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Abstract

Intraflagellar transport (IFT) is required for the assembly and maintenance of cilia, as well as the proper function of
ciliary motility and signaling. IFT is powered by molecular motors that move along the axonemal microtubules,
carrying large complexes of IFT proteins that travel together as so-called trains. IFT complexes likely function as
adaptors that mediate interactions between anterograde/retrograde motors and ciliary cargoes, facilitating cargo
transport between the base and tip of the cilium. Here, we provide an up-to-date review of IFT complex structure
and architecture, and discuss how interactions with cargoes and motors may be achieved.
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Review
Twenty years ago, Kozminsky and colleagues first de-
scribed intraflagellar transport (IFT) as a motility in the
Chlamydomonas flagellum that is distinct from flagellar
beating [1]. IFT trains were observed by electron mi-
croscopy to be linear arrays of electron-dense particles
spanning the distance between the outer doublet micro-
tubules and the flagellar membrane. Following the dis-
covery of IFT, biochemical purification of native IFT
complexes from Chlamydomonas revealed 15 polypep-
tides that organize into two IFT sub-complexes, known
as IFT-A and IFT-B [2,3]. IFT polypeptide orthologues
were also found in mice [4,5], suggesting that IFT pro-
teins are largely conserved. Subsequent studies identified
additional IFT proteins, bringing the current IFT protein
count up to 20 [5-11]. Mutations in IFT proteins have
been shown to cause several ciliopathies [12-22]. The
genetic deletion of an entire IFT protein often leads to a
general defect in cilia assembly (presumably due to IFT
complex disruption), making it difficult to assess the
specific functions of individual IFT proteins from mu-
tant phenotypes alone [8,23-31]. Thus, a more complete
understanding of IFT protein function in ciliogenesis, in-
cluding cargo and motor interactions, will require de-
tailed molecular and structural studies of IFT complexes.
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Structural investigations of IFT complexes have been
limited so far to electron tomographic reconstructions
of IFT particles in situ [32] and the high-resolution crys-
tal structure of the IFT25/27 sub-complex [33]. How-
ever, the overall architecture of the IFT complex is
starting to take shape, largely as a result of biochemical
studies [25,26,34,35]. In this review we attempt to partition
IFT proteins into principal domains (PD) and auxiliary do-
mains (AD) based on the current literature. Whereas PD
mutations lead to IFT complex destabilization with general
ciliogenesis phenotypes, AD mutations may facilitate the
study of specific IFT protein functionality. Such a division
may assist in designing experiments to probe the roles of
individual IFT proteins in cilium formation and function.
The intraflagellar transport complex: a protein-protein
interaction platform?
Bioinformatic analysis of IFT proteins predicts a large
number of potential protein-protein interaction domains
such as tetratrico peptide repeats (TPRs), WD40 β-
propellers and coiled-coils [36-39]. Strikingly, with the
exception of the two small GTPases IFT22 and IFT27,
none of the other IFT proteins are predicted to have en-
zymatic activity. The prediction is thus that the IFT
complex forms a large platform with multiple protein
interaction sites that allows binding to molecular motors
as well as ciliary cargoes.
Structure prediction using the HHpred server [40] re-

vealed that most IFT proteins likely contain multiple
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domains [39]. Limited proteolysis on in vitro recon-
stituted IFT complexes demonstrated that only a subset
of these domains are required for IFT complex forma-
tion, indicating that numerous domains are available to
interact with other binding partners such as ciliary car-
goes or motors [35]. Most IFT proteins can therefore be
divided into PDs and ADs as described above (Figure 1).
The main function of PDs is to provide structural stabi-
lity, and thus they are well conserved in protein se-
quence to ensure the integrity of IFT complex
formation. However, most IFT protein domains not re-
quired for IFT complex stability (the ADs) are also
highly conserved in sequence, likely reflecting important
functions such as ciliary cargo interactions. A good ex-
ample of the PD/AD division is IFT46, a core compo-
nent of IFT-B, where only the IFT46 C-terminal domain
is required for the stability of the IFT complex via inter-
action with the C-terminal domain of IFT52 [25,35],
while the N-terminal domain is involved in the ciliary
transport of outer dynein arms (ODAs) [24,41,42]. Simi-
larly, IFT52 interacts directly with at least four different
IFT proteins (IFT74/81, IFT46, IFT70 and IFT88) via its
middle and C-terminal domains, while the conserved
N-terminal domain is not required for IFT-B complex
formation and thus likely constitutes an AD [25,35].
The N-terminal domain of IFT74 is also not required
for IFT-B core complex formation and may constitute
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an AD [35]. The peripheral IFT proteins IFT54 and
IFT57 both have predicted coiled-coil domains at the
C-termini that interact with IFT20 [43-45]. However,
the N-terminal regions of both IFT57 and IFT54 are
predicted to be alpha helical domains that could consti-
tute ADs [39] (Figure 1).
It is important to note that while the PD/AD boundary

