous coverage ratio per sequencing
depth, which was calculated by dividing the heterozygous
number of this sample by the total read-covered number
in this background dbSNP subset, for single normal cell
and normal tissue sequencing, respectively. We then cal-
culated the relative FNR per depth in a single normal
cell,

HR(T,n) HR(S,n)
CR(T,n) CR(S,n)
HR(T, n)

CR(T, n)

Relative FNR(n) =

n the sequencing depth

T the tissue sequencing

S the single cell sequencing

HR the heterozygous rate of one kind of sequencing
under 7 x sequencing depth

CR the read-covered rate of one kind of sequencing
under 7 x sequencing depth

We thus calculated the ADO of a single normal cell,
which was the median of all relative FNR per depth on
non-outlier depths (the outlier depth was the depth
when the FNR in tissue sequencing at this depth was
higher than the SCS). And finally we calculated the ADO
in all whole-exome SCS as the mean of ADO of all nor-
mal cells.

Evaluation of FDR

The FDR is defined as a false heterozygous site in a
homozygous sample, which may be due to amplification,
hybridization or sequencing errors. We chose a homozy-
gous subset which was high-confidence (Quality-score =
99 and 95% confidence interval of distributive depth
under Poisson distribution), and then we calculated the
number of discrepant sites of single qualified normal cell
in the homozygous subset. The FDR per cell was indi-
cated as the number of discrepant sites divided by total
covered number of high-confidence homozygous subset.
And finally the FDR in all whole-exome SCS was indi-
cated as the mean of all qualified normal cells.

Identification and experimental validation of

somatic mutations

To eliminate the random errors or artifacts induced by
SCS, we built two binomial tests to detect high-
confidence point somatic mutations (SMs) in capture
regions. The putative SMs were filtered based on the fol-
lowing criteria: (1) homozygous normal in all normal
cells (at least read-covered in six normal cells); (2) the
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homozygous genotypes in normal cells were consistent
in normal tissue; (3) at least mutant in three cancer cells
among a total of 44 qualified cancer cells.

The criterion (1) was set by a binomial test with ADO,
qualified normal cell number, and whole-exome size to
eliminate the random errors.

P(i) = Clpa (1~ pa) "
Pi)-S<1

i the normal cell number of read-covered for a
specific mutation

7 the total number of qualified normal cells

Pa the ADO

P(i) the probability under binomial distribution
S the whole-exome size

Then the criterion (1) was set according to the largest
cell number ¢ fulfills above inequation.

And the criterion (3) was set by a binomial test with
FDR, qualified cancer cell number, whole-exome size to
eliminate the random errors.

i the cancer cell number of mutant of a
specific mutation

n the total number of qualified cancer cell
prthe FDR

P(i) the probability under binomial distribution
S the whole-exome size

Then the criterion (3) was set according to the largest
cell number fulfills above inequation.

High confident SMs in BC cells were randomly
selected for experimental validation. The loci of corre-
sponding single cells were amplified, sequenced and
analyzed by MassARRAY® Analyzer (SEQUENOM, San
Diego, CA, USA).

Correlation of SMAF between SCS and whole

tissue sequencing

Correlation coefficient of determination is a goodness-
of-fit measure for models based on the proportion of
explained variance. The somatic mutant allele frequency
in SCS was indicated as unfolded site frequency of mu-
tant alleles, and the somatic mutant allele frequency in
tissue sequencing was indicated as read frequency of mu-
tant alleles.

SMAF
Cell population genetic inferences based on called
(inferred) SNPs can lead to serious biases and possibly
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false inferences for the high ADO ratio for each cell. We
have therefore developed a series of statistical techniques
that can take uncertainty in genotype calls and allele fre-
quency estimation into account. Instead of utilizing a
Bayesian estimation-based method called site-frequency
spectrum (SFS) on population individuals [10], we used
this SFS to calculate the somatic allele frequency in each
SM site of all BC and BN cells respectively, based on
the same methods of estimating allele frequencies
from reads in one site and additional estimating sample
allele frequencies.

PCA

To identify the most variable factors in classifying
subgroups among single cancer cells, we utilized an R
package, pcaMethods v1.12.0 [40], in performing
the PCA based on the genotyping result at all somatic
mutation sites on each single cell. Missing values were
automatically estimated by probabilistic method within
the R package.

Heat map 2-dimension clustering

The 2-dimension heat map clustering of mutant genes
and cells is based on the somatic mutations using R
language. Color indicates the presence of tendency of
mutant or normal, which was showed as logl0O value
of the relative probability of mutant to the probability of
normal (non-mutant) after Bayes calibration by FDR,
ADO and a priori probability from normal tissue.

