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Abstract

Hydration pertains simplistically to body water volume. Functionally, however, hydration is one aspect of fluid
regulation that is far more complex, as it involves the homeostatic regulation of total body fluid volume, composition
and distribution. Deliberate or pathological alteration of these regulated factors can be disabling or fatal, whereas they
are impacted by exercise and by all environmental stressors (e.g. heat, immersion, gravity) both acutely and chronically.
For example, dehydration during exercising and environmental heat stress reduces water volume more than electrolyte
content, causing hyperosmotic hypohydration. If exercise continues for many hours with access to food and water,
composition returns to normal but extracellular volume increases well above baseline (if exercising upright and at low
altitude). Repeating bouts of exercise or heat stress does likewise. Dehydration due to physical activity or environmental
heat is a routine fluid-regulatory stress. How to gauge such dehydration and — more importantly—what to do about
it, are contested heavily within sports medicine and nutrition. Drinking to limit changes in body mass is commonly
advocated (to maintain <2% reduction), rather than relying on behavioural cues (mainly thirst) because the latter has

environmental stress.

been deemed too insensitive. This review, as part of the series on moving in extreme environments, critiques the
validity, problems and merits of externally versus autonomously controlled fluid-regulatory behaviours, both acutely
and chronically. Our contention is that externally advocated hydration policies (especially based on change in body
mass with exercise in healthy individuals) have limited merit and are extrapolated and imposed too widely upon
society, at the expense of autonomy. More research is warranted to examine whether ad libitum versus avid drinking
is beneficial, detrimental or neither in: acute settings; adapting for obligatory dehydration (e.g. elite endurance
competition in the heat), and; development of chronic diseases that are associated with an extreme lack of
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Background

The purpose of this paper is to critique the case for self-
determined (largely ad libitum) versus institutionally ad-
vocated hydration behaviour acutely and chronically,
with particular regard to humans moving in extreme en-
vironments. The major circumstance that might come to
mind is dehydration through sweating during work or
exercise in hot or humid environments, wherein daily
turnover of water can exceed 12 L but varies tremen-
dously [1,2]. Other environments may be problematic by
virtue of their insidious nature and therefore also war-
rant consideration. These include the following: altitude-
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mediated dehydration by virtue of physiological and
practical ramifications of high-altitude environments
(hypoxia, low humidity and frozen); immersion-induced
dehydration, particularly as might occur during open-
water endurance swimming, notably during the increas-
ingly popular 10 km and longer races held in sea water
in tropical locations, and; perhaps also chronic low-grade,
subconscious exposure to fluid dysregulation by way of a
sedentary lifestyle in the man-made environment. That
seemingly benign circumstance suffers from a notable
lack of hydration research [3], but is complicated by
related clinical conditions (e.g. diabetes, hypertension)
and pharmaceuticals (diuretics and lithium-based anti-
psychotic drugs). The main focus of this review is on
exercise-related dehydration because it is widely relevant
but controversial and topical. One intent with this review
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is to be provocative, to stimulate a critical re-examination
of the literature on effects of dehydration and hypohydra-
tion and thus help direct further research in this field.

Review

Dehydration refers to the process of losing water, which
usually gives rise to the state of hypohydration (lower-
than-normal body water). Many reviews are available on
the acute and chronic physiological and performance ef-
fects of dehydration and hypohydration, e.g. [4-9], so in-
formation therein will not be repeated here except as it
relates to the purpose mentioned above and the result-
ing questions expounded below. During physical activ-
ity, humans normally dehydrate to varying levels of
hypohydration and fail to recover their mass deficit im-
mediately following exercise despite ready access to
fluids during and after exercise, a situation that has
been referred to as both voluntary and involuntary de-
hydration [2,10,11]. We reiterate that ‘hydration’ is not
a simple notion of fluid balance; at a functional level, it
concerns the volume, composition and distribution of
body fluids, all of which are important and dependent
on the timing, nature and extent of hydrative stress
[3,9-14]. Indeed, the difficulty in measuring hydration is
well recognised, and others have reviewed the complex-
ity of its control and the errors inherent to its measure-
ment [1,3,4,7,10,15-18].

Key points

e Hydration refers simplistically to body water
content, but functionally, it involves the volume,
composition and distribution of body water, all of
which are important but dynamic and difficult to
measure collectively.

e This review critiques the case for ad libitum versus
prescribed/imposed hydration behaviour in adverse
environments, both acutely and chronically. Adverse
includes those environments that insidiously lead to
undesirable outcomes, acutely or chronically.
General reviews of the physiology of fluid regulation
in humans and the effects of hypohydration,
hyperhydration and hyponatraemia are available
elsewhere, e.g. [1,3,17,19].

1. What dangers are inherent with fluid-related stress?

Acutely, water is essential for physiological function at
the molecular, cellular and systemic levels [1,4]. For ex-
ample, it is: The medium in which metabolism occurs; a
reactant and a product; the basis by which the volume of
cells, tissues and organs is maintained; a shock absorber
(e.g. for the brain); the medium for the mass-flow trans-
port of gases, substrates, heat, hormones etc.; a thermal
reservoir with a uniquely high specific heat capacity,
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thereby being capable of accepting or releasing large
amounts of thermal energy with little change in tissue
temperature, and; the substrate for evaporative cooling
via sweating, which helps give humans an unparalleled
versatility for moving in hot environments. Suboptimal
physiological, mental and physical function and ultim-
ately death can ensue through either excess or inad-
equate intake of water, but in the absence of medications
and pathologies that cause dysregulation of fluid homeo-
stasis, inappropriate behaviour or insufficient availability of
potable water (and salt) is the essential feature underlying
these extremes.