of some IFT proteins is well defined, this is not the case
for all IFT proteins. In particular, TPR domain-containing
proteins such as IFT70 and IFT88 may possess a single
structural module that functions as both a PD and an AD
(Figure 1). Another example is IFT25 and the small
GTPase IFT27, which form a stable heterodimer that can
be considered as a single structural module [33]. While
the IFT25/27 heterodimer directly binds the “core” IFT74/
81 complex [35], it also contains a conserved surface patch
in close proximity to the GTPase active site of IFT27 that
may interact with a yet unidentified binding partner in a
nucleotide-state-dependent manner [33]. Interestingly,
IFT25 knockout mice show no ciliogenesis defects but die
at birth due to sonic hedgehog (Shh) signaling dysfunction
[46]. This indicates that the IFT25/27 sub-complex is not
needed for the stability of the IFT complex and may func-
tion in the IFT of Shh signaling components. Additionally,
IFT25 and IFT27 are not present in Caenorhabditis
elegans and Drosophila melanogaster [10,38]. Thus, IFT25/
27 may be defined as an AD module (Figure 1).
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Ciliary targeting sequences
Proteins that localize to subcellular compartments such
as mitochondria or the nucleus have distinct sequence
motifs (known as cellular ZIP codes) that specifically tar-
get them to their respective organelles [47]. Although
the cilium is topologically equivalent to the cytoplasm,
there are transition zone structures at the ciliary base
that prevent random diffusion of both soluble and
membrane-bound macromolecules into the cilium
[48-56]. As approximately 600 different proteins reside
within the cilium [57], it seems likely that one or more
ZIP codes also exist for ciliary targeting [58].

The (F/Y/W)R motif
One of the earliest reports of a ciliary targeting sequence
(CTS) was the identification of a phenylalanine-arginine
(FR) motif in the C-terminal cytoplasmic regions of C.
elegans olfactory receptor proteins ODR-10 and STR-1
[59]. Deletion of this FR motif from ODR-10 and STR-1
resulted in dispersed localization of the receptors in the
cell body, indicating that the FR motif is required for
ciliary localization. This (F/Y/W)R motif is conserved
in several ciliary G-protein coupled receptors (GPCRs)
including somatostatin receptor 3 (SSTR3), serotonin
receptor 6 (5-HTR6) and rhodopsin, suggesting a widely
prevalent and conserved mechanism of targeting GPCRs
to the cilium [59]. A similar motif in mammalian
Smoothened (smo) was also shown to be required for
localization to the cilium [60]. However, several GPCRs
that contain (F/Y/W)R motifs do not localize to cilia,
indicating that the ciliary targeting of GPCR proteins
is more complex. Inspection of the rhodopsin crystal
structure reveals that an equivalent residue (F313 of
alpha-helix VIII) [61], identified to be a part of the
(F/Y/W)R motif in the other GPCRs, is buried within
the hydrophobic core of the protein and hence may
be necessary for proper protein folding. This suggests
that mislocalization of ciliary GPCRs upon mutation
of the (F/Y/W)R motif may be an effect of
compromised structural integrity of the GPCR fold
rather than a primary defect in ciliary targeting. It is
thus not surprising that different CTSs have been
identified in several ciliary GPCRs including SSTR3,
5-HTR6 and rhodopsin, as described in the following
sections.

The Ax(S/A)xQ motif
Comparative sequence conservation analysis of ciliary
and non-ciliary GPCRs revealed a different consensus
amino acid sequence, Ax(S/A)xQ (where x denotes any
amino acid), in the third intracellular loop of ciliary
GPCRs [62]. Mutating the conserved A or Q in this motif
resulted in the mislocalization of SSTR3 and 5-HTR6 [62].
Conversely, the chimeric non-ciliary GPCR Htr7 with this
motif inserted into its third intracellular loop showed
markedly increased ciliary localization [62]. Recently, a
similar signal sequence was found in the third intracellular
loop of another ciliary GPCR, melanin-concentrating hor-
mone receptor 1 [63]. These results indicate that the Ax
(S/A)xQ motif is both necessary and sufficient for the
localization of these GPCRs. The mouse GPCR Gpr161
was also shown to contain a CTS ((I/V)KARK) in its third
intracellular loop that is both necessary and sufficient for
localization to cilia [64]. Interestingly, this CTS is different
from the Ax(S/A)xQ motif described above, suggesting
that the third intracellular loops of different GPCRs
may contain distinct sequence motifs that confer ciliary
localization.