For each mutant point site which is covered by se-
quencing reads in each cell, we first derived the mutant
posterior probability by Bayes calibration with FDR,
ADO and a priori probability from normal tissue.
The values in heat map array and corresponding pos-
terior mutant probability were calculated by the follow-
ing formulas:

P (A;) x P(Oy]A;)

Fo(&]0) = > Pr(A) x P(Oi]A;)
- P,(NC|O;) + P,(CC|0;)
= oo P )

A, is one kind of the three genotypes (NN, NC, CC
for homozygous normal, heterozygous mutant,
homozygous mutant, respectively) in the site of

each cell.

O; is one observed genotype (NN or NC or CC).
P,(A;]0;) is the mutant posterior probability of A; on
the observation of O;.

Pr (4 is the priori probability of A; calculated from the
corresponding site at normal tissue.

P(0O;|A;) is the probability of A; calibrated by ADO
and FDR.
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H is the logarithmic value of the relative probability of
mutant to the probability of normal used for heat map
2-dimension clustering.

The priori probability of A; calculated as following
formulas:

NN innormal tissue

1
{E 1-P,), NCinnormal tissue
P.(A) = 1 NCinnormal tissue
() P,(NC) = {5 Py) NN innormal tissue
1
P,(CC) = i(l—Pn)
And

1
=, Quality Score < 100r rank sumtestp — value < 0.05

0.9,10 < Quality Score < 20
0.99,20 < Quality Score

P, =

Note: Quality score and rank sum test p-value are the
values from the files after sequencing read alignment
by SOAP.

The probability of A; was calibrated by ADO and FDR
as following formulas:

P(OJNN) = (1 — )"

_fhomo) X C:,n Xf[;m X (1
1 n—m
P(NNINC) = 2 X fiuwer  C}f % fj" (1—f)" "

P(O;INC)q P(NCINC) = (1 — fheter) % 1

1 m
P(CCINC) = 5 % fuetr X C'™" % S x (1= 1)

P(OL|CC) = (1 _fhomo) X C}(qn—m) Xfl;(n_m> X (1 —fl‘?)m

fhomo is the ADO in homozygous genotype.
fheter is the ADO in heterozygous genotype.
J» is the FDR in single cell sequencing.

If a site is not covered by reads in one cell, then we es-
timate its logl0 value by averaging all the logl10 values in
other cells at this site.

The columns and the rows were also ordered as in the
tree with sub clusters. And certain suspicious genes illu-
strated as red (likely mutant) in BN cells, which were
defined as >1 BN cell containing value >0.5 (light red),
in our raw data were filtered in heat map clustering.
Having been tackled with FDR, ADO and other sources
of error, we suggested that the remaining suspicious
genes may due to paralogous alignment or false negatives
under our model. Under extreme low FDR value, the
false negatives here might derive from super high
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sensitivity of our heat map model to even a low number
of error sequencing reads in a genotype, that is, if there
exist two mutant reads in a total of 30 sequencing reads
in BN cells, its adjusted heat map-array value was likely
to higher than 1 (red) in our model. However, two error
sequencing reads out of 30 reads is understandable in a
current second-generation sequencing platform. Finally,
the remaining 51 genes (yellow-colored genes in Add-
itional file 5: Table S2B) were used for the heat map and
its matched cell-lineage tree analyses.

Concurrent and exclusive mutation analysis

Concurrent and exclusive mutation analysis was per-
formed with two Perl packages [41,42]. The depths of
color in array were the concurrent and exclusive p-value
between each two selected genes.

Function analysis of key genes

To analyze the functional impact of the somatic
mutations in key genes, we first investigated the pro-
tein sequence of each key gene from the UniProtKB/
Swiss-Prot database [43]. The amino acid changes were
determined by the human genome annotation files
from the University of California Santa Cruz Genome
Bioinformatics site [38]. We then mapped the abnormal
amino acid changes to the protein sequence of each gene
and determined which domain had been altered. Further,
altered signaling pathways were determined by mapping
the key genes to the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database [44].

Availability of supporting data

The raw sequence data in the fastq format from this
study were deposited in the NCBI Short Read Archive
under the accession number SRA051489 and alignments
and genotyping data is available from GigaScience [11].

Additional files

Additional file 1: Figure S1. Clinical information of this MI-TCC sample.
(A). Photography gross organ of the MI-TCC sample after surgery. (B).
Histology of the MI-TCC sample. A hematoxylin eosin-stained tumor
aspirate smear of the TCC patient was showed.