Chronically, low-grade mild hypohydration possibly
contributes to suboptimal adaptation to repeated bouts
of stress (i.e. training or heat acclimation) and to health
impairment. For example, hypohydration appears to
contribute to urolithiasis (development of kidney stones)
[20], chronic kidney disease [21] and possibly also meta-
bolic disease by way of metabolic effects of the principal
fluid-conserving hormones, but the latter is speculation
in the absence of appropriate human studies. These pos-
sible outcomes are discussed below.

The salient issue is whether humans—individually or
societally—are acutely or chronically at increased risk of
harm from drinking ad libitum or from drinking avidly
based on beliefs about appropriate hydration practice
during exercise and other physical activity, or in relation
to a healthy lifestyle. In view of the strong influence of
the Internet and commercial interests [22,23], it is inter-
esting to note that the search string “The danger of de-
hydration” retrieves approximately 160,000 hits in
Google. Potential acute and chronic risks are shown in
Figure 1 and discussed below.

Acute hypohydration

Hypohydration can increase several forms of physio-
logical strain at rest and especially during physical exer-
tion, including cardiovascular [27-30], thermal [29,30],
oxidative [31], metabolic [30,32] and possibly immune
[33]. At least some of these effects are reduced or absent
with outdoor-activity/realistic airflows (e.g. for thermal
and cardiovascular strain) [34-37], depending on the
extent of airflow and hypohydration. The attenuating
effects of airflow are important but inadequately researched
for other forms of strain (e.g. metabolic, oxidative, cere-
brovascular and immune). Whether the increased physio-
logical and psychophysical strain promotes injury or
illness is less discernible. It is commonly advised that de-
hydration should be avoided because it impairs mood,
cognition, psychomotor skill and aerobic performance,
and predisposes to heat illness [e.g. [7]]: however, we gues-
tion how forcefully this advice should be applied in the
majority of environments and activities that humans engage
in, for five main reasons. First, as mentioned immediately
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Figure 1 Personal and societal effects of acute/chronic consumption of water above/below that required for fluid homeostasis. The
three incrementing font sizes denote outcomes causing a nuisance, morbidity and potential mortality. Outcomes with question marks are those for
which we are not aware of any direct supporting evidence for humans behaving autonomously. Asterisk denotes that hyponatraemia can occur
without hyperhydration per se, due to excess water relative to sodium content. The longer lists for hypohydration are not intended to convey
higher relative importance. For example, hyponatraemia may be implicated in multiple adverse outcomes chronically (see [24-26]).

above and below, the effects of hypohydration appear to
be physiologically, psychophysically and behaviourally
exacerbated in well-controlled but thereby also reduc-
tionist studies, yet much of the advice used to support
the benefits of limiting dehydration stems from such
studies. Second, the body mass losses experienced in
the vast majority of exercise training and competition
were only modest before the American College of Sports
Medicine published its influential Position Stands on hy-
dration, in which they advocated the complete avoidance
of any reduction in body mass in exercise and subse-
quently <2% reduction. That is, before the widespread
emphasis of an all-encompassing guideline, most people
appeared to self-regulate adequately in exercise training
and competition anyway [38,39].

Third, scepticism exists [23,40] with regard to the long-
held supposition that because dehydration increases body

core temperature—and increased core temperature predis-
poses to heat illness—then dehydration will correspond-
ingly increase the likelihood of heat injury [2,41-43]. Such
reasoning precludes the immense role of behaviour in
physiological control and, to our knowledge, is not sup-
ported for people in free-living circumstances anyway
[40]. Psychophysical strain increases concurrently to in-
creased physiological strain and will help drive behaviour
[44,45]. Indeed, when volunteers are substantively hypohy-
drated in field research experiments, they became so
thirsty and behaviourally averse to engaging in their work
[2] that they would be less exposed to exertional heat-
stress-mediated hyperthermia. Similarly, in lab studies that
impose substantive hypohydration, participants cease ex-
ercise earlier and at lower core temperatures than when
euhydrated [7,46], thereby limiting their exposure when
the usual factors such as drinking or high airflow are
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unavailable. While this involves a suboptimal state of
physical and social well-being, at least it provides self-
protection against one of the triggering factors for heat
stroke. The other major triggering factor of heat stroke is
systemic inflammation [47] and central effects of systemic
inflammation drive sickness behaviour, including lethargy.
Thus, humans appear well protected against inadvertent
heat stroke, as is evident from its rarity despite billions of
people engaging in physical activity and sporting competi-
tions in various environmental and immunological cir-
cumstances. We must emphasise here that we are not
attempting to belittle the potential for inflammation-
mediated heat stroke or the potentially contributing role
of hypohydration; we are instead attempting to highlight
the ability of normal physiology and behaviour to protect
oneself against life-threatening illness in hugely variable,
stressful circumstances. Clearly, recent or current febrile
illness is contraindicated for heavy work or exercise, espe-
cially in the heat, and it would be similarly ill-advised to
begin work or exercise when moderately hypohydrated,
especially in circumstances with limited opportunity for
rehydration or autonomy in controlling the exposure.
Thus, notable exceptions are in people without access to
fluids or perhaps in certain military circumstances where
autonomous behaviour is more constrained, but these are
special cases rather than the norm for physical activity.