The VxPx motif
In addition to the (F/Y/W/)R motif described above,
rhodopsin was shown to contain a VxPx motif at its
cytoplasmic C-terminus that serves as a CTS [65,66].
The Ca2+ ion channel polycystin-2 (PC2) also has an
N-terminal RVxP motif that is required for its ciliary
localization [67], and polycystin-1 (PC1), a direct
interacting partner of PC2, contains a similar CTS
(KVHPSST) at its cytoplasmic C-terminus [68]. Thus, PC1,
PC2 and rhodopsin share a common (K/R/Q)VxPx motif
required for ciliary localization.

The KRKK NLS-like motif
Compared to the CTSs of membrane proteins, very little
is known about the ciliary targeting of soluble proteins.
Although there is increasing evidence that tubulin,
ODAs and retrograde dynein motors are IFT cargoes
[24,69,70], it is unknown how these soluble proteins are
recognized by the IFT machinery. Recently, however, the
KRKK motif was identified as a CTS in the C-terminal
tail of the homodimeric anterograde IFT motor KIF-17
[71]. Remarkably, this CTS is very similar to the nuclear
localization signal (NLS) recognized by importin-β2.
Both importin-β2 and a Ran-GTP gradient, which are
key to nucleo-cytoplasmic transport, also appear to be
required for ciliary entry of KIF-17 [71,72]. Furthermore,
retinitis pigmentosa 2 was also shown to depend on
interaction with importin-β2 for ciliary entry [73]. An-
other study identified certain nucleoporins at the base of
the cilium by immunofluorescence and immunogold
electron microscopy [51], although this result remains to
be verified. It is unclear at this point whether NLS-
mediated ciliary entry is applicable to a broad range of
other ciliary proteins.

How are ciliary targeting sequences recognized by the
intraflagellar transport machinery?
Several lines of evidence suggest that many of the above
mentioned membrane proteins are transported into the
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cilium as IFT cargoes. Rhodopsin requires transport into
the outer segment (OS) of photoreceptor cells via the
connecting cilium [74], and mutations in IFT proteins or
motors have been shown to affect the transport of rhod-
opsin, indicating a critical role for IFT in this process
[4,43,75,76]. The ciliary membrane Transient Receptor
Potential Vanilloid (TRPV) channels OSM-9 and OCR-2
undergo IFT-like movements within the cilia of C.
elegans sensory neurons [77], and a fraction of Chlamy-
domonas PC2 also undergoes directed movement that
is likely driven by IFT [78]. Furthermore, in Chlamy-
domonas IFT has been shown to be physically coupled
to the movement of flagellar membrane glycoproteins
in a Ca2+-dependent manner [79]. However, a direct
link between the CTSs of membrane proteins and
their association with the IFT complex has not yet
been demonstrated.
Mutations in IFT-A proteins are known to affect the

transport of several membrane proteins including certain
ciliary GPCRs [64,80,81]. The BBSome is a multi-protein
complex associated with IFT that is also required for the
traffic of several membrane proteins into and out of the
cilium [82-87]. Interestingly, the domain organizations
of the BBS proteins and the IFT-A proteins closely re-
semble those of the canonical membrane coating com-
plexes (COPI, COPII and Clathrin) [37,38]. Despite
being involved in different intracellular trafficking path-
ways, all of these complexes contain numerous predicted
WD-40 β-propeller and TPR/α-solenoid-like domains,
suggesting that these systems evolved from a common
ancestral trafficking machinery and may utilize similar
transport mechanisms [37,38,83]. Intriguingly, in the
case of clathrin-mediated vesicular transport, WD40 β-
propeller domains are known to selectively bind unique
cargo peptides [88]. It is possible that the WD40 β-
propeller domains in the IFT-A complex and BBSome
selectively interact with the CTSs of ciliary membrane
proteins to facilitate their transport into the cilium. Fur-
ther studies characterizing the IFT-A and BBSome
WD40 β-propeller domains may yield insights into cil-
iary membrane protein targeting and traffic.