Additional file 2: Table S1. Sequencing data summary and allele
dropout estimation in single-cell sequencing of TCC. (A). Qualified
samples. Cell IDs with “BC" (Bladder Cancer) as prefix were cells from
tumor tissue, and those with “BN” (Bladder Normal) from tumor-adjacent
normal tissue. The “SC Mean” row was summary of all single cells while
values were indicated with 95% confidence interval by "Mean + SEM".
The last two rows were summary of data production from sequencing
tumor tissue DNA (“BC-Tissue”) and tumor-adjacent tissue DNA (“BN-
Tissue”). Mean depth was calculated by total aligned data mapped to
exome capture target regions divided by the length of target regions.
Coverage was calculated by length of target regions covered by at least
one uniquely mapped read divided by the total length of target regions.
(B). Filtered samples. The four cells covering >70% were filtered for
significant high false SCS error, which was indicated as high false
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heterozygous rate across X Chromosome in the male patient. The rest of
cells were filtered for low exome coverage (<70%). (C). Allele dropout
(ADOQ) estimated by single normal cells. The mean was indicated by with
95% confidence interval by “Mean + SEM".

Additional file 3: Figure S2. Fold coverage of target regions for single
cells and matched tissues sequenced in the Discovery Screen. (A). The
box plot depicted the distribution of mean coverage of tissue from
cancer and matched normal tissue sequenced in the discovery stage. CT,
cancer tissue; NT, normal tissue. (B). The box plot depicted the
distribution of fraction of targeted bases covered by at least 1%, 5x and
10 X across the cancer tissue. (C). The box plot depicted the distribution
of mean coverage of all cells from cancer and matched normal
sequenced in the discovery stage. Lines in the two central boxes showed
the medians, and lines outside the two central boxes showed the first
and the third quartiles of the mean depths. SCC, single cells from cancer;
SCN, single cells from normal. (D). The box plot depicted the distribution
of fraction of targeted bases covered by at least 1x, 5x and 10 X across
the 44 qualified cancer cells. Lines in the inner three boxes showed the
medians, and lines outside the three boxes showed the first and the third
quartiles.)

Additional file 4: Figure S3. Bioinformatics pipeline of single cell
analyses.

Additional file 5: Table S2. Somatic mutations in this TCC patient. (A).
Summary of somatic mutation count in this TCC patient. (B). Annotation
of somatic mutations in this TCC patient. (C). Somatic mutations in the
single cell population this TCC patient.

Additional file 6: Figure S4. Quality assessment of single-cell
sequencing. (A) and (B). Relationship between estimated false discovery
rate (FDR) / allele drop-out (ADO) rates with quality score and read depth
after sequencing read alignment in SCS. The selected thresholds (Q20
with depth=6) in a single cell would result in 041 ADO rate and 6.7E-05
FDR. (A). The FDR varied along with the sequencing depth and quality
score respectively. (B). The ADO rate varied along with the sequencing
depth and quality score respectively. (C). Correlation of frequency
between single-cell mutant allele count and mutant allele count in whole
tissue sequencing. The single-cell allele count was calculated from the
haploids that harbor mutant alleles divided by the total number of
haploids (number of cells times 2). The allele count in whole tissue
sequencing was calculated by reads harboring mutant alleles divided by
total reads covering a site.

Additional file 7: Figure S5. Copy number variation (CNV) and loss of
heterozygosity (LOH) analysis in tissue sequencing of TCC and its
matched control across the targeted regions. The CNV and LOH were
analyzed with ExomeCNV [15] with default parameters. The most outer
ring showed the chromosome ideograms in a pter—qter orientation,
clockwise with the centromeres in red. From inside to outside, each data
track represented (without Chromosome X and Y): The middle cycle: log
ratio of tumor and normal depth-of-coverage, with the segment mean in
pink line, the region of gain highlighted in red, and the region of loss
highlighted in blue; The inner cycle: the B-allele frequencies (BAF) from
ExomeCNV output from tissue exome sequencing with the region of LOH
highlighted in blue.

Additional file 8: Figure S6. Principal component analysis (PCA) based
on mutant alleles divided tumor cells and normal cells. Since normal cells
were genetically extremely close to each other, they were not
distinguishable and shown as one point. The exome of BC tissue (purple
asterisk) and BN tissue (red tip) were also shown in the PCA to indicate
averaged signals.

Additional file 9: Table S3. A list of somatic mutations identified in the
cohort of 99 TCC patients.

Additional file 10: Figure S7. Driver gene prediction of the recurrent
Genes of the TCC. The driver gene prediction analysis of the 7 recurrent
genes was indicated as Q-score. The vertical axis was the

Q-score, and the circle area indicated the cell mutation frequency.
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