Fourth, it is difficult to interpret the data apparently
showing that dehydration facilitates heat illness despite
numerous assertions of such (e.g. reviewed in [40,48]).
Most assertions refer only to review papers, heat exhaus-
tion or ‘exhaustion from heat strain, which is problem-
atic because exhaustion is a self-limiting and transient
outcome of exertion-related heat stress that helps pre-
vent the frank and far more serious illness of heat stroke
[49,50]. A frequently cited finding is that 17% of 5,246
cases of heat illness were associated with hypohydration
in military training (especially locations in the southern
USA in the summertime) [51]. But, unless this was a dif-
ferential diagnosis (which we do not know), the preva-
lence of hypohydration may have been as high among
individuals who did not succumb to heat illness. Irre-
spective, those statistics also appear to show that most
heat illness is not associated with hypohydration. Ath-
letes have consistently been found to tolerate substantial
hypohydration (>6%) during competitive exercise with
no ill effects [52,53], and the association between dehy-
dration/hypohydration and hyperthermia may be largely
spurious in high-airflow exercise settings due to the ef-
fect of exercise intensity on both factors [48,52].

Fifth and finally, by emphasising the importance of de-
hydration in heat illness so strongly, there is an inadvert-
ent risk that people will erroneously believe that
euhydration will protect against heat illness and thus, it
also becomes more likely for them or their subordinates
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to over-drink. Indeed, an overzealous approach to pre-
vent dehydration, especially in warm humid conditions,
may lead to a rare, but life-threatening illness associated
with the opposite fluid balance extreme—dilutional
hyponatraemia [54]. In summary, little evidence is avail-
able to implicate dehydration as an important mediator
of heat illnesses in exercise settings, and the protective
role of behaviour in these settings is not conveyed
sufficiently.

Other potential risks of hypohydration

Exercise-associated muscle cramps are not thought to be
caused by body fluid deficits of water or sodium content
[55,56]. Syncope may be more likely with hypohydration,
but is secondary to the effects of exercise and heat per se
and may have little functional significance in exercise
contexts [57]. Impaired cognition and skilled motor per-
formance are possible effects, which would be function-
ally significant in occupational and sporting competition
contexts. It remains unclear the extent to which normal
self-limiting levels of hypohydration impair cognition
acutely [8,58]. Even when tested without concurrent heat
stress or exercise (which may exert their own complex
effects; [58,59]), cognition has been found to be both re-
duced (at 1-3% hypohydration: [60-62]) and improved
(at 5%: [63]). Thirst has been shown to moderate the ef-
fects of hypohydration on cognition, with impairment
evident only in individuals who were thirsty [64]. This
makes it difficult to interpret data on cognition from any
study in which participants felt thirsty when hypohy-
drated, including recent and otherwise robustly con-
trolled studies on the effects of mild (approximately
1.5%) hypohydration [65,66], but where thirst was un-
fortunately not reported or considered as a separate fac-
tor. Thirst-related symptoms (headache) were evident
in mildly hypohydrated females but not males in those
studies, whereas cognitive functions were unaffected in
the females but visual vigilance and scanning memory
showed impairment in the males (at rest but not during
exercise). Since exercise promotes arousal, exercise
might attenuate or remove adverse effects of hypohy-
dration on cognition or mood [67], but this remains un-
clear [65,67]. Mood, particularly perceived fatigue and
tiredness, has consistently been shown to be impaired
during mild (1-3%) hypohydration in resting individuals
[65,66,68-70], but the concurrent stimulation of thirst
in these fluid-deprived individuals would ordinarily act
to prevent these outcomes [70]. Hypohydration has also
been shown to impair skilled performance and cogni-
tion of sport-specific tasks [62,71], but interpreting
these findings is again confounded by potentially im-
portant factors such as placebo effects and distraction
by thirst (Table 1). It therefore remains unclear as to
how much hypohydration per se (independent of heat)
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Table 1 Factors distinguishing the dehydration that occurs in many outdoor settings from that in hypohydration

research studies

Exercise settings (esp. outdoors)

Studies on hypohydration Comments

Seldom
Mostly <2% BM

Hypohydrated at start
Hypohydration extent

Airflow Usually high (e.g. >2 m/s)

Thirst Usually self controlled

Familiarised to, or blinded against,
the psychological effect of
intervention

Not applicable

Exercise pacing Often autonomous

Motivation to perform Higher?

Some
Usually 22% BM

Larger effects; see text and Figure 3
Larger effects; see text and Figure 3

Usually slow (e.g. <2 m/s)
and partial coverage

Exponential relation to heat transfer;
decreased Ty, and Qg req

Usually not self controlled,
nor reported in results

May interact with other factors in Table

Placebo and familiarisation effects
(see Figure 2 and [85])

Very rare

Often imposed, for part or Interactions with other factors in table

all of exercise

Limited? Interactions with other factors in table

Note that each of these factors can impair the validity of research findings for exercise occurring in outdoor settings, yet the findings of such research is largely

used to produce hydration policies that are applied to the outdoor settings.
Ts skin temperature.
Qi skin blood flow.

impacts on cognition, mood and skilled motor perform-
ance, particularly in movement situations and in the ab-
sence of thirst (which stimulates drinking, thereby
reducing hypohydration).