Intraflagellar transport complex-cargo interactions
Although several studies have provided indirect evidence
for the association of the IFT complex with ciliary car-
goes, proof of direct interactions between IFT proteins
and cargoes remains scarce. One of the earliest pieces of
evidence for an association between the IFT complex and
ciliary cargo comes from the co-immunoprecipitation of
IFT74 and IFT139 performed on the soluble fraction of
Chlamydomonas flagella, which revealed that the IFT
complex interacts with ciliary precursors such as dynein
light chains, radial spokes, motors and tubulin [89]. Tubu-
lin, a basic structural component of the axoneme, was also
shown to undergo IFT-like movement in C. elegans sen-
sory neurons [69]. In the following sections we discuss the
various reports describing direct and indirect associations
between IFT proteins and ciliary cargo.

IFT88
Several studies suggest interactions between the TPR-
protein IFT88 and ciliary cargo. Co-immunoprecipitation
of IFT88 from retinal extracts revealed an association with
rhodopsin [90]. Furthermore, IFT88 and rhodopsin were
shown to undergo similar movement within the cilia of
hTERT-RPE1 cells, indicating that IFT likely plays a direct
role in the transport of rhodopsin into the OS of photo-
receptor cells [75]. Yeast two-hybrid studies and in vitro
pulldown assays identified a Dnaj member co-chaperone,
MRJ, as a direct interacting partner of IFT88 [90]. GST-
tagged MRJ was also shown to associate with the
photoreceptor-specific membrane protein guanylyl cyclase
1 (GC1) in a co-immunoprecipitation from bovine retinal
extracts. This interaction was further confirmed by
in vitro pulldown experiments using GST-MRJ and a HIS-
tagged cytosolic fragment of GC1. It is possible that MRJ
aids in the transport of ciliary GC1 by serving as an
adaptor between GC1 and IFT88. As an IFT cargo, MRJ
may also cooperate with HSP70 in the folding of ciliary
proteins. The mode of interaction between IFT88 and
these potential ciliary cargoes is currently unknown.

IFT70
IFT70 is another protein in the IFT complex that is pre-
dicted to contain TPR structure. Available evidence sug-
gests that DYF-1, the C. elegans orthologue of IFT70, is
required for the association of IFT particles with the IFT
motor OSM-3. Two motors in C. elegans, heterotrimeric
kinesin-2 (also called kinesin-II) and homodimeric OSM-3,
coordinate to drive anterograde transport [91,92]. While
both kinesin-2 and OSM-3 propel IFT in the middle seg-
ment of the cilium at a speed of 0.7 μm/s, OSM-3 alone
drives IFT in the distal segment of the cilium at an in-
creased speed of 1.2 μm/s [91,93]. OSM-3 mutants (osm-
3) were defective in distal segment formation, while the
speed of anterograde IFT in the middle segment decreased
from 0.7 μm/s to 0.5 μm/s [91,93]. Interestingly, dyf-1
mutants exhibited a similar phenotype to osm-3 mu-
tants and lacked OSM-3 movement, indicating that
IFT70/DYF-1 is involved in docking IFT particles onto
OSM-3 motors [93]. An additional study revealed that
OSM-3 is in an auto-inhibitory state in vitro and hy-
pothesized that interaction with IFT proteins is required
for activation [94]. Surprisingly, however, purified DYF-1
did not activate OSM-3 in vitro [94], and it has been
suggested that additional factors may be required [23].
The depletion of the zebrafish IFT70 orthologue, fleer,

resulted in the loss of axonemal tubulin polyglutamylation
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and ultrastructural defects of the outer doublet microtu-
bules (MTs) [95]. Expression of only the N-terminal cata-
lytic domain (residues 1 to 505) of the TTLL6 tubulin
polyglutamylase enzyme also resulted in the loss of axo-
nemal polyglutamylation but, intriguingly, basal body
tubulin in these cells remained polyglutamylated [95].
Thus, it is possible that the C-terminus of TTLL6 di-
rects ciliary localization through an interaction with
IFT70. As polyglutamylation is known to affect the func-
tion of motors in vivo [96-98], it is possible that the OSM-
3 motor is sensitive to the loss of tubulin poly-
glutamylation, and hence the effect of IFT70 on OSM-3
transport activity could be an indirect one [95]. Direct
interaction studies between IFT70, OSM-3 type motors
and the TTLL6 enzyme will likely shed light on this
relationship.

IFT46
IFT46 is a well studied IFT-B core protein with an
assigned function in the IFT of ODAs [24,41]. A
Chlamydomonas insertional null IFT46 mutant showed
reduced levels of other IFT complex proteins and flagel-
lar assembly defects, indicating that full length IFT46 is
necessary for the stability of the IFT complex [24]. A
partial suppressor mutation, presumably expressing a C-
terminal fragment of the IFT46 protein, alleviated most
of the flagellar assembly phenotypes caused by the full
depletion of IFT46, restoring wild-type IFT protein
levels and normal flagellar length [24]. However, electron
microscopy revealed that the axoneme of this suppressor
mutant specifically lacks ODAs. This indicates that the
N-terminus of IFT46 is involved in the transport of
ODAs, while the C-terminus is required for the stability
of the IFT complex [24]. This notion is supported by se-
quence alignments of IFT46 proteins, which only show
high sequence identity for the N-terminal part of IFT46
from organisms with motile cilia, likely a reflection of
this domain’s conserved role in ODA transport (data not
shown). It was later observed that IFT46 directly binds
to ODA16, an adaptor protein that bridges the IFT com-
plex with ODAs [41,42]. Further molecular char-
acterization of the IFT46-ODA16-ODA complex is
necessary to understand how IFT46 and ODA16 specifi-
cally recognize ODAs as ciliary cargoes.

The IFT-A complex
Compared to the IFT-B complex, proteins of the IFT-A
complex are not well characterized. Co-immuno-
precipitation of LAP-tagged tubby like protein 3 (TULP3)
from human RPE1 cell extract revealed that IFT-A pro-
teins interact directly with TULP3 [80]. This interaction
was further mapped to the IFT-A “core” complex that
contains IFT140, IFT144 and IFT122 [80]. Interestingly,
depletion of either IFT-A “core” components or TULP3
caused mislocalization of certain ciliary GPCRs. TULP3
contains a TUBBY domain at its C-terminus that binds
phosphoinositides [99]. A TULP3 mutant (TULP3KR) that
is defective in phosphoinositide binding affected the
localization of ciliary GPCRs but was still able to interact
with the IFT-A complex [80]. This indicates that TULP3
bridges the IFT-A complex and ciliary GPCRs, thus aiding
in ciliary GPCR transport. Further studies are needed to
dissect the TULP3 interaction with IFT-A, as well as the
specific role of the TUBBY domain in recognizing ciliary
GPCRs [64,100].

Intraflagellar transport complex-motor interactions
The interactions between IFT motors and IFT com-
plexes are central to understanding how the bidirec-
tional movement of IFT trains is regulated, particularly
at the IFT turnaround zones at the ciliary base and tip
[101]. As described above, IFT70 (with the help of add-
itional factors) may mediate OSM-3 docking to IFT par-
ticles in C. elegans. However, the binding interactions
between IFT complexes and the most evolutionarily con-
served IFT motors, heterotrimeric kinesin-2 and cyto-
plasmic dynein 2, remain more elusive. Kinesin-2
appears to bind the IFT-A complex in C. elegans, and is
only physically coupled to IFT-B and OSM-3 via the
BBSome [93]. Co-immunoprecipitation experiments in
vertebrate cells implicated IFT20 and IFT57 in binding
kinesin-2 [45,102], and yeast two-hybrid analysis showed
that IFT20 strongly interacts with both IFT57 and the
KIF3B motor subunit of kinesin-2 [45]. However, these
interactions were not verified in an independent study
[5]. Tomographic reconstructions of in situ IFT particles
revealed densities that are most likely kinesin motors
connecting IFT particles to the axoneme, but the study
did not identify which IFT proteins bind to the motors
[32]. Live-cell fluorescence microscopy of IFT in
Chlamydomonas has indicated that kinesin-2 (or at least
the non-motor KAP subunit) may detach from IFT par-
ticles at the ciliary tip [103-105]. In contrast, kinesin-2
was observed to undergo retrograde transport in C.
elegans [106]. If kinesin-2 does separate from IFT particles
at the ciliary tip, this implies that kinesin-2 may ensure
that only one type of motor is active at a time by inhibiting
dynein 2 function during anterograde transport.
In Chlamydomonas, co-immunoprecipitation of IFT172