Acute hyperhydration and hyponatraemia

In healthy humans, hyperhydration is mostly well toler-
ated and transient at rest, incurring only discomfort, the
need for more frequent urination and sleep disruption.
In contrast, hyponatraemia arising from a dilution of
the extra-cellular fluid (ECF) with or without an excess
of body water volume (hyperhydration) is the most ob-
vious and dangerous effect of drinking beyond thirst
during exertional and/or environmental stress. The risk
is elevated among those who have ample opportunity
to ingest fluid in excess of requirements but difficulty
offloading it (i.e. reduced free water clearance). Predis-
posing factors include beginning exercise with low
plasma sodium concentrations [72], lower absolute but
higher relative intensity of exercise, older age, pharma-
ceuticals such as non-steroidal anti-inflammatory drugs
(NSAIDs) or selective serotonin reuptake inhibitors,
and especially higher-than-required levels of arginine
vasopressin (as occurs in the syndrome of inappropriate
anti-diuretic hormone secretion; STADH) [73]. Like heat
stroke, clinically significant hyponatraemia appears to
be rare during exercise but can be fatal, especially if
misdiagnosed. In Westernised society, hyponatraemia
is rare (<2%) also in the general population [24] but
is prevalent among elderly individuals and especially
those who are hospitalised, attributable in part to SIADH
[25]. The aetiology, epidemiology and risk factors of hypo-
natraemia are addressed by others [17,22,24,25,73-76],
including causes and consequences of chronic hypona-
traemia [77].

Key points

e Acute dangers exist with both inadequate and
excessive intake of water (relative to salt), but both
extremes have neurological mechanisms preventing
their occurrence in the vast majority of exercise and
environmental settings in which healthy people have
access to clean water and are free to drink ad
libitum.

e Our interpretation of the literature on dehydration
is that despite widespread advice regarding the acute
dangers of dehydration, the findings have limited
relevance to free-living individuals with access to
food and water.

e More research is needed in ecologically valid
settings, including more attention on the roles of
afferent and efferent components of behavioural
regulation.

2. What regulations are established, and why/how are
they set?
There exist few hydration-related regulations per se, yet
advisory statements and guidelines are widespread.
Various militaries have hydration regimes, dependent on
the environmental conditions, and levels of physical exer-
tion and protective clothing. The guidelines adopted by
the US military during the 1980s (ingesting up to 1.8 L/h)
were revised downward for hourly and total daily fluid
volume and refined to factor in both endogenous and
exogenous heat stress, in the late 1990s following a high
incidence of cases of hyponatraemia. Interesting and
insightful accounts of the development and revision of
these guidelines are available elsewhere [78,79]. Irrespect-
ive of whether adoption of guidelines by individuals actu-
ally improves work tolerance or reduces injury or illness,
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those guidelines are valuable in providing operational
guidance on the total daily volumes of fluid that need to
be made available in different work and climatic circum-
stances [2]. To attenuate the prevalence of exercise associ-
ated hyponatraemia, the International Marathon Medical
Directors Association has recommended water stations to
be spaced at least 1.6 km apart.

There are two dominant views regarding fluid replace-
ment during exercise. One states that people should
drink to prevent no more than 2% ‘dehydration’ (~body
mass loss) during exercise in temperate and warm envi-
ronments, and rehydrate to eliminate any mass deficits
soon after exercise [5-7,46,80-82]. The other suggests
that it is adequate to drink ad libitum during and follow-
ing exercise and cautions against adverse consequences
of over-drinking [17,23,48,83,84].

The prescribed view on hydration has been promul-
gated most widely by the American College of Sports
Medicine, whose position has been that mass loss should
be avoided (pre 2007; [6]) or minimised to 2% body mass
loss (since 2007; [7]), and rapidly eliminated following
exercise. In many cases, this would mean drinking be-
yond thirst, both during and after exercise, as drinking
ad libitum does not necessarily prevent such deficits
during exercise or their rapid removal after exercise
[10,11]. This prescriptive position on hydration is based
on a substantial volume of literature showing increased
physiological strain and reduced performance in studies
wherein such losses were incurred before and/or during
exercise. Yet, as shown in Table 1, several factors com-
promise the validity of those findings for most people
exercising autonomously, especially outdoors. These fac-
tors affect the physiology and/or psychology of exercise
performance, and yet we know of no study that has
overcome all of these basic factors and still demon-
strated an adverse effect of hypohydration on perform-
ance. Most of the studies used in substantiating the
prescribed hydration policies have at least three validity
problems affecting physiological or performance out-
comes; unrealistically low airflow, no blinding to the
hypohydration and no familiarisation to the stress of its
imposition. The importance of familiarisation was re-
cently demonstrated by Fleming and James [85], who
gave participants four successive familiarisation expo-
sures to 2% hypohydration and nullified the impairment
in performance that it had otherwise caused (Figure 2),
without diminishing cardiovascular strain. Similarly, low
airflow impairs heat loss and raises skin temperature and
vasodilation, thereby compounding cardiovascular strain,
skin wettedness and discomfort. Effects of hypohydra-
tion on exercising heat strain and performance may
occur partly by compounding the effects of warm skin
[82,86], but whether its effects are necessarily adverse is
not a simple matter. Increased plasma osmolality and
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hypovolaemia arising from sweat-induced hypohydration
act centrally to reduce skin blood flow, which will aid in
maintaining venous return, cardiac output and mean ar-
terial pressure. The reduced skin blood flow would be
more detrimental in conditions of low rather than high
airflow over the skin, i.e. in those conditions used in
most studies showing increased forms of physiological
strain. In an often-cited study [28], Montain and Coyle
(1992) had well-trained cyclists exercising for 2 h in the
heat with moderate (2.5 m/s) airflow, and observed that
cardiovascular and thermal drift were linearly related to
extent of dehydration; even being larger with 2.3% than
1.1% dehydration (performance outcomes were not
assessed). Unfortunately, however, their rehydration re-
gime also provided carbohydrate replenishment, which
may have suppressed neuro-endocrine stress responses
and thus downstream indices of physiological strain. We
found no such effect of dehydration on thermal, cardio-
vascular or metabolic drift for trained cyclists across 80-
min exercise at higher exercise intensity and airflow
(4.5 m/s) albeit in temperate conditions and approxi-
mately 2.5% final hypohydration, whereas drifts occurred
in our untrained participants [35]. One study [87] has
found that dehydration caused (slightly) more thermal
strain in trained cyclists than untrained subjects, but this
outcome may have arisen from the modest airflow
(2.5 m/s) used in the face of their concomitantly higher
work rates. Studies using realistic airflow in outdoor
settings include trail running [88,89] and cycling hill
climbing [90] and have shown increased thermal, cardio-
vascular and perceptual strain. However, these studies
used prior hypohydration protocols, which would ex-
acerbate the effects of hypohydration (see Figure 3). Per-
formance effects are further confounded for additional
reasons described in Table 1. Of the few studies that
have attempted to address the psychological effects of
having water deliberately withheld (i.e. as applies to al-
most all studies on dehydration), exercise-induced body
mass loss of 2—3%, when incurred voluntarily by drink-
ing ad libitum, has had no measurable effect on exercise
performance [34,91-93]. When realistic airflow is then
provided, the physiological effects of such deficits are
also nullified or nearly nullified [34,37,91].