showed an interaction with cytoplasmic dynein 2 that was
independent of IFT-A [107], and studies of temperature-
sensitive mutants revealed that IFT172 is required for
entry of dynein 2 into the flagellum [107,108]. Rescue of
Tetrahymena IFT172 knockout cells with C-terminally
truncated IFT172 constructs resulted in partial reco-
very of ciliary assembly and accumulation of IFT pro-
teins at the ciliary tips, reminiscent of a retrograde
IFT defect [109]. Thus, IFT172 may be divided into
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an N-terminal PD that binds the IFT-B “core” and a
C-terminal AD that interacts with dynein 2 (Figure 1).
Additionally, co-immunoprecipitation of the microtubule
plus-end-tracking protein EB1 from Chlamydomonas
flagellar extract pulled down IFT172 independent of
both IFT-A and IFT-B [110,111], although it is un-
known which domain of IFT172 mediates this inter-
action. If binding EB1 modulates the affinity of IFT172
to either dynein 2 or the IFT-B “core”, this could con-
tribute to the regulation of IFT turnaround at the cil-
iary tip. Interestingly, the partial depletion of dynein 2
from mutant Chlamydomonas flagella resulted in a
compensatory increase in flagellar EB1 [112], so the
two proteins may affect each other’s interaction with
IFT172.

The BBSome: bridging IFT-A and IFT-B?
Purification of native IFT particles from Chlamydomo-
nas flagella revealed that IFT-A and IFT-B complexes
are loosely associated [2]. Despite their weak association
in vitro, components of IFT-A and IFT-B move together
in C. elegans sensory cilia, indicating that additional fac-
tors may play a role in the IFT complex stability in vivo
[93,113]. Surprisingly, in C. elegans bbs-7 and bbs-8 mu-
tants, the components of IFT-A and IFT-B are carried at
different speeds by the heterotrimeric kinesin-2 and
homodimeric OSM-3 motors, respectively [93]. This
suggests that the BBSome, in addition to its well
established function in cycling membrane proteins
through cilia [82,84,114-117], may also play a role in
holding IFT-A and IFT-B together in vivo [93]. This con-
clusion led to the proposal of the “mechanical competi-
tion” model, where the BBSome keeps the IFT-A and
IFT-B complexes together resulting in IFT that proceeds
at an intermediate speed [92]. However, two observa-
tions do not agree with the “mechanical competition”
model. First, in Chlamydomonas flagella, the levels of
BBS proteins are substoichiometric compared to IFT
protein levels, and the BBSome component BBS4 under-
goes IFT with only a subset of IFT particles [82]. Second,
in C. elegans, a DYF-2 (IFT144 orthologue) point-
mutation resulted in the accumulation of BBSomes at the
base of the cilium and the absence of BBSomes inside the
cilium, but IFT-A and IFT-B complexes nevertheless
moved together at intermediate speeds that were similar
to wild-type [113]. Interestingly, in the dyf-2 mutant, IFT-
B components failed to associate with the retrograde IFT
machinery and thus accumulated at the ciliary tip. These
observations led to the proposal of a model where the
BBSome plays a role in the formation of stable IFT com-
plexes at the base and the tip of the cilium but is not ne-
cessary for IFT complex stability during anterograde IFT
[113]. In any case, both models suggest that the BBSome
interacts with components of both the IFT-A and IFT-B
complexes. Interestingly, in mice, BBSome component
BBS1 was shown to directly interact with the IFT-A com-
ponent WDR19 (IFT144 orthologue) [113]. As for the
IFT-B complex, a large scale yeast two-hybrid study with
C. elegans proteins revealed an interaction between the
IFT-B accessory protein DYF-3 and the BBSome compo-
nent BBS-7 [118]. Further studies are necessary to under-
stand the regulatory role of the BBSome in IFT.

Conclusions
Although much is known about the overall architecture
of the IFT complex and the role of IFT proteins in ciliary
assembly and maintenance, molecular details concerning
the distinctive roles of the 20 IFT proteins are still elu-
sive. As pointed out in this review, it is likely that many
IFT proteins possess principal domains required for IFT
complex formation and auxiliary domains used to inter-
act with ciliary cargo and motors. Functional dissection
of these domains will remain the focus of extensive re-
search in the coming years. While it is likely that highly
abundant ciliary proteins such as tubulin, dynein arms
and radial spokes have unique binding sites on the IFT
complex, other ciliary cargo may compete via their CTS
for binding to more generic cargo sites. In summary, the
IFT complex contains numerous TPR and WD40 repeat
domains that are expected to fulfill the task of selectively
transporting a large number of ciliary proteins.
Obtaining direct evidence for these interactions by
means of either structural or functional studies would be
a significant leap forward for the IFT field.
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