Another important factor in the validity of hydration
research is how and when the dehydration occurs. Figure 3
shows the relative contributions of different sources to
body mass changes for studies examining effects of dehy-
dration on physiological, psychophysiological or perform-
ance outcomes. The four bars on the left side show
sources contributing to the loss of body mass for studies
using pre-exercise dehydration. Note that most of the
mass loss during these interventions is free water (and
also raises ECF osmolality) unless any exercise compo-
nent is moderately stressful, and is hence physiologically
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Fleming J, James LJ. Repeated familiarisation with hypohydration attenuates the performance decrement caused by hypohydration during
treadmill running. Appl Physiol Nutr Metab., 39: 124-129, Figure 3 (2013), with permission, © Canadian Science Publishing or its licensors.
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energy deficit was assumed with 24 h of primary hypohydration [70]. An additional 111 g of glycogen oxidation in F versus E is based on
measurements with 2-4% dehydration during exercise in temperate and hot laboratory environments [30,32], and an additional 30 g is estimated
for G versus E. Bars E and G only show the appearance of not summating to 3% gross mass exchange because some of the ingested fluid would
cancel out an attenuated mass of glycogenolysis-released water. See text for more interpretation of these differing circumstances and discussion
of the implications, suffice to say here that the net volume of free water exchange depends on the hydration protocol used and thus needs to
be considered when interpreting physiological, psychological and performance effects of dehydration studies.



http://www.extremephysiolmed.com/content/3/1/18

Cotter et al. Extreme Physiology & Medicine 2014, 3:18
http://www.extremephysiolmed.com/content/3/1/18

expensive. Diuretic-induced dehydration, which is not shown
in the figure, is wholly derived from this free water pool and
particularly the ECF volume. Therefore, diuretic-induced de-
hydration (as used to ‘make weight' in weight-restricted
sports such as rowing and wrestling or in anti-hypertension
therapy) can incur even more strain and impairment during
subsequent exercise [14,96].

The three bars on the right side of Figure 3 show the
effects of three contrasting hydration regimes during ex-
haustive endurance exercise: (a) Full replenishment
based on mass changes (as per [6]); (b) no fluid replen-
ishment (as per many studies on dehydration) and (c)
ad libitum drinking, which might typically prevent half
the mass loss [37,38]. Note that these are theoretical
proportions based on findings from a variety of studies
[16,18,30,32,95]. An important caveat is that the contri-
bution made by previously bound water is only theoret-
ical. This fundamental contribution to mass loss in
exercise has been acknowledged by others (e.g. [9,16,18]).
Also unverified is the notion that the higher airflow with
most exercise performed in the field will reduce glycogen-
olysis by virtue of less thermal and cardiovascular drift
and sympathetic activation. Figure 3 nevertheless reveals
several points relevant to interpreting the physiological,
psychophysical and performance effects of hypohydration.
First, hypohydration incurred prior to the exercise of
interest would involve a larger proportion of free water
loss than if it was incurred by virtue of competitive-
intensity exercise, during that exercise. Second, the meta-
bolic mass exchange profile is expected to be worse (more
glycogenolysis and less FFA oxidation) during intense ex-
ercise with no fluid replenishment in laboratory than field
conditions. Third, osmolality also increases more without
fluid replacement, which independently increases heat
strain and thirst, and would be rectified rapidly if oppor-
tunity was provided for ad libitum drinking [97]. Fourth,
there seems to be no physiological rationale for attempting
to achieve neutrality of body mass either during or follow-
ing strenuous exercise until glycogen resynthesis is well
established. For these reasons and those explained above,
we believe that the literature on effects of hypohydration
does not support prescribed hydration practices to the ex-
tent conveyed by its proponents. And, most importantly,
ad libitum control of (functional) hydration status may be
more accurate than is generally assumed.

The ad libitum position on hydration during and after
exertion [17] is based on a different interpretation of the
acute effects of self-determined dehydration and on
safety against hyponatraemia relative to life-threatening
effects of hyperosmotic hypohydration. Both of these
states are prevented by ad hoc drinking behaviour in the
majority of recreational and occupational settings. Both
the pleasantness of drinking to satiate thirst and the dis-
pleasure of drinking when satiated have characteristic
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patterns of central nervous system (CNS) activation,
with stronger activation during over drinking, especially
in the motor cortex (suggested to reflect the extra effort
required to continue drinking: [15]). Ad libitum drinking
is not just a matter of drinking to thirst—and therefore,
waiting until thirst begins—rather, it would indicate
that hypohydration and hyponatraemia are constrained
by some combination of factors driving drinking [77],
such as habit (e.g. morning tea), thirst, comfort behav-
iour (e.g. carrying a bottle), anticipation and experience,
social behaviour, availability of consumable and palatable
liquids and the frequency of the need to void preferably
in (clean) toilets (as described for kidney stone formers
[98]). Athletes’ drinking behaviour appears to be addition-
ally driven by a desire to avoid gastric discomfort [99].

The ad libitum position in an exercise setting is advo-
cated also on the basis of observations such as the fast-
est runners generally finish the most hypohydrated
[52,83,100]. But, this observation does not in itself valid-
ate the tenet that such performances would not be im-
proved by more avid rehydration during exercise. Other
factors do, however, further support this position: (i) the
literature on ergolytic effects of dehydration may greatly
over-represent its effect on actual performance, for sev-
eral reasons, some of which are discussed elsewhere
[23,34,84,35,93,101,102]) or illustrated in Table 1 and
Figure 3; (ii) highly trained athletes may be less suscep-
tible to the effects of hypohydration if tested in realistic
airflow conditions [35,100], and this is not acknowledged
adequately in hydration policies, and; (iii) absolute endur-
ance performances in hot conditions (i.e. dehydrating and
cardiovascularly-challenging; [103]) are so close to world
records set in less dehydrating conditions (e.g. [53,104])
that the true effects of hypohydration must be smaller
than is concluded from many lab-based studies. Finally, ad
libitum drinking is at least as effective as drinking to pre-
vent or limit mass loss to 2% [93,102,105,106], even in the
heat [37,91], when airflow is realistic. Accordingly, the
International Marathon Medical Directors Association
(IMMDA) recommends that athletes drink ad libitum no
more than 0.4-0.8 L/h.

3. Pros and cons of self versus prescribed acute exposure
Humans move in a myriad of benign and stressful envi-
ronments for an immense variety of reasons, nearly all
of which involve autonomous behaviour (including pace,
pattern and duration of physical activity). Even in
the specific cases of exercise per se, body mass loss sel-
dom exceeds approximately 3% in team sports or 4% in
distance running, but is mostly <2% whether in training
or competition ([38,39]). Mass losses in exercise could
not be considered hazardous and would mostly be self-
limiting through behavioural responses to ingest water
and salt or decrease output (see above). Therefore, we
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believe that ad libitum rather than prescribed drinking
would suffice in most settings, for the reasons outlined
above, with some caveats as noted below. Ad libitum
may be even more appropriate when exposed to stressors
that alter fluid regulatory control such that neutrality of
body mass has additional validity problems—e.g. in ultra-
endurance exercise or at altitude—as also noted below.

Possible exceptions to ad libitum drinking: Thirst is
not stimulated appreciably until plasma osmolality rises
by approximately 6-10 mOsmol/kg [70,97], although
elevated angiotensin and reduced plasma volume pro-
vide additional stimuli [107]. Thus, pre-emptive and
bolus drinking may be warranted to help limit obligatory
hypohydration under conditions of constrained fluid
availability or artificially high heat stress, e.g. ultra-
endurance swimming in sea water, foot racing over large
distances in arid land, or performing heavy work with
encapsulation of the body or face. Pre-emptive hyperhy-
dration is achieved more effectively with glycerol or so-
dium citrate and chloride solutes than with low-sodium
fluid [108-111]. However, hyperhydration has shown
only small benefits in attenuating physiological strain
and improving work capacity during compensable heat
stress and water deprivation [109,110,112,113], and no
measureable benefit during uncompensable heat stress
(for reviews, see [111,114]).

Newcomers to hot environments are susceptible to
chronic hypohydration [2,41]. They may have a blunted
drive to drink when hypohydrated because the higher so-
dium concentration in their sweat would blunt the rise in
plasma osmolality and hence the stimulation of thirst
[115]. Since rehydration occurs particularly at meal times
in hot environments (appropriately) [2,41], permitting
time to eat is important, and salt supplementation may be
warranted for newcomers [81]. Heat-acclimated and aer-
obically trained individuals can dehydrate more rapidly by
virtue of higher work capacities and sweating power, but
they also have larger extracellular fluid volumes and de-
velop stronger rehydration behaviour [107,116] and hence
may not be at higher risk of problematic levels of hypohy-
dration. Diarrhoea and vomiting also constitute special
cases for aggressive replenishment of water and salt be-
cause of their potential to cause severe hypohydration
without osmotic stimulation of thirst.

A more proactive approach to rehydrating from hypohy-
dration appears warranted in the elderly due to an elevated
thirst/osmolality threshold [117], less total body water
(TBW; ie. less volume reserve) and higher prevalence of
risk factors for chronic diseases that may be exacerbated
by hypohydration (discussed below). Finally, maintaining
fluid balance during competitive ultra-endurance swim-
ming especially in tropical locations is made difficult by
factors that promote loss of sodium and water or constrain
their intake. Sweat rates can exceed 1 L/h [118] alongside
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urinary losses that are higher than in terrestrial exercise
due to the prone posture and hydrostatic pressure of water
favouring higher renal blood flow and secretion of atrial
natriuretic peptide, and less secretion of aldosterone.
Swimmers also have limited opportunity to drink substantial
quantities during competition. The hypohydration would
presumably be more functionally important for swimming
before terrestrial exercise (e.g. Ironman triathlon).

Possible special cases for ad libitum drinking: As exer-
cise becomes prolonged, beyond approximately 8 h,
plasma volume can expand isonatraemically to an extent
that it eventually exceeds pre-exercise volume, in con-
junction with increasing TBW volume, while fat mass
can decline measurably [119]. The expansion seems to
attain a consistent mean level of 20-25% across variable
modes, patterns and intensities of upright exercise, ini-
tial haemoglobin concentration, aerobic fitness and
environmental conditions [120-124]. The mechanisms
involve water and sodium retention due to (orthostatic)
stress-mediated secretion of aldosterone [120,125,126]
and anti-diuretic hormone [123] causing expansion of
the ECF volume, and albumin production selectively
expanding the plasma volume [124]. The wider expan-
sion of TBW with oedema has also been suggested to re-
flect an inflammation response [120]. In such cases of
huge energy and water metabolism and shifts in fluid
volume, ad libitum ingestion of food with water or
sports drinks seems most appropriate, whereas reliance
on sports drinks and/or maintaining body mass can be
problematic [127,128].

High altitude and polar exploration also have complex
effects on fluid balance, which are further affected by ex-
ercise and acute mountain sickness (reviewed in [129]).
Practically, water availability can be constrained by its
frozen state, while losses can be elevated even at rest
due to low-humidity air, hypoxia-induced hyperpnoea
and diuresis. Water and sodium losses are further in-
creased during work due to disproportionate hyperpnoea
and sweating. Plasma osmolality is elevated markedly at
altitude without raising anti-diuretic hormone (ADH) or
thirst [129]. On the other hand, STADH occurs in per-
haps one third of individuals upon acute exposure and
appears causal in their higher acute mountain sickness
scores [130]. Thus, although fluid balance may be more
difficult to maintain at high altitude (and in polar envi-
ronments), fluid regulatory control is altered and zealous
drinking behaviour is not without risk.

Key points

e Ad libitum drinking seems appropriate in most
exercise and environmental settings, but in special
circumstances of obligatory hypohydration,
anticipatory drinking is warranted.
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4. Can humans adapt? Is it meritorious? (Adaptations or
maladaptations?)

Can we adapt? It is widely assumed that humans cannot
adapt to the physiological or physical capability effects
of hypohydration, on at least two lines of evidence. First,
daily dehydration does not reduce fluid requirements
during dehydrating exercise in the heat, irrespective of
whether individuals are acclimatised to those conditions
or not [2]. Second, acute hypohydration has been found
to negate the thermal benefit of short-term aerobic
training and heat acclimation [131] and interfere with
hypothalamic and gene transcriptional adaptations to
heat (in rats: [132]). Certainly, any adaptations are not
as apparent as those from stressors such as heat and
hypoxia. However, some adaptive potential might be an-
ticipated on several bases [35,117]: (i) humans show
adaptation to most other stressors; (ii) different compo-
nents of fluid-regulatory control systems could adapt
and have been found to do so (e.g. renal concentrating
ability markedly increases with short-term (3-d) hypohy-
dration and diminishes with over-drinking [133,134]);
(iii) if hyperosmotic hypovolaemia increases other as-
pects of physiological strain (e.g. glycogenolysis), it may
act as a synergistic conditioning stimulus, and; (iv) some
individuals regularly experience such hypohydration by
virtue of intense endurance exercise training, and cross-
sectional data across fitness levels indicate that they have
reduced sensitivity to its physiological and performance
effects (as discussed above).

Some adaptation to repeated dehydration has been re-
ported in response to 5-6 days of daily exercise in
the heat causing 2—-3% hypohydration [135,136]. In a con-
trolled cross-over heat acclimation study, the acclimation-
induced reduction in heart rate under standardised
exercise heat stress tests was approximately 11 beats/min
larger (p =0.05) following mild hypohydration compared
with euhydration during acclimation bouts, and plasma
volume expansion was approximately 4.5% larger (p =0.06)
[135]. Core temperature was clamped during acclimation
bouts to prevent any effect of hydration on the thermal
stimulus. Other outcomes were unclear. In contrast to
that study undertaken in aerobically trained men, forced
water intake (double daily intake for 7 days) has been
shown to improve acute heat tolerance of unacclima-
tised, untrained men and possibly enhance their accli-
matisation to heat [137]. So, it is still unclear whether
and to what extent adaptations occur in response to re-
peated hypohydration or attempted hyperhydration.

Is adaptation meritorious? There seems little merit in
adapting to hypohydration for most individuals, unless
repeated dehydration provides adaptations that are ei-
ther ergogenic in their own right or aid fluid retention
during some forthcoming exposure to substantive dehy-
dration. The ergogenic issue is unresolved, so mild, self-
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regulated/limited dehydration during stress conditioning
cannot be advocated at this time, but we believe that it
cannot be discounted either [135]. Improving fluid regu-
latory control would be beneficial to athletes preparing
for prolonged field, court or endurance competitions
undertaken in hot and dehydrating conditions, in which
pronounced dehydration is obligatory. However, the hu-
man studies that showed such renal adaptations used
sustained and substantial hypohydration, which would
be counterproductive for several reasons (e.g. cellular
metabolism, anabolism, comfort and possibly hypothal-
amic effects; [138-140]).

Withholding availability of amino acids [141] but not
water, electrolytes or carbohydrate [136] after bouts of
training attenuates hypervolaemic responses to exercise
[142], especially in older adults [143], and attenuates
the higher rates of protein uptake into muscle following
exercise. So, it seems likely that ingestion of at least the
amino acids is important and perhaps water to reduce
the catabolic hormone profile [144], although the cata-
bolic/anabolic hormone profile in exercise recovery
when hypohydrated is complex [145]. Furthermore,
in vitro experiments indicate that muscle protein syn-
thesis may be up or downregulated by hyperhydration
or residual hyperosmotic hypohydration, respectively
[138,140,146,147]. Another consideration is that a high
protein intake requires more water to be consumed to
eliminate the excess urea produced from the increased
amino acid metabolism [148].

Key points

o The fluid regulatory control and cardiovascular
systems undergo strain due to the dehydration of
exercise (with limited airflow) or environmental heat
stress, some elements of which have shown
adaptation with chronic exposure. The functional
implications of mild and self-regulated dehydration
—or, conversely, forced drinking—are unresolved.

o At least some rehydration concurrent with ingestion
of amino acids following stress-conditioning bouts
appears to be beneficial, especially for older individuals.

5. Pros and cons of self versus prescribed chronic/
adaptive exposure

The seemingly basic issue as to whether humans are
chronically in an optimal hydration status by virtue of ad
libitum drinking behaviour is unresolved, as mentioned
above (Figure 1) and discussed by others [149-151]. The
data are sparse and conflicting. In healthy humans, over-
drinking becomes unpleasant and requires additional
cortical activation compared with drinking to rehydrate
from hypohydration [15]. Therefore, death from hypona-
traemia at rest is not evident from chronically drinking
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ad libitum or from the contrasting approach such as
drinking according to the common doctrine of 8*8 (i.e.
drink at least eight 8-ounce glasses of water per day)
[149]. However, exacerbation of chronic hyponatraemia
leading to a wide variety of other pathologies (e.g. osteo-
porosis [26]) and functional problems (e.g. poor balance
[25]) may be of concern for elderly individuals, especially
those who are hospitalised or on medications such as thia-
zide diuretics and selective serotonin reuptake inhibitors
[25]. Another important consideration with large numbers
of humans chronically drinking above ad libitum is that it
demands more energy from finite resources for the manu-
facture and transport of water bottles because this ap-
proach to hydration is understandably promoted by the
bottled water industry [152].

In contrast and speculatively in the absence of interven-
tion studies in humans, chronic, low-grade hypohydration
has been suggested as a contributory factor in type 2
diabetes and obesity and thus the metabolic syndrome,
particularly for older individuals living sedentarily or fre-
quently exposed to passive heat stress (e.g. living in urban
heat islands in summer, with limited air conditioning). Cell
culture studies have shown that increased hydration lead-
ing to increased cell volume increases cell signalling re-
sponse to insulin [139,153]. Furthermore, in humans,
increasing hydration using slightly hypoosmolar solutions
increases whole body lipolysis [154]. In work using obese
and normal rodents, treatments using inhibitors of the
renin-angiotensin system increased water intake with an
associated improved insulin sensitivity, increased energy
expenditure and reduced fat mass [155-159]. These results
could indicate increased hydration has a positive effect on
cell metabolism, possibly through modulation of cell vol-
ume. Medications aimed at inhibiting the renin-angiotensin
system are used extensively in the treatment of cardiovas-
cular disease (>85% of treatments) as well as in the treat-
ments of obesity, type 2 diabetes and cancer. Antagonists of
the renin-angiotensin system are part of an effective treat-
ment also in Alzheimer’s disease [160,161]. The presence in
the blood of angiotensin indicates hypohydration, which
may contribute to these relatively modern diseases for rea-
sons explained above [13,162]. Any factor that exacerbates
chronic hypohydration (and hence the angiotensin system)
might promote these diseases, whereas factors that prevent
these diseases, such as physical activity and eating more
fruit and vegetables [163-165], also have a positive effect on
TBW volume chronically. These lifestyle interventions are
widely recommended, but their voluntary uptake is modest
in the most affected countries [166,167].

Key points

e Whether humans are generally hydrated optimally
on a chronic basis is undetermined, but inhibition of
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angiotensin, an indicator of hypohydration, is
beneficial in several diseases of sedentary living.

Conclusion
6. Suggestions and future directions
A large literature exists on the physiological and work cap-
acity effects of experimentally imposed and controlled
hypohydration, at levels that have marked effects on physi-
ology and performance. Such studies are valuable for reli-
ably identifying mechanisms and dose/response relations
[8,168]. The literature on the psychophysical effects of
hypohydration (i.e. on mood, cognition and skilled motor
performance) is even more adversely affected by the lack of
blinding and added difficulty in identifying underlying
mechanisms [15,58]. A small and conflicting literature ex-
ists on the chronic effects of drinking according to doctrine
(e.g., 8*8) or ad libitum on physiological adaptations in-
cluding fluid regulation, cardiovascular and metabolic fit-
ness and hence on either health or performance outcomes.
Several problems exist with the hydration literature that
could account for, and legitimise, the prevalent lack of ad-
herence to drinking based on one’s change in body mass.
Therefore, future research and doctrine-based guidelines
must more extensively incorporate, verify and acknow-
ledge the importance of the following: ecologically valid
airflow (for exercise outdoors); many aspects of ordinarily
available behaviours (e.g. thirst and self-regulation of exer-
tional heat stress); blinding or full consideration for
placebo effects of having water withheld before and/or
during the exertional period of interest; the roles of free
water deficit [16] and plasma osmolality [8] in these out-
comes, particularly with different methods and timing of
dehydration (before versus during the experiment); indi-
vidual differences (e.g. aerobic fitness, genetics and beliefs
about hydration); lack of familiarisation to the psycho-
logical stress of any imposed water deprivation [85]; the
actual likelihood of serious heat illness in free-functioning
individuals, particularly in non-competitive and non-
military settings (i.e. the more typical situation for most
people in the world); and the benefits and disadvantages
for adaptation through both self-regulated but mild dehy-
dration and drinking beyond thirst during routine aerobic
training and heat acclimation.
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